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Resumo

Usando a teoria das funções reais recursivas, que deriva da proposta origi-

nal em [Moo96], mostramos como cada função periódica definida por partes,

que admite um desenvolvimento em série de Fourier, pode ser definida como

uma destas funções reais recursivas. Demonstramos, também, que o poder

computacional de um certo tipo de autómatos finitios em tempo contı́nuo

está limitado à computação de sinais que são descritos por funções lineares

parcialmente periódicas definidas por partes, as quais constituem um sub-

conjunto muito restrito de sinais que podem ser gerados por funções reais

recursivas.

Uma função real recursiva com limites infinitos é apresentada para simu-

lar máquinas de Turing em tempo infinito, restrito a ω2, bem como o seu po-

der computacional, nomeadamente para decidir as respectivas aproximações

ω2 aos problemas da paragem e, ainda, a hierarquia da aritmética recorrendo

a um número finito de limites. Para isso, é introduzido um novo esquema

de iteração nos ordinais até ω2, que simula as máquinas de Turing em tempo

infinito com a codificação para inputs binários finitos, introduzida por Chris-

topher Moore, e o sistema de equações diferenciais da simulação da máquina

de Turing, introduzido, recentemente, por Jerzy Mycka e José Félix Costa.
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Abstract

Taking the most simple kind of finite state automata, typically used in the

digital stage, whose states are continuous instead of discrete, we show that

such automata can only recognize periodic infinite patterns. In our case such

patterns are generated by real recursive functions, a new trend in analog com-

putation, which are an extension to reals of Kleene’ s recursive functions.

And, thus, we show that automata can only recognize periodic real recursive

functions, which we also show that are naturally approximated by Fourier

series. With these results in hand, we are bringing together not only the con-

cept of periodicity into the real recursive function theory, and consequently

the Fourier series, but also the automata, with continuous states, and their

computational limits, in a new mathematical characterization of hybrid finite

computation.

Another application of real recursive functions with infinite limits is intro-

duced for the simulation of infinite time Turing machines and their computa-

tional power, namely their ability to decide their halting problems, restricted

to ω2, and the arithmetic sets with a finite number of limits. To do this, we

introduce a new kind of iteration schema over ordinals and we recover the

codification over the reals for finite inputs, introduced by Christopher Moore,

as well as the system of differential equations involved in the simulation of

Turing machines presented, recently, by Jerzy Mycka e José Félix Costa.
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Preface

The theory of Analog Computation, where the internal states of a computer

are continuous rather than discrete, has enjoyed a recent resurgence of in-

terest. This stems partly from a wider program of exploring alternative ap-

proaches to computation, such as neural and quantum computation; partly

as an abstraction of numerical algorithms where real numbers can be thought

of as entities in themselves, rather than as strings of digits, and partly from

a desire to use the tools of computation theory to better classify the variety

of continuous dynamical systems used to model our world (or at least its

classical limit).

Cristopher Moore, in 1996, define a class of recursive functions over the

reals, including many functions which are uncomputable, analogous to the

classical recursive functions on the natural numbers, corresponding to a con-

ceptual analog computer that operates in continuous time. He also stratifies

such class into a µ-hierarchy, according to the number of uses of the zero-

minimalisation operator µ—the classical minimalisation operator over reals.

At the lowest level, he obtains continuous functions that are differentially al-

gebraic, and computable by Shannon’s General Purpose Analog Computer

(the so called GPAC), and, at higher levels, he obtains increasingly discontin-

uous and complex functions. In the last years, recursive functions over the

reals have been considered, first as a model of analog computation, and sec-

ond to obtain analog characterizations of classical computational complexity

classes. However, the minimalisation operator has not been considered, par-

tially, because it does not fit well the analytic realm of analog computation.

Jerzy Mycka and José Félix Costa, in 2003, introduce a most natural opera-

tor borrowed from Analysis: the operator of taking a limit, which can be used

properly to enhance the recursion theory over the reals, providing good so-
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lutions to puzzling problems raised by the mentioned Moore’s model. More-

over, apart from the analytical characterisation of classical complexity classes

and the introduction of a bounded quantification to treat nondeterminism,

the counting of nested limits required to define a real recursive function gen-

erates leads us to consider that the class of real recursive functions can be

stratified by a potentially infinite hierarchy—a hierarchy of infinite limits

called η-hierarchy. In the first meaningful level of such hierarchy we have

the extensions of classical primitive recursive functions; in the second level,

we have partial recursive functions; and, in the following level, we have the

solution to the Halting Problem.

The core of this dissertation, which main objective is to study two appli-

cations of real recursive functions emphasizing the role of infinite limits, is

separated into 2 parts: the first part, which corresponds to the Chapter 3, we

deal with a subclass of real recursive functions called the periodic real recur-

sive functions, and show that classical finite state automata, usually taken

by the Hybrid Systems community, only recognize signals generated by such

real recursive functions; the second part, which corresponds to the Chapter 5,

we make an incursion into Hypercomputation, and show that there are real

recursive functions which are able to simulate infinite time Turing machines

wtih their computational power in ω2, using a new iteration schema over

ordinals, which is also simulate by a particular system of differential equa-

tions. And, chapters 1 and 2 provide, respectively, a short historical perspec-

tive of analog computation since its roots, and a short presentation equipped

with concepts and results needed from classical recursion theory and real

recursion theory with infinite limits, and, moreover, Chapter 4 presents a

short overview about ordinals, infinite time Turing machines and their halt-

ing problems.

Finally, I would like to emphasize that all the mentioned work was done

in the last one and half year, which also produced one paper to be submit-

ted, titled ”Hybrid finite computation”, and another on going paper that will

be titled ”Simulating infinite time Turing machines with real recursive func-

tions”.
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Notation

α, β, λ (possibly indexed) range over Ord

a, b, c, d (possibly indexed or primed) range over Z

f , g, h, F , G (possibly indexed or primed) denote functions

i, j, k, n, m, p (possibly indexed) range over N

s (possibly indexed or primed) range over piecewise linear signals

t (possibly indexed or primed) range over R+
0

u, v, w (possibly indexed) range over Zω

x, y, z (possibly indexed) range over R
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Chapter 1

Analog computation: historical
perspective

Since the 1930’s, the digital computational paradigm has been the most im-

portant computational model, mainly due to the unifying work of Turing

which clarified the notion of algorithm. Rapidly, several other equivalent

approaches to digital computation appeared (e.g., recursive functions in the

sense of Kleene, originating a consistent theoretical ground to classical com-

putation theory. Nevertheless, the computation need not to be digital. In fact,

the first computers were analog, where internal states are continuous rather

than discrete. The analog computers were well suited to solve ordinary dif-

ferential equations but, infortunately, because of the inexistence of a coherent

theoretical basis to analog computation and because analog computers tech-

nology almost didn’t improve when compared with its digital counterpart.

In the last half century, analog computation was about to be forgotten with

the emergence of digital computation. Despite this period of oblivion, analog

computation is regaining interest. The search for new models that could pro-

vide an adequate notion of computation and complexity for the dynamical

systems, that are currently used to model the physical world, contributed to

change this situation.

In analog computers, each real number is handled exactly and it is consid-

ered an intrinsic quantity, whereas in digital computers such number is rep-

resented (and approximated) by (a finite) sequence of bits. It seems that ana-

log computation is more appropriated for studying notions of computability
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Applications of Real Recursive Infinite Limits

and complexity for continuous dynamical system (generally speaking, every

computational model can be seen as a dynamical system). The main property

that distinguishes analog model from digital ones is the use of a continuous

state space instead of a discrete state space. Besides this feature there is no

agreement upon the properties that characterize an analog model of compu-

tation. Recent research shows that Turing machines, when converted into

discrete dynamical systems, can be embedded in analog systems. So, we can

see analog computation as an extension of digital computation. Moreover,

in this fashion, we get a physical meaning to the Turing machine that cannot

be obtained with the classical description. Current research suggests some

lines of work. Some analog models can be seen as high dimensional dynami-

cal systems (highly parallel models), e.g., neural networks [Sie98], and others

may be seen as low dimensional dynamical systems. One the other way, we

may classify analog models as discrete time models or as continuous time

models. However, this is not a rigid characterization and it is possible to find

hybrid models (e.g., [Bra95]).

We go back to the roots of analog computation theory by starting with

Claude Shannon’s so-called General Purpose Analog Computer (GPAC).1

This was defined as a mathematical model of an analog device, the Differen-

tial Analyzer, whose fundamental principles were described by Lord Kelvin

in 1876 [Kel76]. The Differential Analyzer was developed at MIT under the

supervision of Vannevar Bush, and it was indeed built in 1931 and rebuilt

with important improvements in 1941. The input of Differential Analyzer

was the rotation of one or more drive shafts and its output was the rotation

of one or more output shafts. The main units were gear boxes and mechan-

ical friction wheel integrators, the latter invented by the Italian scientist Tito

Gonella in 1825. From the early 1940s, the differential analyzers at Manch-

ester, Philadelphia, Boston, Oslo and Gothenburg, among others, were used

to solve problems in engineering, atomic theory, astrophysics, and ballistics,

until they were dismantled in the 1950s and 1960s following the advent of

electronic analog computers and digital computers (see [Bow96, Hol96] for

further details).

The first main paradigm of analog computation was Shannon’s GPAC.
1In spite of being called ”general’”, which distinguish it from special purpose analog com-

puting devices, the GPAC is not a uniform model in the sense of von Neumann.
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1. Analog computation: historical perspective

In [Sha41], Shannon showed that the GPAC generates the differentially alge-
braic functions, which are unique solutions of polynomial differential equa-

tions with arbitrary real coefficients. This set of functions includes simple

functions like the exponential and trigonometric functions as well as sums,

products, and compositions of these, and solutions of differential equations

formed from them. Marion Pour-El in [PE88] made this proof rigorous by

introducing the crucial notion of domain of generation. However, it is known

that, even if the boundary condition is computable by the GPAC, the Dirich-

let problem on the disk can not, in general, be solved by the GPAC [Rub93].

Moreover, the Euler’s function Γ is not computable by the GPAC, since it

is not differentially algebraic [Rub88]. Lee Rubel, in [Rub93], proposed the

Extended Analog Computer (EAC). This model has not only more computa-

tional power than GPAC and also produces the solutions of a broad class of

Dirichlet boundary-value problems for partial differential equations. How-

ever, Lee Rubel stresses that the EAC is a conceptual computer and that it is

not known whether it can be realized by actual physical, chemical or biolog-

ical devices.

At the present, only a few researches are delving into the world of gen-

eral purpose analog computing. Actually, one of the most notable is Jonathan

Mills at Indiana University, which patented a new analog computer that he

calls Kirchhoff-Lukasiewicz Machine,2 designed with arrays of Lukasiewicz

logic gates based on the continuous valued Lukasiewicz logic. This ma-

chine uses simplified electronic components and ”continuous value logic”

that makes it able to work incredibly fast and process more sensory inputs

than a digital computer can handle. Curiously, he began studying butterfly

wing patterns, which is also described by differential equations, and trying

to model them with an array of Lukasiewicz logic gates. The speed and sim-

plicity of fabrication of Kirchoff-Lukasiewicz Machines suggests that analog

machines do have a future. It is important to notice that this technology is

capturing attention outside academia, including calls from NASA and Nor-

tel, the Canadian telecommunications company, to discuss possible applica-

tions.

The problems of scientific computing often arise from the study of con-

2After physicist G. R. Kirchhoff and mathematician J. Lukasiewicz.

3



Applications of Real Recursive Infinite Limits

tinuous processes, and questions about computability and complexity over

the reals are of central importance in laying the foundations for the subject.

The first step is defining a suitable computational model for functions over

the reals. The notion of a function changed its meaning through centuries.

Before Cantor’s work it was usually interpreted as some method of compu-

tation. Later a function was seen as any relation satisfying some conditions,

however not necessarily given in a constructive way. Analog Computation

can be viewed as a modern way of an implementation of pre-Cantorian point

of view into current mathematics.

Computability and complexity over discrete spaces have been very well

studied since the 1930s. Different approaches have been proved to yield

equivalent definitions of computability and nearly equivalent definitions of

complexity. From the tradition of logic we have the notions of recursive-

ness and Turing machine, and from computational complexity we have vari-

ations of Turing machines and abstract Random Access Machines, which

closely model actual computers. All of these converge to define the same

well-accepted notion of computability. The Church-Turing thesis asserts that

this formal notion of computability is broad enough, at least in the discrete

setting, to include all functions that could reasonably be constructed to be

computable.

In the continuous setting, where the objects are numbers in R, computabil-

ity and complexity have received less attention and there is no accepted com-

putation model. Turing defined the notion of a single computable real num-

ber in his landmark 1936 paper [Tur39]: a real number is computable if its

decimal expansion can be computed in the discrete sense (i.e., output by some

Turing machine). But he did not go on to define the notion of computable

real function. One of the big successes of discrete computability theory is the

insolvability results: especially the solution of Hilbert’s 10th problem (see

[Mat93]). The theorem states that there is no procedure (e.g., no Turing ma-

chine) which always correctly determines whether a given Diophantine equa-

tion has a solution. The result is convincing because of general acceptance of

the Church-Thesis.

Büchi and others initiated the study of ω-automata and Büchi machines,

involving automata and Turing machine computations of length ω which
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1. Analog computation: historical perspective

accept or reject infinite input. Gerald Sacks and many others (see [Sac90])

founded the field of higher recursion theory, including α-recursion and E-

recursion, a huge body of work analyzing computation on infinite objects.

Lenore Blum, Michael Shub and Steve Smale have presented a model of com-

putation on the real numbers, the so called BSS machines, a kind of flowchart

machine where the basic units of computation consist of real numbers, in a

full glorious precision [BSS89]. Apart from all this mathematical work, Joel

David Hamkins and Andy Lewis have been proposed a new model of infini-

tary computation called infinite time Turing machines [HL00]. There is no

suggestion at all of how such devices might be engineered or even conceived

in a physical theory. And, thus, these devices are considered in a logic context

only. However, this model offers the strong computational power of higher

recursion theory while remaining very close in spirit to the computability

concept of Turing machines. Notice that the BSS machines were the origi-

nal inspiration for infinite time Turing machines.3 In another direction, the

theory of higher recursion provides a model of infinitary computation by set-

ting a very general theoretical context for recursion on infinite objects, and

one should expect many parallels between it and the theory of infinite time

Turing machines.

José Félix Costa and Jerzy Mycka and others have been working towards

the recursive definition of computational classes of functions over R. The

first presentation of such theory, analogous to Kleene’s classical theory of re-

cursive functions over N, was attempted by Christopher Moore in [Moo96].

Roughly speaking, these real recursive functions are generated by constants,

projections, composition, minimization, and also by a fundamental opera-

tor called differential recursion instead of the classical recursive operator.

In [MC04a], an infinite limit operator is added instead of minimalisation in

[Moo96].4 In [CMC02], it is shown that a linear form of the differential recur-

sion scheme gives rise to an analog characterization of (Kálmar’s) elementary

functions [Kal43] and to an analog characterization of Grzegorczyk hierarchy

3Jeffrey. Kidder and Joel David Hamkins heard Lenore Blum’s lectures for the Berkeley
Logic Colloquium in 1989, and had the idea to generalize the Turing machine concept in a
different direction: to infinite time rather then infinite precision [Ham01].

4See [MC04a] for an exhaustive discussion about the role of minimization and infinite lim-
its in real recursion theory.
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[Grz55]. In [CMC00] it is shown that the GPAC is not closed under itera-

tion and that a subclass of real recursive functions coincides with the class

of GPAC-computable functions. And, finally, it was shown how to capture

higher computational classes through the limit operator. Recently, Olivier

Bournez and Emmanuel Hainry at INRIA showed, in [BH05], that a specific

kind of limit together with differential recursion make the class of real recur-

sive functions an exact extension to the real numbers (we can say in the sense

of Computable Analysis [Wei00]) of the classical recursive functions.
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Chapter 2

Computation over the reals: the
general framework

In this chapter, we provide the essential background about real recursion the-

ory following the proposal that have been developed by José Félix Costa,

Manuel Campagnolo, Daniel Graça and Jerzy Mycka, and, more recently, by

Olivier Bournez and Emmanuel Hainry, which has its roots on the seminal

work of Christopher Moore. More concretely, we review recursion theory

over natural numbers, following the complete survey given by [Odi89], and

over real numbers, following the recent work introduced in [MC04a], em-

phasing the η-hierarchy of real recursive functions.

The first presentation of recursive functions over R, analogous to Kleene’s

classical theory of recursive functions over N, was attempted by Christopher

Moore in the mid 1990’s [Moo96]. Such functions over R are generated by a

differential recursion operator instead of the classical recursion operator over

N. More recently, José Félix Costa and Jerzy Mycka introduced another fun-

damental operator called infinite limit [MC04a]. Later on, Olivier Bournez

and Emmanuel Hainry showed in [BH05] that a specific kind of limit opera-

tor together with differential recursion makes the class of real recursive func-

tions an exact extension to real numbers, in the sense of Computable Analysis

[Wei00], of classical recursive functions.
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2.1 Recursion theory over N

The classical recursion theory, initiated by Kleene in the mid 1930s as an al-

ternative approach to discrete computation over discrete time, is the study of

(partial) recursive functions over N. In such theory, an inductive approach is

taken by starting from initial functions, corresponding to O (the zero func-

tion), S (the successor function) and In (n > 0) (the projection functions),

and by successively building up new functions using composition, recur-

rence and minimalization operators. Formally,

Definition 2.1.1. The class of partial recursive functions REC(N) is generated

from the initial recursive functions O(x) = 0 of arity 1, S(x) = x + 1 of arity

1 and, for every n > 0, In
i (x1, . . . , xn) = xi of arity n, for every 1 ≤ i ≤ n, and

by the following operators:

• Composition: If f1, . . . , fm are partial recursive functions of arity n, and

g is a partial recursive function of arity m, then

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

is a partial recursive function of arity n.

• Recurrence: If f is a partial recursive function of arity n, and g is a

partial recursive function of arity n + 2, then h is defined as follows:

h(x1, . . . , xn, 0) = f(x1, . . . , xn)

h(x1, . . . , xn, y + 1) = g(x1, . . . , xn, y, h(x1, . . . , xn, y))

is a partial recursive function of arity n + 1.

• Mimimalization: If f is a partial recursive function of arity n + 1, then

µy(f(x1, . . . , xn, y) = 0) =



least y such that

f(x1, . . . , xn, z) ↓,
for every z ≤ y, and

f(x1, . . . , xn, y) = 0, if y exists

⊥ otherwise

is a partial recursive function of arity n. �
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2. Computation over the reals: the general framework

Since the minimalization operator searches arbitrary large values of y to

find at least one value such that f(x1, . . . , xn, y) = 0, it corresponds to the

’while’ statement; there may be no such y and, thus, the ’while’ might never

halt. Then h is undefined on that value (x1, . . . , xn), denoted by ⊥, and, then,

it is a partial function. The functions that can be generated with composition,

primitive recursion and minimalization are called partial recursive; if a func-

tion f is total, i.e., defined for every (x1, . . . , xn), then f is primitive recursive.

The class REC(N) turn out to correspond exactly to many other definitions

of computability, including Turing machines, which is considered a deep and

universal definition of computability.

The iteration operation is also fundamental in the classical theory of com-

putation. So,

Definition 2.1.2. A function f of arity 2 is defined by iteration from a func-

tion g of arity 1 if f(x, n) = gn(x) where gn(x) = g(gn−1(x)) (by convention

g0(x) = x). �

And, the following result makes it clear:

Proposition 2.1.1. The class of primitive recursive functions is the smallest class of
functions such that:

1. containsO, S, and In functions, together with coding and decoding functions

2. is closed under composition;

3. is closed under iteration.

Proof. See Proposition I.5.10 (pp. 72-73) in [Odi89].

The result just presented can be previously improved. First of all, M. D.

Gladstone in [Gla67, Gla71] shows that the introduction of new initial func-

tions can be avoided: the class of primitive recursive functions is the smallest

class containing the initial functions, and it is closed under composition and

iteration. Second the iteration schema can be further weakened in the follow-

ing schema of pure iteration: f(n) = g(n)(0). Some initial functions are needed

here, since by composition and pure iteration we never get, from the initial

functions, any function of arity 2. Possible choices of initial functions that

generate the primitive recursive functions by pure iteration are in [Gla71]. R.

9
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M. Robinson, in [Rob47], also show that the pure iteration schema is enough

to generate the unary primitive recursive functions by composition, start-

ing from two (but not from only one) appropriate unary functions. Thus we

do not need to use nonunary functions to get any unary primitive recursive

function.

2.2 Recursion theory over R

In [Moo96], it was defined a set of (vector-valued) functions over Rn, called

R-recursive functions, analogously to the approach taken by Kleene in N

[Kle55]: the discrete recursion operator is replaced by a continuous integra-

tion operator and, thus, the set of R-recursive functions generates a contin-

uous time computation model. More recently, Jerzy Mycka and José Félix

Costa present, in [MC04a], several changes and exhaustive comments about

the original proposal in [Moo96]. The main change provided by them is the

replacing of Moore’s µ-operator, a counterpart of the classical minimalization

operator, by an infinite limit operator. This is a powerful idea to implement

the levels of the arithmetical hierarchy into subclasses of the real recursive

vector functions. It is also important to notice that the minimalisaion opera-

tor can be derived from infinite limits as we can see in [Myc03], although the

contrary might not be strictly true.

Recall that, in [BH05], it is also introduced a kind of infinite limit operator

in order to capture, together with composition and differential recursion, ex-

actly the whole class of classical recursive functions. But, here, we prefer the

concept of primitive limit as being operative and allowing to reason about

computability and complexity in Analysis in a natural way.

So, we are going to present the class of real recursive vector functions fol-

lowing the approach found in [MC04a]. But, first, it is important to explain

why vectorial notation is used to generate the class of real recursive functions.

The main reason is related with the functions sin and cos, that plays a ma-

jor role as clock functions, which are solutions of a second-order differential

equation of the form: ∂2
y h(y) + h(y) = 0, i.e.(

∂y h(y)

∂y g(y)

)
=

(
g(y)

−h(y)

)
.

10



2. Computation over the reals: the general framework

Definition 2.2.1. The class of real recursive vector functions REC(R) 1 is gener-

ated from the real recursive scalars 0, 1, −1 and the real recursive projections

Ii
n(x1, . . . , xn) = xi, 1 ≤ i ≤ n, n > 0 and by the following operators:

• Composition: if f is a real recursive vector function with n k-ary com-

ponents and g is a real recursive vector function with k m-ary compo-

nents, then the vector function with n m-ary components, 1 ≤ i ≤ n,

λx1 . . . λxm. fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is real recursive.

• Differential recursion: if f is a real recursive vector function with n k-

ary components and g is a real recursive vector function with n (k+n+

1)-ary components, then the vector function h of n (k + 1)-ary compo-

nents which is the solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is real recursive whenever h is of the class C1 on the largest interval

containing 0 in which a unique solution exists.2

• Infinite limits: if f is a real recursive vector function with n (k + 1)-ary

components, then the vector functions h, hi, hs with n k-ary compo-

nents, 1 ≤ i ≤ n,

hi(x1, . . . , xk) = lim
y→∞

fi(x1, . . . , xk, y),

1Hereafter, we abbreviate real recursive vector functions by real recursive functions.
2Suppose g(x, y, z) is a continuous function in a rectangle of the form {〈y, z〉 :

a < y < b and c < z < d}; if 〈0, f(x)〉 is a point of this rectangle, then there exists an ε > 0

and a function h(x, y) defined for −ε < y < ε that solves the Cauchy problem

∂yh(x, y) = g(x, y, h(x, y)),

with h(x, 0) = f(x), for all x such that both f and g are defined (EXISTENCE THEOREM).
Suppose g(x, y, z) and ∂zg(x, y, z) are continuous functions in a rectangle of the form {〈y, z〉 :

a < y < b and c < z < d}. If 〈0, f(x)〉 is a point of this rectangle and if h1(x, y) and h2(x, y)

are two functions that solve the Cauchy problem for all −ε < y < ε, than h1(x, y) = h2(x, y)

(UNIQUENESS THEOREM).
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hi
i(x1, . . . , xk) = lim inf

y→∞
fi(x1, . . . , xk, y),

hs
i (x1, . . . , xk) = lim sup

y→∞
fi(x1, . . . , xk, y)

are all real recursive.

• Assembling and designating components: (a) arbitrary real recursive

vector functions can be defined by assembling scalar real recursive func-

tion components into a vector function; (b) if f is a real recursive vector

function, then each of its components is a real recursive scalar function.

• Real recursive numbers: arbitrary real recursive scalar functions of arity

0 are called real recursive numbers. �

In order to understand the above definition and to see how simple it is the

construction of a real recursive function without infinite limits, we provide

some interesting examples, that were already introduced in [MC04a].

Example 2.2.1. Constant functions 0n, 1n, −1n which are n-ary can be de-

rived from unary constant functions by means of projections. For example

1n(x1, . . . , xn) = 1 can be defined as 11(I1
n(x1, . . . , xn)) = 1. Constant func-

tions of arity one can be derived by differential recursion: 0(0) = 0, ∂y0(y) =

I2
2 (y, 0(y)); u(0) = c, ∂yu(y) = 0(I1

2 (y, u(y))), where c = 1, −1.

The functions +, ×, −, exp, sin, cos, λx. 1
x , /, log and λxy. xy are real re-

cursive vector functions. Let us define +(x, 0) = I1
1 (x) = x, ∂y + (x, y) =

13(x, y, +(x, y)). Analogously, ×(x, 0) = 01(x), ∂y × (x, y) = I1
3 (x, y,×(x, y)),

hence we have by a composition −(x, y) = +(x,×(−1, y)). The exponentia-

tion can be defined as exp(0) = 1, ∂yexp(y) = I2
2 (y, exp(y)). Furthermore, the

vector (sin(x), cos(x)) and its components can be defined by such differential

recursion:(
sin

cos

)
(0) =

(
0

1

)
, ∂y

(
sin

cos

)
(y) =

(
I3
3

−I2
3

)
(y, sin y, cos y).

Now for λx. 1
x , we define h(x) = 1

x+1 in the following way: h(0) = 1,

∂xh(x) = ×(−1,×(h(x), h(x))) (h is defined in the interval (−1,∞)), and then

we compose h with λx. x− 1. The division is simply a composition of × and

λx. 1
x (with the domain equal to (0,∞), but we can extend the division to the

negative numbers via a definition by cases). In the case of log we start with

12



2. Computation over the reals: the general framework

the definition of λx. log(x + 1) by log(1) = 0, ∂x log(x + 1) = 1
I1
2 (x,log(x+1))+1

,

to finish with a shift of the argument. Next, x0 = 11(x), ∂yx
y = g(x, y, xy) =

log(x) · xy. �

For differential recursion, the domain is restricted to an interval of conti-

nuity and, thus, preserving the analiticity of functions that can be generated

by such differential schema. For example, using differential recursion we can

not define functions such as λx.|x|. It is excluded the possibility of operations

on undefined functions: functions are strict in the meaning that for undefined

arguments they are also undefined.

To obtain more interesting functions (e.g. the several forms of η-function

in Definition 2.3.5) the addition of the operators of infinite limits are required.

Let us point out that introducing infinite limits gets discontinuous functions.

Example 2.2.2. The Kronecker δ function, the signum function, and absolute

value are real recursive functions. The Heaviside Θ function, the binary max-

imum max, the square-wave function s, the function p such that p(x) = 1 for

x ∈ [2n, 2n + 1) and p(x) = 0 for x ∈ [2n + 1, 2n + 2), and the floor function

are all real recursive too. �

It is sufficient to take the following definitions: if δ(0) = 1 and for all

x 6= 0 we have δ(x) = 0, then let us define δ(x) = lim infy→∞ ( 1
1+x2 )y. From

the function λxy. 2
1+e−xy − 1, we obtain

sgn(x) = lim infy→∞ 2
1+e−xy −1 =


1 if x > 0

0 if x = 0

−1 if x < 0

, and |x| = sgn(x)x.

Let Θ(x) = (sgn(x)+δ(x)+1)/2, then we have max(x, y) = y+(x−y)Θ(x−y)

and s(x) = Θ(sin(πx)).

The function p can be given by λx. s(x)(1 − δ(sin( (x−1)π
2 ))). Finally the floor

function has the definition below

bxc = w(x)p(2x) + w(x− 1
2
)(1− p(2x)),

where w(x) = j if x ∈ [j, j + 1
2). Such function w can be defined by the

differential recursion: w(0) = 0, ∂xw(x) = 4 sin2(2πx)Θ(− sin(2πx)). �

In some examples above we can use in constructions the predicate of

equality eq = λxy. δ(x − y). Sometimes we will use Θ to control whether

13
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points are in a given interval. Then for x ∈ [a,∞) we have the characteristic

function Θ(x−a) and for x ∈ [a, b] we can define Θ[a,b](x) = Θ(x−a)Θ(b−x).

Let us add that we can find real recursive numbers (computable reals)

as values of real recursive functions of arity one for, let us say, an argument

equal to 0. Of course the argument can be changed to a real recursive num-

ber t by a composition of a given real recursive function with λx. x + t. In

this sense e and π are computable reals: e = exp(1), π = 4 arctan(1), where

arctan(0) = 0, ∂y arctan(x) = 1
1+x2 . Also Euler’s constant

γ = limn→∞((
∑n

k=1
1
k )− log(n))

is a computable real number because it can be established by real recursive

expression

γ = − lim
y→∞

∫ y

0
e−x log(x) dx.

A (unique) solution for the differential recursion, in the Definition 2.2.1, is

guaranteed including in the definition the existence and uniqueness theorem

on the largest interval containing 0. More recently, it has been discussing a

definition for a solution for such differential recursion schema in order to say,

precisely, what is a solution for it. For example, in differential recursion of

Definition 2.2.1, it is not imposed that functions fi and gi, for 1 ≤ i ≤ n, are

of class C1. Several examples have been taking to motivate the adequacy of

the definition of a solution to a system of differential equations.

Example 2.2.3. Consider the following differential schema

h(0) = 2−
√

3, ∂yh(y) =
y

h(y)− 2
,

where the functions f and g involved are the constant 2 −
√

3 and λyz. y
z−2 ,

respectively. Although g is not C1 in all components, the largest solution is

h(y) = 2−
√

y2 + 3 that is defined in R. �

The literature about differential equations (e.g. [Arn92]) say that a solu-
tion... is a function of the independent variable that, when substituted into the equa-
tion as the dependent variable, satisfies the equation for all values of the independent
variable. That is, a function h(y) is a solution if it satisfies the following standard
form of differential recursion

∂yh(y) = g(y, h(y))

14
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for every y in R. But in many cases, there is a unique function h in C1 that

satisfies the above equation for all y where g is defined, although g has a

countable number of discontinuities in R. In this case, we can adopt h as the

desired (generalized) solution of the above differential recursion schema.

The above discussion take us to say, formally, what we intend by a solu-

tion of a system of differential equations defined by the differential recursive

schema of Definition 2.2.1. So,

Definition 2.2.2. A solution for a system of differential equations

∂yh1(x1, . . . , xk, y) = g1(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)),

...

∂yhn(x1, . . . , xk, y) = gn(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)),

giving the initial conditions

h1(x1, . . . , xk, 0) = f1(x1, . . . , xk)

...

hn(x1, . . . , xk, 0) = fn(x1, . . . , xk),

is a vector function ĥ : Rk+1 → R
n such that:

• a unique solution h to the system of differential equations exists in some

open interval I containing 0;

• the vector function ĥ satisfies the equations in J ⊇ I such that J is an

open interval up to a countable number of non-Zeno discontinuities 3

in the sense that, for every y ∈ J , ĥi(x1, . . . , xk, y) and

gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y), . . . , ĥn(x1, . . . , xk, y))

are both defined, for all 1 ≤ i ≤ n,

∂yĥi(x1, . . . , xk, y)

is defined and it holds that
3It means that for each finite open interval there exist only a finite number discontinuities.
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∂yĥi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y), . . . , ĥn(x1, . . . , xk, y));

• the vector functions h and ĥ coincide on I ;

• the vector function ĥ is the unique continuous extension of h. �

The vector function ĥ is called generalized solution of the system of dif-

ferential equations if it is the maximal solution according with the previous

items. When dealing with our inductive definitions, we will work with this

definition of a solution to the differential recursion schema.

Example 2.2.4. Consider the scheme h(0) = 0, ∂yh(y) = 1
sec(y) . The solution

is h(y) = sin(y), e.g, for y ∈ (−π
2 , π

2 ). But, if we ask for the largest generalized
solution in C1 or even in C0, the answer is h(y) = sin(y), despite the fact that

our differential relation will only be satisfied outside a countable number of

points. �

A particularly interesting real recursive vector function in REC(R) is the

iteration function (that we take the original result from [Moo96]). There are,

since the work of Branicky (see [Bra95]), many ways to simulate in continu-

ous time the iteration of a discrete time function, particularly the simulation

of a Turing machine given in [Moo96] or, more recently, the one given in

[MC04a].

Proposition 2.2.1. If f is a real recursive scalar total function of arity n, then the
iteration of f , F , is a real recursive scalar function of arity (n + 1), such that, for all
y ≥ 0, F (x1, . . . , xn, y) = f |byc|(x1, . . . , xn)

Proof. See Proposition 11 (pp. 13-14) in [Moo96].

In [CMC00], it is shown that, for every k > 1, the class G + θk is closed

under iteration but G is not, where G is the class of primitive R-recursive

functions whose derivatives are bounded on the interval on which they are

defined and it is also equivalent to GPAC computable functions.

2.3 The η-hierarchy

In [Moo96], it is established a µ-hierarchy to stratify the class of R-recursive

functions according to the number of nested minimalizations, called the µ-

number, which is defined inductively with respect to a given variable. For
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2. Computation over the reals: the general framework

any R-recursive function f , let M(f) = maxi Mxi(s), minimized over all ex-

pressions s that define f and, thus, the µ-hierarchy is defined as sets

Mj = {f : M(f) ≤ j}.

So, the set of R-recursive functions is defined by ∪j Mj .

Here, we consider limits instead of minimalizations and use the notion

of syntactic n-ary descriptions for real recursive functions, following the ap-

proach found in [MC04a]. As we will see, the collection of descriptors of a

given real recursive function is defined inductively giving some atomic and

operator descriptors for the existent sorts of real recursive functions.

The η-hierarchy describe the level of nesting limits in the definition of

a given real recursive function which is a measure of the difficulty of such

function given in terms of its degree of (dis)continuity. More important, it

is the η-operator which give us, not only the tool to control the domain and

singularities of functions, but also the appropriated tool to simulate Turing

machines with real recursive functions.

Because each real function has an infinite but a countable number of ex-

pressions that can define it, hence there is also an infinite but a countable

number of descriptors for a given real recursive function.

Next, we say how we can obtain, inductively, the set of descriptors of a

given real recursive function f which is denoted by < f >.

Definition 2.3.1. The collection of descriptors of a real recursive function is in-

ductively defined as follows:

• ijn is a n-ary description of Ij
n, 1 ≤ j ≤ n ∈N;

• for every n ∈ N,

– 1n is a n-ary description of λx1 . . . xn.1, for all (x1, . . . , xn) ∈ Rn;

– 1n is a n-ary description of λx1 . . . xn.− 1, for all (x1, . . . , xn) ∈ Rn;

– 0n is a n-ary description of λx1 . . . xn.0, for all (x1, . . . , xn) ∈ Rn;

• if < h >=< h1, . . . , hm > is a k-ary description of the real recursive

function h and < g >=< g1, . . . , gk > is a n-ary description of the real

recursive function g, then c(< h >, < g >) is a n-ary description of the

composition of h and g;
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• if < h >=< h1, . . . , hm > is a k-ary description of the real recursive

function h and < g >=< g1, . . . , gk > is a (k + n + 1)-ary description

of the real recursive function g, then dr(< h >, < g >) is a (k + 1)-

ary description of the function defined as differential recursion as in

Definition 2.2.1;

• if < h >=< h1, . . . , hm > is a (n+1)-ary description of the real recursive

function h, then l(< h >), li(< h >), ls(< h >) is a n-ary description of

an appropriate infinite limit (respectively lim, lim inf and lim sup) of h

defined as infinite limits as in Definition 2.2.1;

• if < f1 >, . . . , < fm > are n-ary descriptions of real recursive k-ary

scalars f1, . . . , fm, then v(< f1 >, . . . , < fm >) is a k-ary description of

the real recursive function f = (f1, . . . , fm). �

Example 2.3.1. We construct the description of real recursive function λx. 1
x .

From Example 2.2.1, recall that we define h(x) = 1
x+1 in the following way:

h(0) = 1, ∂xh(x) = ×(−1,×(h(x), h(x))) (h is defined in the interval (−1,∞)),

and then we compose h with λx. x−1, in order to obtain λx. 1
x . So, we need to

have the description for λxy.x+y, which is dr(i11, 13), and for λxy.x−1, which

is c(dr(i11, 13), v(i11,
−
11)), and, finally, for λxy.xy, which is dr(01, i

1
3). Then,

λx.x2 has the description c(dr(01, i
1
3), v(i11, i

1
1)), and λxz.− z2 has the descrip-

tion c(dr(01, i
1
3), v(

−
12, c(dr(01, i

1
3), v(i22, i

2
2)))). And, finally, the description of

λx. 1
x is c(dr(10, < λxz.− z2 >), < λx.x− 1 >). �

The η-number for a description of some real recursive function is a way

to count nested limits in inductive descriptions given just above. Formally,

Definition 2.3.2. For a given n-ary description s of a real recursive vector func-

tion f , let Ek
i (s) (with respect to the i-th variable of the k-component) be de-

fined inductively as follows:

1. E1
i (0n) = E1

i (1n) = E1
i (1n) = 0;

2. Em
i (c(< h >, < g >)) = max1≤j≤k (Em

j (< h >) + Ej
i (< gj >)), where h

is a n components of k-ary vector and g is a k-components m-ary vector;

3. for the differential recursion, we have
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(a) for i ≤ k,

Ej
i (dr(< f >, < g >)) =

max (E1
i (< f1 >), . . . , E1

i (< fn >)), E1
i (< g1 >), . . . ,

E1
i (< gn >), E1

k+1(< g1 >), . . . , E1
k+1(< gn >)))

(b) for i = k + 1

Ej
i (dr(< f >, < g >)) =

max1≤m≤n(max(E1
k+m+1(< g1 >), . . . , E1

k+m+1(< gn >)))

where f is a n components k-ary vector and g is a n components

(k + n + 1)-ary vector;

4. for infinite limits, we have

Ek
i (l(< h >)) = Ek

i (li(< h >)) = Ek
i (ls(< h >)) =

max(Ek
i (< h >), Ek

n+1(< h >)) + 1

where h is a k components (n + 1)-ary vector. �

For n-ary description < h > of m components, the η-number for < h >,

E(< h >) = maxkmaxiE
k
i (< h >),

for every 1 ≤ i ≤ n and 1 ≤ k ≤ m. Thus, the η-number for a real recursive

function can be defined as follows:

Definition 2.3.3. Let f be a real recursive function. Then η(f) is the minimum
of E(< f >) for every description of f . �

We know that the set of real valued functions is uncountable, and that the

subset of vector functions mapping integers to integers is uncountable too.

However the set of possible descriptions of real recursive functions is count-

able. Then we conclude immediately the two following facts: (a) there are

uncountably many non real recursive functions and (b) there are uncount-

ably many non real recursive functions that map integers to integers.4

Having an η-number for each real recursive function, we can also define

an η-hierarchy as the measure of the difficulty of real recursive functions.

4Also, we can state that there are uncountably many non real recursive vector functions
that map real recursive numbers to real recursive numbers.
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Definition 2.3.4. The η-hierarchy is an N-indexed family of sets

Hj = {f : η(f) ≤ j}.

�

If f ∈ Hj , then j nested limits is used to define f . Here it is the way of

other equivalent definition: if f is a real recursive function, then E(f) = j if

at most j nested η operations are necessary to create ftotal such that ftotal is

defined everywhere and if f(x1, . . . , xn) is defined, then

ftotal(x1, . . . , xn) = f(x1, . . . , xn).

As an example, we can classify some of the real recursive functions al-

ready introduced and, additionally, classify some important functions of math-

ematics, such as Bessel functions, Euler function, Riemann zeta function (see

[MC04a]), that can be also expressed in terms of real recursiveness according

to Definition 2.2.1.

For a proper analysis of real recursive functions it is important to control

the domain and singularities of these functions.

Definition 2.3.5. For every function f : Rn+1 → R, let

ηyf(x1, . . . , xn, y) =

{
1 if limy→∞ f(x1, . . . , xn, y) exists

0 otherwise

ηi
yf(x1, . . . , xn, y) =

{
1 if lim infy→∞ f(x1, . . . , xn, y) exists

0 otherwise

ηs
yf(x1, . . . , xn, y) =

{
1 if lim supy→∞ f(x1, . . . , xn, y) exists

0 otherwise

�

The ηyf(x1, . . . , xn, y) defined just above is a characteristic function for

the set of (x1, . . . , xn) such that limy→∞f(x1, . . . , xn, y) is well defined (with-

out singularities). Analogously, ηi
yf(x1, . . . , xn, y) and ηs

yf(x1, . . . , xn, y) play

the same role for lim infy→∞ f(x1, . . . , xn, y) and lim supy→∞ f(x1, . . . , xn, y),

respectively.

The problem arises whether such operators are real recursive. If the an-

swer is to the question, whether we can define them by standard operators,
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is yes, we may patch any partial function to total one. For example, let f be a

total real recursive function and

Ftotal(x1, . . . , xn) = limy→∞(ηyf(x1, . . . , xn, y))f(x1, . . . , xn, y)

and F (x1, . . . , xn, y) = limy→∞ f(x1, . . . , xn, y). So, Ftotal is total because if

F (x1, . . . , xn) is defined, then Ftotal(x1, . . . , xn) = F (x1, . . . , xn); otherwise

Ftotal(x1, . . . , xn) = 0.

The class of real recursive functions is closed under η, ηi and ηs if the

functions obtained by these operators from real recursive functions can be

constructed as real recursive functions. Thus, REC(R) is closed under η, ηi

and ηs.

Proposition 2.3.1. If f is a total real recursive vector function, then ηf , ηif and
ηsf are total real recursive vector functions .

Proof. See Proposition 17 (pp. 16-17) in [MC04a].

Recently, in [Myc05], it was presented another application of η-hierarchy

that established a connection among such hierarchy, Baire classes and effec-

tive Baire classes. It has been served to identify some problems of analog

computation with descriptive set theory [Mos80].
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Chapter 3

The power of finite state
machines in the general
framework

In a broad sense, hybrid computation includes all computing techniques com-

bining some of the features of digital computations with some of the features

of analog computations. Recall that digital computation has been dominated

by the unified work of Turing since mid 1930s, while analog computation

has not yet experienced that unification. Consequently, there is also a lack

of consensus about the most appropriated formal characterization for hybrid

computation. But it is well known that hybrid computation occurs at the

crossroad of several scientific directions: it is based on several ideas coming

from computer science and mathematics and gathered in hybrid systems.

More concretely, very restricted classes of piecewise signals, namely the

piecewise constant signals (see [Rab03, AMP95]) and the piecewise linear sig-

nals (e.g. [ACHH93]), have been extensively studied not only by hybrid sys-

tems community but also by dynamical systems community (e.g. [KCG94]).

But not much attention is placed in this issue by continuous computation

community (e.g. [Orp97]) when such signals are considered piecewise func-

tions.

Here we intend to establish a relationship between recursive functions

over the reals (see [MC04a, CMC00, Moo96]), the side of analog (continuous)

computation, and a certain kind of finite state automata over continuous time
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(see [Rab03, Hen96]), whose computational power is the recognition of peri-

odic piecewise linear signals, the side of discrete computation. So, we are

looking for a computational model, based on finite state automata, which are

able to recognize piecewise infinite signals.

Recall that, periodic functions, in particular the periodic piecewise smooth

functions, are the most suitable functions in the Fourier Theory which has a

vast range of applications (see [Bee03, Vre03]). So, the intended relationship

must be constructed having in mind the fundamental of Fourier series in or-

der to bring these periodic functions to the range of real recursive functions.

We will see that the square wave and sawtooth wave functions, that were

taken originally in [Moo96] to show that iteration is indeed a real recursive

function, have very simple Fourier series. Moreover, it will be introduced

what we need to know about Fourier series in order to show that Fourier

series are indeed real recursive scalar functions, using real recursive infinite

limits in [MC04a]. And, finally, we will show that the computational power of

a special kind of finite state automata over continuous time found in [Rab03]

only recognize periodic real recursive functions.

3.1 Periodic functions and Fourier series

The classical theory of Fourier series and integrals, as well as Laplace trans-

forms, is of great importance for physical and technical applications, since

it enable us to reason about many periodic phenomena in nature, and, then,

periodic functions play the main role to model them. In what follows, we

will carry only Fourier series, and a particular type of periodic functions, to

real recursive function theory. All background about Fourier analysis can be

found in [Bee03], which will be our source of notation and terminology.

Definition 3.1.1. Let f be a real function.1 We say that f is periodic with period

z > 0 if, for every x ∈ R, f(x + z) = f(x). �

Several examples of well known periodic functions exist (e.g. sinusoidal

functions) but in order to illustrate the construction of Fourier series for some

of them, we prefer to consider the periodic functions occurring in [Moo96]

1A real function is a function whose domain and co-domain is R. Hereafter, we assume
only real functions
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3. The power of finite state machines in the general framework

(see Proposition 11), namely the square wave function s and the sawtooth

wave function r.

Example 3.1.1. For some m ∈ N.

• Square wave function.

s(x) =

{
1 if x ∈ [2m, 2m + 1]

0 if x ∈ (2m + 1, 2m + 2)

• Sawtooth wave function.

r(x) =

{
x− 2m if x ∈ [2m, 2m + 1)

−x + 2m + 2 if x ∈ [2m + 1, 2m + 2)

�

In order to establish the Fourier series for an arbitrary periodic function

we need first to calculate the so called Fourier coefficients, say in [0, z], as

follows:

Definition 3.1.2. If f is a periodic function with period z, then the Fourier
coefficients an and bn of f(x), if they exist, are given, for every n ∈ N, by

an =
2
T

∫ z

0
f(x)cos(

2πnx

z
)dx

and

bn =
2
T

∫ z

0
f(x)sin(

2πnx

z
)dx.

�

Using the Fourier coefficients, defined just above, we can define the Fourier

series associated with a given periodic function.

Definition 3.1.3. If an and bn are the Fourier coefficients of the periodic func-

tion f with period z, then the Fourier series of f(x) is defined by
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f(x) =
a0

2
+

∞∑
n=1

(ancos(
2πnx

z
) + bnsin(

2πnx

z
)).

�

In what follows, we give the Fourier coefficients for the square wave and

sawtooth wave signals.

Example 3.1.2. We assume m = 0.

• For the square wave function s,

a0 = 1 and b0 = 0

and, for every n > 0,

an =
1

πn
sin(πn), bn = − 1

πn
(cos(πn)− 1)

• For the sawtooth wave function r,

a0 = 1 and, for every n > 0, an = 1
(πn)2

cos(2πn) + 1
(2πn)2

.

b0 = −1
2 and, for every n > 0,

bn =

− 1
πncos(πn)− 1

(πn)2
sin(πn)+ 1

πnsin(πn)+ 1
(πn)2

cos(2πn)− 1
(πn)2

cos(πn)

�

We do emphasize that for an arbitrary periodic function f the Fourier series

will not necessarily converge for every x ∈ R, and in case of convergence will

not always equal f(x).

Definition 3.1.4. A function f is called piecewise continuous on [a, b] if f is

continuous for every x ∈ (a, b), except possibly in a finite number of points

x1, . . . , xn. Moreover, f(a+) and f(b−), f(x+
i ) and f(x−i ) should exist for ev-

ery i = 1, . . . , n. A piecewise continuous function f on the interval [a, b] is

called piecewise smooth if the first derivative of f is piecewise continuous. 2 �

2We do emphasize that the function occurring between partition points is not necessarily
linear as it is a tradition in real recursive functions theory.
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3. The power of finite state machines in the general framework

We say that a function f is piecewise continuous on R if f is piecewise

continuous on each subinterval [a, b] of R. Analogously, a function f is called

piecewise smooth on R if f is piecewise smooth on each subinterval [a, b] of R.

Next, we present the fundamental theorem which shows that, for piece-

wise smooth functions, the Fourier series does equal f at the points of conti-

nuity.

Theorem 3.1.1. Let f be a periodic piecewise smooth function on R with Fourier
coefficients an and bn. Then

f(x) =
a0

2
+

∞∑
n=1

(ancos(nx) + bnsin(nx)) =
1
2
(f(x+) + f(x−)).

Proof. See Fundamental Theorem of Fourier Series (pp. 90-92) in [Bee03].

And finally, we have a result, that will be needed in next section, which

establishes that the Fourier series of a periodic piecewise smooth function

converges to the derivative of the function itself.

Theorem 3.1.2. Let f be a periodic piecewise smooth function on R with Fourier
coefficients an and bn, and f ′ be a piecewise smooth function on R. Then

f ′(x) =
∞∑

n=1

(nbncos(nx)− nansin(nx)) =
1
2
(f ′(x+) + f ′(x−)).

Proof. See Theorem of Differentiation of Fourier Series (pp. 101-102) in

[Bee03].

The above concepts and results about Fourier theory are the essentials to

study the relationship between Fourier series and real recursive functions as

we will see in the next section.

3.2 Periodic real recursive functions

As we said before, Fourier series enable us to reason about many periodic

phenomena in nature, and, then, periodic functions play the main role to

model them. In what follows, we will carry on Fourier series, and a particular
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type of periodic functions, to real recursive function theory. All background

about Fourier analysis can be found in [Bee03], which has been our source of

notation and terminology.

Definition 3.2.1. We say that a real recursive function f is periodic with a real

recursive period z if, for every x ∈ R, f(x + z) = f(x). �

Proposition 3.2.1. If f is a periodic recursive function with a real recursive period
z (> 0), then the Fourier coefficients an and bn are real recursive numbers.

Proof. For every x ∈ R and every n ∈ N, 2
zf(x)cos(2πnx

z ) and 2
zf(x)sin(2πnx

z )

are real recursive expressions. For some n ∈ N, let gn be a recursive function

defined as follows: gn(0) = 0, ∂x gn(x) = 2
zf(x)cos(2πnx

z ). So, we obtain the

following real recursive expression:

gn(y) =
2
z

∫
0≤x≤y

f(x)cos(
2πnx

z
)dx

Therefore, gn(z) = an is a real recursive number. Analogously, for bn.

The necessary and sufficient condition for the application of fundamental

theorem for Fourier series say us that the function must be periodic piecewise

smooth on R. Until now, we did not say nothing about this kind of functions

in real recursive functions framework.

Proposition 3.2.2. If f1, . . . , fk are real recursive scalar total functions and a1, . . . , ak

are real recursive numbers such that a1 < . . . < ak, then

λx. Θ[a1,a2)(x)× f1(x) + . . . + Θ[ak,+∞)(x)× fk(x)

is a real recursive function.

Proof. Notice that Θ[0,a1], . . . ,Θ[ak,+∞), × and + are real recursive functions.

We call the real recursive function given just above a piecewise real recursive
function if it is according with the mentioned conditions. Thus, we are ready

to generate a bridge between Fourier series and the real recursive function

theory and, in broad sense, to periodic functions via their Fourier expansions.
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3. The power of finite state machines in the general framework

Proposition 3.2.3. If f has a Fourier expansion with real recursive numbers as
coefficients, then f is a real recursive expression.

Proof. The expressions sin(2πnx
z ) and cos(2πnx

z ) are both real recursive, since

z 6= 0. Then,

ansin(
2πnx

z
) + bncos(

2πnx

z
)

is also a real recursive expression, because an and bn, the Fourier coefficients,

are real recursive numbers (see Proposition 1.), as well as, its finite sum

byc∑
n=1

ansin(
2πnx

z
) + bncos(

2πnx

z
).

Then

lim
y→0

byc∑
n=1

ansin(
2πnx

z
) + bncos(

2πnx

z
)

is also a real recursive expression. And, finally,

a0

2
+ lim

y→0

byc∑
n=1

ansin(
2πnx

z
) + bncos(

2πnx

z
)

is a real recursive expression, which is the expression for the Fourier expan-

sion. �

Definition 3.2.2. A function f is said to be partially periodic with period z if

there exists z′ such that, for every x ≥ z′, f(x + z) = f(x). �

Each partially periodic function f is indeed periodic after a point z′ and,

between 0 and z′, we will require that there exists a finite number of discon-

tinuities. It is obvious that if z′ = 0, f is periodic in the sense of Definition

3.2.1.

Corollary 3.2.1. Every partially periodic function is a real recursive function in the
sense of Proposition 3.2.2. �

In particular, piecewise functions defined on non-negative reals which are

divided in two distinct parts: the first part it is defined between 0 and some

non-negative real x, where there is a finite number of points of discontinuity,

and the second part it is defined on non-negative reals greater than x but it is

periodic. We will see that the finiteness of points of discontinuity in the left
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of x and periodicity of the function in the right of x is the essential propriety

to tackle the restriction of finite state machines in the recognition of infinite

(piecewise) signals.

3.3 Automata can only recognize periodic real recursive

functions

Automata theory is, usually, faced as the study of sets of strings or ω-strings

over a finite alphabet accepted by finite state machines. Recently, some work

has been done to lift concepts of automata theory from discrete to continuous

time [Rab03]. Instead of signals defined over a discrete sequences of time in-

stants, it is considered signals defined over non-negative reals. An interesting

subclass of such signals is the set of piecewise continuous functions, because

the well-known relationship with Fourier analysis (see e.g. [Vre03]).

In this section, we will study the computational power of continuous au-

tomata which are able to process piecewise continuous signals. For this, as we

will see during the exposition and the proof of the result itself that is irrele-

vant the form of the function taken in each interval of time of each piecewise

continuous signal. So, we restrict our attention to piecewise linear signals

which are, particularly, apropriated for a representation based on ω-words,

which holds the definition of the required automata in its simplest form. Pre-

vious work had been done with the simplest class of piecewise signals: the

class of piecewise constant signals (see e.g. [Rab03]); and also with piecewise

constant derivatives signals [AMP95].

We construct a certain kind of finite state automaton, whose states are

continuous instead of discrete, and show that they only recognize partially

periodic piecewise real recursive functions, i.e. partially-periodic piecewise

real recursive functions with period z (> 0) which have a finite number of dis-

continuities between 0 and z. We assume that piecewise real recursive func-

tions are defined over R0
+. In particular, without loss of generality, we study

partially periodic piecewise linear functions because, between two points of

discontinuity, the derivative of such functions is constant and, then, it is rep-

resentable by a computable number in the classical sense (e.g. integer). In this

case, we take the approach based on signals and automata over continuous-
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3. The power of finite state machines in the general framework

time found in [Rab03] that inspired us.

In general, a signal is a function from R
+
0 to R. The well known square-

wave and sawtooth-wave functions are examples of such signals. In what fol-

lows, we describe piecewise linear real recursive functions as signals which,

in turn, are described by ω-words over Z.

Definition 3.3.1. A piecewise linear signal s over Z is a four-tuple < α, β, θ, τ >,

where α, β and θ are ω-words over Z such that, for every i ∈ N, if αi > 0 then

θi > βi; otherwise, if αi < 0 then θi < βi; otherwise, θi = βi, and τ is an

unbounded increasing ω-word over Z such that τ0 = 0 and, for every i ∈ N

and every t ∈ [τi, τi+1), si of s defined on [τi, τi+1) by

si(t) = βi +
∫ t

τi

αidt′

is a real recursive function. �

In each interval [τi, τi+1), the derivative of the (linear) real recursive func-

tion si is denoted by αi, the value of si(τi) is denoted by βi (i.e. the initial

value) and, finally, θi denotes the maximum or minimum value taken by si

in [τi, τi+1) according to the value of αi. And, thus, we are not providing the

piecewise linear signal itself but its first derivative which it is not necessarily

continuous. We denote the set of piecewise linear signals over Z by PLIN(Z).

Alternatively, each piecewise linear signal s above can also be represented by

s(t) = lim
y→∞

∑
1≤i≤byc

Θ[τi,τi+1) × si(t).

In general, s(t) is not a real recursive function.

In operational sense, for τi ≤ t < τi+1, if αi > 0, si(t) increases from βi

until θi, since θi > βi; otherwise, if αi < 0 then si(t) decreases from βi until θi,

since θi < βi; otherwise, si(t) remains constant. As this construction suggests,

each of such signals is a discontinuous piecewise linear function which has

an infinite number of discontinuities. But, in particular, for every i ∈ N, if

βi+1 = si(θi) then we obtain a continuous piecewise linear signal.

With the above representation for signals it is easy to say what is a partially-

periodic piecewise linear signal based on it. A particular case of such signals

are the periodic piecewise linear signals.
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Definition 3.3.2. We say that a piecewise linear signal < u, v, w, τ > over Z is

partially periodic with period p if there exists i ∈ N such that, for every j > i,

(uj , vj , wj) = (uj+p, vj+p, wj+p). �

As we can see above, the sufficient condition for a piecewise linear signal

to be partially periodic is obtained by considering a time instant for which the

triple formed by the first derivative, the initial value, and the maximum (or

minimum) value of the signal, after a given period greater than 0, are equal.

Notice that in the beginning of time such signals exhibits a non-periodic pat-

tern with a finite number of discontinuities which is followed by a periodic

pattern that, in our case, is a periodic piecewise linear signal. We denote

by PPPLIN(Z) the set of partially periodic piecewise linear signals, whose

representation are generated by computable infinite sequences α, β, θ and τ .

And, thus, every signal in PPPLIN(Z) is a real recursive function.

1 2 3 4

0.2

0.4

0.6

0.8

1

Figure 3.1: Square and triangle waves

Consider the simplest form of automaton where the set of states is finite.

Usually, such states are seen as abstract entities suitable to describe discrete

behaviors of systems in a given level of abstraction [Min72]. But, here, we

take an approach that has been taken by hybrid systems community (e.g.

[Tra98]) where, in a simplest case, we have a state variable which is described

by a continuous behavior over time. In this case, the automaton represents

the evolution of the system through time where each transition represents the

change of the regime of operation (i.e. the state of the automaton) which is de-

scribed by a differential equation. So, to be coherent with signals considered

above, each automaton has its state equipped with a first-order differential

equation of the form ds
dt = k. Formally,

Definition 3.3.3. A continuous automaton A over Z is a triple (Q, δ, q0) where
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3. The power of finite state machines in the general framework

• Q = {(c, b, d) ∈ Z3 : b ≤ d and c ≥ 0}∪{(c, b, d) ∈ Z3 : b > d and c < 0}
is a finite set (of states);

• δ : Q×N2 → Q is a function (the transition function) such that, for every

(c, b, d), (c′, b′, d′) ∈ Q and (a, a′) ∈ N2 such that a′ > a,

δ((c, b, d), (a, a′)) = (c′, b′, d′)

iff c′ ≤ 0 if c > 0, or c′ ≥ 0 if c < 0, or ((c′ ∈ Z − {0}) or (c′ = 0 and

b′ 6= b)) if c = 0.

• q0 ∈ Q (the initial state). �

By the condition imposed, in the definition just above, to define the tran-

sition function, we can see that a transition take place only when the value of

c changes, except in the case of c = 0, which can remain as 0, and in this case

we must take b′ 6= b.

We say that a piecewise linear signal σ =< u, v, w, τ > over Z is accepted
by (or is a solution of) A if there exists an infinite sequence (b0, c0, d0) . . . over

Q such that (b0, c0, d0) is the initial state, and, for every i ∈ N, bi = vi, ci = ui,

di = wi and (bi+1, ci+1, di+1) = δ((bi, ci, di), (ti, ti+1)).

As an example, consider the square wave and triangle wave signals in

figure above. It is easy to see that continuous automata have, respectively,

Qsq = {(1, 0, 1), (0, 0, 0)}, qsq
0 = (1, 0, 1) and

δsq = {((1, 0, 1), (i, i + 1), (0, 0, 0)), ((0, 0, 0), (i + 1, i + 2), (1, 0, 1)) : i ≥ 0},

and Qtri = {(0, 1, 1), (1,−1, 0)}, qtri
0 = (0, 1, 1)

Figure 3.2: Continuous automata for square and triangle waves

and

δtri = {((0, 1, 1), (i, i+1), (1,−1, 0)), ((1,−1, 0), (i+1, i+2), (0, 1, 1)) : i ≥ 0}.
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Proposition 3.3.1. A piecewise linear signal s is accepted by a continuous automa-
ton A if and only if s ∈ PPPLIN(Z).

Proof. If s is a piecewise linear signal accepted by A, then there exists an

infinite sequence (b0, c0, d0) . . . over Q such that (b0, c0, d0) is the initial state

and, for every i ∈ N, δ((bi, ci, di), (ti, ti+1)) = (bi+1, ci+1, di+1). Since Q is

finite, there exists i < j such that (bi, ci, di) = (bj , cj , dj). Let p = j − i,

Therefore, for every n ≥ i, (bn, cn, dn) = (bn+p, cn+p, dn+p). Conversely, if

s =< u, v, w, τ > is a partially periodic piecewise linear signal, then there

exist n0 and p > 0 such that, for every n ≥ n0, un = un+p, vn = vn+p,

and wn = wn+p. Consider the continuous automaton A = (Q, δ, q0) where

Q = {(vi, ui, wi) ∈ Z
3 : i ∈ N} and, for every i ≥ 0, δ((vi, ui, wi), (ti, ti+1) =

(vi+1, vi+1, wi+1), and (v0, u0, w0) is the initial state. So, A accepts s. Since

s is partially periodic, then there exists i ∈ N such that, for every j ≥ i,

(vj , uj , wj) = (vj+(j−i), uj+(j−i), wj+(j−i)). Therefore, Q is finite.

The above result show us that each continuous finite state automaton can

accepted only periodic piecewise signals, no matters what function we take

between consecutive discontinuities. And, thus, periodicity impose the com-

putational power for the continuous finite state automata.

Real recursion theory, introduced in [Moo96], has been considered as a

model of analog computation. As it was enhanced in [MC04a], the opera-

tor of taking a limit captured from Analysis, can be also used properly to

provide the opportunity to bring together classical computation and real and

complex Analysis. In this chapter, we bring together Fourier Analysis and

continuous finite state automata. Then, we show that the ingredients needed

to deal with Fourier series, namely the piecewise smooth periodic functions,

can be embodied in the framework of real recursive vector functions, origi-

nally introduced in [Moo96] and revised and expanded in [MC04a]. It seems

obvious that not all piecewise smooth periodic functions can be accepted by

continuous finite state automata (e.g. [Rab03]). Then, we also show that a

special kind of automaton over continuous time are only be able to accept

periodic piecewise linear signals, for which it is possible a characterization

by ω-words is provided.
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Chapter 4

Infinite time Turing machines

In this chapter, we present the essential background about ordinal numbers

and their structural properties over which it is considered two distinct class

of ordinals, namely the clockable and writable ordinals, to describe the run-

ning time of infinite time Turing machines and their halting problems. As we

will see, in the next chapter, these are the essential ingredients to simulate in-

finite time Turing machines with real recursive functions with infinite limits,

operating in ordinal time.

4.1 Hypercomputation machines

Hypercomputation (or super-Turing computation) is the study of machines

that can compute more than the Turing machines. The analysis of hyper-

computation began in Turing’s 1939 paper ’Systems of Logic Based on Or-

dinals’ [Tur39]. There, Turing introduced the O-machine, a Turing machine

equipped with an additional resource (such as an oracle), which could com-

pute functions that were beyond the power of Turing machines. It was, how-

ever, much less practical in its design and not intended to represent a method

that could be followed by human beings. Nevertheless, its importance as an

abstract model for analysing and extending the concept of computation was

recognized and it has made a great impact in classical recursion theory.

Once having specified the operation of the classical Turing machines, one

knows what it means for a function on the natural numbers to be computable,

and for a set of natural numbers to be recursive or recursively enumerable.
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The halting set, the set of programs halting on a given input, appears as a

canonical example of a set that is recursively enumerable but not recursive.

Suppose you had some way to answer the halting problem. With this set in

hand, what could you compute from it? To answer this question, it had been

developed a theory of oracle computation (or relative computability). The

notion of relative computability reveals a vast mathematical structure: the

Turing degrees.

In early 20th century, Bertrand Russell, Ralph Black, and Hermann Weyl

independently proposed the idea of a process that performs its first step in

one unit of time and each subsequent step in half the time of the step be-

fore. So, such a process could complete an infinity number of steps in two

time units. The application of this temporal patterning to Turing machines

has been discussed briefly by Ian Stewart and in much more depth by David

Copeland under the name of accelerated Turing machines [Cop98]. Since Tur-

ing’s account of his machines has no mention of how long it takes to perform

an individual step, this acceleration is not in conflict with the mathematical

conception of a Turing machine.

More recently, Joel Hamkins and Andy Lewis presented a model of a Tur-

ing machine that operates for transfinite numbers of steps, the so called in-

finite time Turing machine, which is a natural extension of the Turing ma-

chine to transfinite ordinal times [HL00]. The existence of accelerated Turing

machines has implications concerning the theoretical limits of computation

because, for example, they solve the halting problem. Every new model of

computation naturally also provides a corresponding new halting problem.

Thus, in the supertask context of infinite time Turing machines, we have the

supertask halting problem. Once we have introduced the halting problems

for infinite time Turing machines, it is again natural to ask what we could

compute if we have some means to solve these problems, and we are going

to the notion of oracle computation. There are, however, two natural types of

oracles to use in the infinite time Turing machine context.

Several other approaches have been presented to treat infinite computa-

tion as extensions of finite computation. We can refer the most important

ones: Büchi machines [PP04] and higher-order recursion [Sac90].
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4.2 Some basic facts about ordinals

In this section, we present some elements of ordinals, namely the definition

of ordinal number and some of its structural properties, induction and recur-

sion over ordinals. But, before we get in into the formal presentation of the

essential concepts that we will need to understand the structure of time in-

volved in the behavior of infinite time Turing machines, we describe briefly

the construction of ordinal numbers in the classical constructive way. For

further details, we should consult [End77].1

The first ordinal 0 is the empty set ∅ and, then, 1 = {∅} = {0}, 2 =

{∅, {∅}} = {0, 1}, and so on. These are the finite ordinals, corresponding

to the natural numbers. The first infinite ordinal is ω = {0, 1, 2, . . .}, which

is the set of natural numbers N, and it is also the first limit ordinal, indeed

the smallest limit ordinal apart from 0. After ω comes ω + 1 = ω ∪ {ω},

ω +2 = (ω +1)+1, ω +3, and so on. The next limit ordinal is ω2, which is the

set consisting of all n, where n ∈ ω, and all ω + n, where n ∈ ω. Then come

ω2 + 1, ω2 + 2, . . ., ω3, ω3 + 1, ω4, . . ., ωn, . . ., ω2, . . .

We can specify an ordering < on the collection of all ordinals by defining

α < β if α ∈ β. If α is an ordinal, then the successor of α is the ordinal

α + 1 = α ∪ {α}, which is the least ordinal greater than α. Then α + 1 is said

to be a successor ordinal. If α is a successor ordinal, say α = β +1, we denote

β by α − 1. An ordinal α is a limit ordinal if α is not the successor of any

ordinal.

Definition 4.2.1. We say that a set A is transitive iff, for all sets u, v, if u ∈ v

and v ∈ A, then u ∈ A. �

Let n be a number defined as a set like the construction given above. Then

n is transitive and, every x ∈ n is transitive. This leads to:

Definition 4.2.2. A set α is an ordinal number if α is transitive and well ordered

by ∈. �

We denote by Ord the set of ordinal numbers. If α, β ∈ Ord, then we write

α < β instead of α ∈ β and α ≤ β instead of α < β or α = β.

1A suggestion made by J. D. Hamkins himself.
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Some important structural properties concerning the set Ord are easy to

proof using the Axiom of Foundation, namely Ord is transitive, linearly or-

dered and well ordered by relation <.

Definition 4.2.3. An ordinal α ∈ Ord is a successor ordinal if there exists β <

α ∈ Ord such that α = β + 1. Moreover, an ordinal α ∈ Ord is a limit ordinal
if α is not a successor ordinal and α 6= 0. �

The most remarkable fact about ordinals is that the principles of induction

and recursion can be extended from the set N to the set Ord. According to the

various types of ordinals, we can distinguish the initial case 0, the successor

case and the limit case. The following theorem, which looks more like the

familiar principle of complete induction, establishes an induction principle

over Ord.

Theorem 4.2.1. Let ϕ(x1, . . . , xn, v) be an ∈-formula and assume that

• ϕ(x1, . . . , xn, 0);

• for every α ∈ Ord, if ϕ(x1, . . . , xn, α), then ϕ(x1, . . . , xn, α + 1);

• for every α ∈ Ord, if α is a limit ordinal, then, for every β < α,

if ϕ(β, x1, . . . , xn), then ϕ(α, x1, . . . , xn).

Then, for every α ∈ Ord, ϕ(x1, . . . , xn, α).

Proof. See Chapter 8 (pp. 209-240) in [End77].

The most transfinite construction principle is the construction by recur-

sion along the ordinals.

Theorem 4.2.2. Let G : V → V be a definable function. Then, there is a unique
definable function F : Ord → V such that, for every α ∈ Ord satisfies the recursion
equation

F (α) = G(F (α) ↑).

Proof. See Chapter 8 (pp. 209-240) in [End77].

The recursion rule G will usually be described separately for the initial

case, the successor case and for limit ordinal case.
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Theorem 4.2.3. Let G0 ∈ V , Gsucc : V → V and Glim : V → V be definable
functions. Then, there exists a unique definable function F : Ord → V such that

• F (0) = G0;

• for every α ∈ Ord, F (α + 1) = Gsucc(F (α));

• for every α ∈ Ord, if α is a limit ordinal, then F (α) = Glim(F (α) ↑)).

Proof. See Chapter 8 (pp. 209-240) in [End77].

An example of a recursive construction is the von Neumann hierarchy

(Vα : α ∈ Ord) with Vα = ∅, Vα+1 = P (Vα) and Vλ = ∪α<λVα. The standard

arithmetic operations (i.e. addition and multiplication) have well-known re-

cursive definitions which can be extended to all the ordinals by transfinite

recursion. Moreover, such operations are continuous at limit ordinals with

respect to ordinals limits.

Definition 4.2.4. Let (αi : i < λ) be a non-decreasing sequence of ordinals of

limit length λ. Then

• limi<λ αi = ∪i<λ αi is the limit of (αi : i < λ);

• lim infi<λ αi = limi<λ min{αi : i ≤ j < λ} is the inferior limit of

(αi : i < λ).

�

4.3 Infinite time Turing machines

In [HS01], for convenience, an infinite time Turing machine has three tapes:

one for input, one for scratch and one for output. Because there seems to be

no need to limit ourselves to finite input and output—the machines have

plenty of time to consult the entire input tape and to write on the entire

output tape before halting—the natural context for these machines is Can-

tor Space 2ω, the space of infinite binary sequences. For our purposes here,

we refer the members of 2ω as real numbers, intending by this terminology

to mean infinite binary sequences. We regard the set of natural numbers i.e.,
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the set of binary sequences with initial finite block of 1s and then all 0s, as a

subset of 2ω by identifying the number 0 with the sequence < 0, 0, 0, . . . >,

the number 1 with < 1, 0, 0, . . . >, the number 2 with < 1, 1, 0, . . . >, and so

on.

Here, to simplify, we assume an infinite time Turing machine with a sin-

gle tape that, as it is usual for classical Turing machines (vide [Min72] for

more details), consists of a finite set of states, sometimes also called the finite

control of the machine, and a semi-infinite tape, divided into cells, equipped

with a tape head which can move right or left, scanning the cells of the tape,

one at a time. A semi-infinite tape means that it has no rightmost cell, but

it does have a leftmost cell and, thus, when the head is on the leftmost cell,

it is not allowed to move left. At each moment, the machine is in one of the

states, and, then it can read the content of the scanned cell, change its con-

tent, move head right or left, and change its state. All these operations form

a computation step, and are uniquely defined by a transition function, which

is a function of the current state and the symbol read from the tape.

In [HS01], it is presented an infinite time Turing machine with only one

tape. One the one hand, it is shown that the two kind of machines give rise

to exactly the same class of decidable sets, the same degree structure and,

at least for functions whose range is contained in {0, 1}, the set of natural

numbers given just above, 2ω and {1} × 2ω. One the other hand, they shown

that there are computable functions which are not computable by any one-

tape machine; indeed, the class of one-tape computable functions is not even

closed under composition. Nevertheless, every computable function is in a

precise sense nearly computable by a one-tape machine, and the closure of

the class of one-tape computable functions under composition yields the full

class of all infinite time computable functions.

Definition 4.3.1. An infinite time Turing machine with a single tape M over the

binary alphabet is a five-tuple

(Q, δ, q0, qlimit, F )

where:

• Q is a finite set (of states),
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4. Infinite time Turing machines

• δ : Q× {0, 1} → Q× {0, 1} × {L,R} is a partial function (the transition

function),

• qi ∈ Q (the initial state),

• qlimit ∈ Q (the limit state),

• F ⊆ Q (the set of halting states). �

Notice that, in the above definition, R means moving one cell to the right

and L means moving one cell to the left, if there are cells to the left; otherwise,

do not move.

The only difference from classical Turing machines is the infinite time Tur-

ing machine’s limit state, and the fact that if the computation doesn’t reach

the halt state at any given β < λ for a limit ordinal λ, then it will go into

the limit state and set all cells according to the limit configuration described

below.

A configuration of an infinite time Turing machine with a single tape M,

hereafter abbreviated infinite time Turing machine, is a complete recording

of all relevant data in a given moment.

Definition 4.3.2. A configuration of M is an infinite (binary) sequence

w0 . . . wiqwi+1 . . .

where q ∈ Q and i ∈ N. We assume that the head of M is scanning wi+1.

The initial configuration of M is the configuration qiw0w1 . . ., the limit config-
uration is the configuration qlimitw0w1 . . . and an halting configuration is the

configuration w0 . . . wiqwi+1 . . ., where q ∈ F . �

To determine the configuration of the machine at any successor ordinal

time, the new configuration is defined from the previous one according to the

classical Turing machine rules. But, at a limit ordinal time, the configuration

of the machine is defined based on all preceding configurations, since the last

ordinal.

Definition 4.3.3. Given an infinite sequence of configurations

Cωj−1Cωj−1+1Cωj−1+2 . . . Cωj
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The limit configuration Cωj in the limit ordinal ωj is the configuration qlimitw

where

w
ωj

i = lim sup
k→∞

w
ωj−1+k
i

where w
ωj−1+k
i denotes the value of wi in the ordinal ωj + k (for each k ∈ N),

and w
ωj

i denotes the value of wi in the limit ordinal ωj . �

Recalling what occurs in each limit ordinal stage: the heads resets to the

left-most cell; the machine is placed in the special limit state; and the values in

the cells of the tapes are updated by computing a kind of limit of the previous

values that cell has displayed. If the values in a cell have stabilized before a

limit stage, then the limit value displayed by that cell at the limit stage will be

this stabilized value; otherwise, when the cell’s value has alternated from 0 to

1 and back again unboundedly often before a limit stage, then the limit value

is set to 1. This limit value is equivalent, by definition, to computing for each

cell the limit sup of the previous values displayed in the cell. With the limit

stage configuration thus completely specified, the machine simply continues

computing. If after some amount of time the halting state is reached, the

machine gives as output whatever is written on the output tape.

A computation can now be defined as a sequence of configurations:

Definition 4.3.4. Given an infinite time Turing machine M and an input w, a

computation ofM on w is a (finite or infinite) sequence of configurations ofM
on w, each step from a configuration to the next obeys the transition function,

and ends with a halting configuration or a limit configuration. �

Configurations and computations can be described as well by words over

some alphabet, and we will identify configurations and computations with

the words describing them.

We aim now to establish a limit on the complexity of decidable sets. We

introduced the idea of a configuration, which is a real number coding the

complete description of an infinite time Turing machine while it is comput-

ing. Thus, in some canonical manner, a configuration codes the program the

machine is running, the position and state of the head and the complete con-

tent of the tape. Now let us say that a transfinite sequence of configurations

accords with the program P when each successive configuration is obtained

by running P on the configuration described by the previous configuration
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and the limit configurations are obtained from the earlier ones according to

the computation rules. We will say that a sequence of configurations accord-

ing to a program is settled when the last configuration has either obtained

a halting state or else repeats an earlier configuration, in the strong sense

of a computation repeating itself used after Theorem 4.2.1 (above). The se-

quence of configurations represents, in the first case, a halting computation

and, in the second a computation which will endlessly repeat. Thus, a set-

tled sequence of configurations informs us of the outcome of an infinite time

computation. With these ideas we can establish the complexity of such com-

putations ([Wel00]).

An interesting result about computation, introduced in [HL00], that leads

our attention only to countable ordinals.

Theorem 4.3.1. Every halting infinite time computation is countable. �

Proof. See Theorem 1.1 (pp. 6) in [HL00].

Corollary 4.3.1. Every infinite time computation either halts or repeats itself in a
countably many steps. �

Proof. See Corollary 1.2 (pp. 7) in [HL00].

In the classical sense, the function f : 2<ω → 2<ω is said to be Turing

computable if there is a Turing machine that computes it. A Turing machine

that computes f may fail to halt for an input u and, in this case, f is undefined

for u. Thus, Turing machines can compute both total and partial functions.

In the case of infinite time Turing machines, we have

Definition 4.3.5. A partial function f : 2ω → 2ω is infinite time computable if

there exists a (finite) program Pf such that, for every x ∈ Dom(f), f(x) =

Pf (x). �

We assume that only functions with one argument are computed by our

infinite time Turing machines. Infinite time Turing machines that compute

infinite time functions can also be used to accept languages.

Definition 4.3.6. Let A be a subset of 2ω. We say that A is recursive if the

characteristic function CA is computable by an infinite time Turing machine.

Moreover, we say that A is recursively enumerable if the partial characteristic

function ĈA is computable by an infinite time Turing machine. �
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We can also stratify the computable sets according to how long the com-

putations take, i.e., infinite time decidibility is conditioned by a number of

computation steps.

Definition 4.3.7. Let A be a subset of 2ω and M be an infinite time Turing

machine. We say that A is α-recursive if the characteristic function CA is com-

putable by M≤α. Moreover, we say that A is α-recursively enumerable if the

partial characteristic function ĈA is computable by M≤α. �

Thus, restricting to the case of finite input and finite time, the function f

over 2<ω (i.e., the space of finite binary sequences) is ω-computable exactly

when f is computable in the Turing machine sense.

4.4 Time ordinals and infinite time halting problems

Infinite time Turing machines are connected to classes of ordinals, namely the

clockable and writable ordinals.

Definition 4.4.1. We say that an ordinal α is clockable if there is an infinite

time Turing machine which on input 0 stops in exactly α many steps of com-

putation (i.e., the αth step of computation is the act of changing to the halting

state). �

Any natural number is clockable, ω is clockable, and if α is clockable, then

α + 1 and α + ω are clockable. Moreover, every ordinal up to ω2 (i.e. the first

ordinal which is a limit of limit ordinals), and if α is clockable, then α + β

is clockable, for every β < ω2. In [HL00], we can see informal descriptions

of infinite time Turing machines which can recognize all such examples of

clockable ordinals.

Theorem 4.4.1. Every recursive ordinal is clockable. �

Proof. See Recursive Clocks Theorem (pp. 15) in [HL00].

The recursive ordinals extends at least up to ωCK
1 , the supremum of recur-

sive ordinals. But, there are gaps in clockable ordinals, i.e. ordinals to which

infinite time Turing machines cannot count, though they count higher. The

following theorem reveals the structure of such gaps.
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Theorem 4.4.2. (Existence) There are gaps in clockable ordinals. In fact, the first
gap above any clockable ordinal has size ω. (Big Gaps) For every clockable ordinal α,
there are gaps of size at least α in the clockable ordinals. �

Proof. See Gap Existence Theorem (pp. 18) and the Big Gaps Theorem (pp.

19) on [HL00].

Definition 4.4.2. We say that w ∈ 2ω is writable if there is an infinite time

Turing machine which can write w as the final output on input 0. Moreover,

we say that an ordinal ω is writable if there is a writable infinite binary word

that codes ω. �

Theorem 4.4.3. (Many Gaps) If α is a writable ordinal, then there are at least α

many gaps of size at least α in the clockable ordinals. Moreover, if α is either clockable
or writable, then the exact ordinal number of gaps of size at least α is neither clockable
nor writable. �

Proof. See Many Gaps Theorem (pp. 20) in [HL00].

These ordinals extend beyond the recursive ordinals and their supremum

is inaccessible. The above theorem shows that there are no gaps in the writable

ordinals as well as, it also shows that there are long stretches of clockable or-

dinals without any gaps.

Theorem 4.4.4. (No Gaps) There are no gaps in the writable ordinals. (Gapless
Blocks) There are large gapless blocks of clockable ordinals. Indeed, if α is writable in
λ many steps, then λ + β is clockable for every β ≤ α. �

Proof. See No Gaps Theorem (pp. 20) and Gapless Blocks Theorem (pp. 23)

in [HL00].

Much of the classical computability theory generalizes to the supertask

context of infinite time Turing machines. For example, the classical s-m-n
theorem and the Recursion Theorem. But some other classical results do not

generalize: there is a non-computable function whose graph is recursively

enumerable (for more details see Lost Melody Theorem in [HL00], pp. 28).

Perhaps, the most important question about classical Turing machines is

the halting problem for which there is not a natural recursive characteristic

function for it (or it is undecidable). The halting problem is to find an effective
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procedure (i.e. an algorithm) that, given any Turing machine M, say repre-

sented by its code m, and given any number n, will enable us to determine

whether or not M, given that number as input, ever halts.

Any function that is computable by a classical Turing machine is com-

putable by an infinite time Turing machine. But the infinite time Turing ma-

chines are strictly more powerful than their classical counterparts. For exam-

ple, the halting problem for classical Turing machines is decidable in ω many

steps by infinite time Turing machines [HL00]. This argument is generalized

to show that the infinite time Turing machines can decide membership in any

given recursively enumerable set in ω many steps.

The classical halting problem has an infinite time counterpart.

Definition 4.4.3. The bold-face halting set HALT for infinite time Turing ma-

chines is defined as follows:

{(M, x) : M(x) ↓}

In particular, the light-face halting set halt for infinite time Turing machines is

defined as follows:

{M : M(0) ↓}.

�

Notice that M(x) ↓ (resp. M(0) ↓ ) means that the infinite time Turing

machine M stops for a given input x (resp. 0).

The classical arguments directly generalize to show that the bold-face and

light-face halting sets for infinite time Turing machines are recursively enu-

merable but not recursive (using the classical diagonalization argument).

Theorem 4.4.5. HALT and halt are recursively enumerable but not recursive. �

Proof. See Halting Problem Theorem (pp. 24) in [HL00].

Approximations of both types of halting problems can exist and they pro-

duce several results when we consider such approximations as recursive and

recursively enumerable sets. The α-approximations for HALT and halt can

be given as follows.
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Definition 4.4.4. The α-approximation bold-face halting set HALTα for infinite

time Turing machines is defined as follows:

{(M, x) : M(x) ↓≤α}.

In particular, the α-approximation light-face halting set haltα for infinite time

Turing machines is defined as follows:

{M : M(0) ↓≤α}.

�

As it is assumed above, M(x) ↓≤α (resp. M(0) ↓≤α) means that the infi-

nite time Turing machineM stops for a given input x (resp. 0) in less or equal

α steps. The halting sets HALTα and haltα can be used, for example, in the

proof of P 6= NP ∩ co−NP for infinite time Turing machines [Ham05].

No matters the type of ordinal, namely clockable or writable, the approx-

imations of HALT and halt by one of these ordinals are decidable.

Proposition 4.4.1. The following results are true:

1. If α < β then HALTα is a proper subset of HALTβ .

2. If α is writable or clockable, then HALTα and haltα are recursive. �

Proof. In [HL00], for 1., see Corollary 4.3 (pp.26) and, for 2., see Theorem

4.5.

Notice that the first result is only for the α-approximation bold-face halt-

ing set HALTα.

The above approximations of HALT and halt can also provide relation-

ships with approximations of decidibility and semi-decidibility in limit ordi-

nals and in the supremum of clockable ordinals.

Theorem 4.4.6. The following results are true:

1. For every limit ordinal α, neither HALTα nor haltα is α-recursive. But,
if α is clockable, then HALTα and haltα are α-recursively enumerable and
(α + 1)-recursive.

2. The set haltα is recursive for every α below the supremum of the clockable
ordinals.
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3. If γ is the supremum of clockable ordinals, then HALTγ is recursively enu-
merable but not recursive.

Proof. In [HL00], for 1., see Theorem 4.4 (pp. 26), for 2., see Theorem 4.6 (pp.

27), and, for 3., see Theorem 4.7 (pp.27).

The study of halting sets and their approximations led us to the notion

of relative computation and then to the infinite time Turing degrees which

reveals, using the Post Problem to infinite time computations, the power and

limitations of computation of infinite time Turing machines. An exhaustive

presentation of such results can be found in [HL00]. These developments

motivates the rise of infinitary complexity theory, which includes a solu-

tion of the infinite time Turing machine analogue of the P 6= NP conjecture

[Ham05].
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Chapter 5

Embedding infinite time Turing
machines in the general
framework

The problem of infinity, which can appear in the sequel of non finishing com-

putation, is a source of problems in theory and practice – the most important

is, certainly, the halting problem. Usually, the first step to improve this situa-

tion is to change the behavior of a Turing machine, as we can see in the study

of more powerful models of computation such as infinite time Turing ma-

chines, revised in the previous chapter, belonging to the so called hypercom-

putation (see [Gal06, Ord06] for a rigorous and complete discussion about

this subject).

Recall that the class of real recursive functions is defined inductively, in

a similar manner to Kleene’s recursive functions. The basic functions are 1,

-1, 0 and the projections, and the class is the closure of these basic functions

for composition, solving of first order differential equations and the taking

of infinite limits. As we already saw, the η-hierarchy is based on the mini-

mum number of nested infinite limits required to describe some real recur-

sive function. From a computational perspective, the η-hierarchy can also

measure how many transfinite computational steps are required to compute

some real recursive function. If we have a machine that performs ω compu-

tational steps, then we can solve the halting problem for Turing machines.

Moreover, if such machine performs ω computational steps ω times, or ω2
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steps, then we can compute more than all Turing-computable functions. E.g.,

we can solve the halting problem using six nested infinite limits [MC04a] and

simulate all Turing-computable functions using eight nested infinite limits.

In this sense, the number of infinite limits required to define some function

supplies us with a very natural way of ascertaining the non-computability of

functions by Turing machines.

In this chapter, we extend the iteration to ordinals and, then, we simulate

the infinite time Turing machines until ω2, getting back all the work done in

[Moo96, MC04a] for Turing machines, and their ω2-approximations of halt-

ing problems with real recursive functions with infinite limits, again empha-

sizing the role of infinite limits in the theory of real recursive functions of

Jerzy Mycka and José Félix Costa [MC04a], that extends the seminal work of

Cristopher Moore [Moo96].

Notice that, several approaches have been taken to simulate Turing ma-

chines with finite dimensional analytical maps and flows [GCB05, KM99,

Bra95, KCG94] that, using a very simple construction (see below), can be

thought of as neural networks [SS95] or hybrid systems [AMP95], or even as

optical ray tracing in three dimensions [RTY90]. However, piecewise linear

functions, such as in [Moo90], are not very realistic from a physical point of

view, although such maps can be smoothed into infinitely differentiable maps

[Moo90], because most physical dynamical systems are analytic, at least in a

perfectly classical world.

5.1 Simulating Turing machines in ω

Several authors have been shown that finite dimensional maps and flows can

simulate Turing machines. The general approach is to associate each config-

uration of a given Turing machine to a point of the space Rn and, then, show

that there is a dynamical system, with state space in Rn, that embeds its evo-

lution. It is also known that Turing machines can be simulated on compact

spaces even of those of low dimension (e.g., [KCG94]).

Another approach has been taken to simulate the evolution of Turing ma-

chines with continuous flows in Rn (e.g., [Bra95] or, more recently, [MC04a]).

Even knowning that those flows can be infinitely differentiable, no analytic
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form of iterating the map that simulates the transition function of a Turing

machine had been proposed until the recent work of Daniel Graça, Manuel

Campagnolo and Jorge Buescu in [GCB05]. In such work, it is shown that

Turing machines can be simulated by finite dimensional maps and flows

which are both analytic and robust, considering simulations, in the pres-

ence of noise, on unbounded spaces. Such work is, in some sense, related

to [KM99], where a constructive simulation of Turing machines using closed-

form analytic maps is presented.

A Turing machine consists of an infinite tape for storing the input, out-

put and scratch, and a finite set of internal states. The contents of the tape

are finite strings over a given alphabet of symbols (hereafter, we assume a bi-

nary alphabet). This machine works in discrete steps. In each step it scans the

symbol from the current position of the tape (under the head of the machine),

change this symbol according to its current internal state, and moves the po-

sition of the tape to left or right with a change of its internal state. Some

internal states are distinguished as final, when the machine reaches one of

them, then it stops. Here, we assume a Turing model that obeys the classical

constraints: (a) the set of internal states is finite; (b) the input is finite; (c) if

the machine stops, then the output is finite,

Following [KM99], we associate the digits of the x and y coordinates of

a point with left and right halves of a Turing machine’s tape. Then we can

shift the tape head by a basis constant x and y, and write on the tape by

adding constants to them. Thus two dimensions suffice for a map or three

for a continuous-time flow. Let M be a Turing machine with n states and m

tape symbols, we will construct the real recursive function fM : R2 → R
2 that

simulates M. For each (x, y) ∈ dom(fM), let

x = q + n
∞∑
i=0

(m + 1)iai

where q denotes the current state, a0 denotes the code of a symbol under the

head of M, and, for every i ∈ N, 0 ≤ ai < m (the blank symbol has code 0),

that encodes the right half of the tape and the current state q (0 ≤ q < n), and

let

y =
∞∑
i=1

(m + 1)i−1a−i
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that encodes the left half of the tape.

We also need a real recursive characteristic of divisibility, h, such that

h(p, n) = 1, if p|n; otherwise, h(p, n) = 0, which can also be given by the

following expression:

h(p, n) = (
sin(πn)
psin(πn

p )
)2

Although the function h is a division by 0 whenever p|n, it is only use to

condense the following more complex expression:

sin(nπ)
psin(nπ

p )
=

1
p

b p
2
c∑

i=1

(−1)i+1

(
p− i− 1

i

)
(2cos(

nπ

2
))p−2i

which is also real recursive and has no such singularities.

Let Sq,a0 be the new state, Aq,a0 be the printed symbol, and ∆q,a0 be −1,

1 for moves in the left or the right direction, respectively, or 0 for final states

(for which, by convention, there are not any movement). Then,

fM(x, y) =
n−1∑
q=0

m−1∑
a0=0

∆2
q,a0

h((m + 1)n, x− q − na0)×

(
1 + ∆q,a0

2
(xr, yr) +

1−∆q,a0

2

m−1∑
a−1=0

h(m + 1, y − a−1)(xl, yl)) (5.1)

where

(xr, yr) = (Sq,a0 +
x− q − na0

m + 1
, (m + 1)y + Aq,a0)

(xl, yl) = (Sq,a0 + (m + 1)(x− q + n(Aq,a0 − a0)) + na−1,
y − a−1

m + 1
)

is the required real recursive function to simulate M. Notice that the above

real recursive function fM is analytical which has as a consequence in the

lowest level of complexity of the simulation.

Proposition 5.1.1. There are real recursive functions from the class H1, which can
simulate any Turing machine. �

Proof. The n-th iteration of fM given by (5.1), denoted by fn
M, is obtained by

the real recursive functions f, g : R → R
2 defined by the following system of

equations:

f(0) = g(0) = (x, y)
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∂z g(z) = (fM(f(z))− f(z))
π

2
sin(πz)s(z)

∂z f(z) =
(g(z)− f(z))πsin(πz)

cos(πz) + δ(cos(πz)− 1)− 1
s(−z)

where s(z) = Θ(sin(πz)). Then, we can make

f
|bzc|
M (x, y) = f(x, y, 2z)s(2z) + g(x, y, 2z − 1)(1− s(2z)),

since s(2z) is 1, if z ≤ |bzc|+ 1
2 ; otherwise, 0.

The |bzc|-th iteration of fM satisfies the following equation:

f
|bzc|
M = f(2|bzc|) = g(2|bzc|).

It can be explained in the following way: as z changes from 0 to 1, then f is

constant and g goes through the distance from (x, y) to fM(x, y). For z ∈ [1, 2],

g is constant and f catches up, hence f(2) = g(2) = fM(x, y). If z > 2 then the

same cycle begins again (see Figure 5.1 below for |bzc| = 3). Because s ∈ H1

hence f
|bzc|
M ∈ H1.

2 4 6 8 10

Π
"""""
2

0

1

Cos1!1"
Cos2!1"
Cos3!1"

h
g

Figure 5.1: Iteration of fM. Courtesy of Bruno Loff

Let H(x, y) be defined by

H(x, y) =
∑
q∈F

m−1∑
a=0

h((m + 1)n, x− q − na).

So, H(x, y) = 1, if the state written in x is final; otherwise, H(x, y) = 0.

Such function constitutes the auxiliary function to construct the real recursive

function to solve the halting problem for Turing machines as in [MC04a].
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Proposition 5.1.2. For any Turing machine M, there exists a real recursive func-
tion in H6 which is the characteristic function of the halting problem for M. �

Proof. Let

HM(x, y) = (ηzf
|bzc|
M (x, y))H( lim

z→∞
(ηzf

|bzc|
M (x, y))f |bzc|M (x, y)).

Then HM is the real recursive characteristic function of the halting problem

for M which belongs to H6.

To obtain the function computed byM, it is enough to iterate the steps up

to the reaching of the final state by M. If M ends in the final state for some

(initial) tape (x, y), then there exists n0 ∈ N such that the sequence fn
M(x, y)

is constant for some n ≥ n0.

Definition 5.1.1. LetM be a Turing machine. We say that the function F (x, y)

is ω- computable by M, denoted by FM(x, y), if

FM(x, y) = lim
z→∞

[f |bzc|M (x, y)g(H( lim
z→∞

(ηzf
|bzc|
M (x, y))f |bzc|M (x, y)))]

where g is a function not defined at 0; otherwise, g is 1. 1 �

Notice that FM is defined whenever the limit exists and the value of H is 1

(i.e., the machine M reaches for the initial tape (x, y) a final state); otherwise,

FM is undefined.

Proposition 5.1.3. Given an ω-computable function FM by a Turing machine M,
there exists a real recursive function in H7 which computes FM.

Proof. See Definition 5.1.1.

5.2 Simulating infinite time Turing machines in ω2

In this section, we will see that an elementary iteration scheme over ordi-

nals restricts the time of simulation of infinite time Turing machines and both

forms of halting problems to ω2.

To show that arithmetical hierarchy can be computed by a finite number

of limits using an infinite time Turing machines, as the result obtained in

1E.g., g(x, y) = limy→∞
1

1−exp(−|x|y)
.
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5. Embedding infinite time Turing machines in the general framework

[HL00], we should be concerned, firstly, about an iteration schema to real

recursive functions that works properly over ordinals.

So, we will say how to iteration, which is a fundamental operator in the

classical theory of computation [Odi89] as well as in real recursion theory

[Moo96], can be extended to countable finite ordinal numbers using the limit

operator [MC04a].

Definition 5.2.1. Let f ∈ REC(R). Then the transfinite iteration over Ord is

defined as follows:

1. f0(x1, . . . , xn) = (x1, . . . , xn);

2. fα(x1, . . . , xn) = f(fα−1(x1, . . . , xn)), if α is not a limit ordinal;

3. fα′(x1, . . . , xn) = limi→∞ fα+i(x1, . . . , xn), if α is a limit ordinal and α′

is the next limit ordinal.

4. fα′(x1, . . . , xn) = lim supi→∞ fα+i(x1, . . . , xn), if α is a limit ordinal and

α′ is the next limit ordinal.

5. fα′(x1, . . . , xn) = lim infi→∞ fα+i(x1, . . . , xn), if α is a limit ordinal and

α′ is the next limit ordinal.

�

In particular, if we restrict the iteration to an upper bound given by the

limit of limit ordinals, i.e., ω2, then

limk→∞ fωk(x1, . . . , xn) = fω2
(x1, . . . , xn).

i.e., we need to use an infinite number of limits to reach ω2. We should em-

phasize that, in (3) (the same for (4) and (5)) above, the limit of iteration has

to exist for every limit ordinal ωk (k ∈ ω) until ω2; otherwise, the iteration

until then become undefined.

In the proof of Proposition 5.1.1, we saw a coding scheme for Turing ma-

chines that is suitable to define the required two-phase of their transition

functions (see [Bra95] for the motivation and results of this approach). How-

ever, the coding scheme for Turing machines presented in the previous sec-

tion does not fit exactly the intended coding scheme for infinite time Turing
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machines. But neverthless, in this section, we consider only finite binary in-

put over 2<ω and, thus, we can regain and study the limits of the approach

taken in the last section. But, we have to emphasize that natural inputs for in-

finite time Turing machines are (infinite) sequences in 2ω instead. In this case,

we have to use another codification for such sequences in 2ω based on repre-

sentations in a given natural base (e.g., based on base 2) as the one discussed

in [SS95] and, then, construct a different real recursive function to simulate

the required transition function for infinite time Turing machines. Having

in mind that simplification, we must say what we intend for a function over

{0, 1}<ω which is computable by an infinite time Turing machine operating

in time until ω2.

Definition 5.2.2. A function f : 2<ω → 2<ω is ω2-computable if there is an infi-

nite time Turing machine that, when starting in the initial configuration and,

when following its (finite) set of instructions, reaches an halting configuration

in ω2. �

Additionally to x and y, which represent, respectively, the coding of the

right, together with the code of the state, and the left half of the tape, we

need an extra variable z to store the content of the limit configuration that is

updated in each computational step between consecutive limit ordinals. With

these four integer variables, we can simulate directly an infinite time Turing

machine (over a binary alphabet) M. Assume that 0 ≤ q < n, where n is the

number of states of M and, for every i ≥ 0, ai ∈ {0, 1}.

Let M be an infinite time Turing machine equipped with a single tape

over a binary alphabet (hereafter we assume m = 2) and n states, then we

will construct a real recursive function fM : R4 → R
4 that simulates M in ω2.

For each (x1, x2, x3, x4) ∈ dom(fM), let

x1 = q + n
∞∑
i=0

(m + 1)iai

where q denotes the current state, a0 denotes the code of a symbol under the

head of M, and, for every i ∈ N, 0 ≤ ai < m (the blank symbol has code 0),

that encodes the right half of the tape and the current state q (0 ≤ q < n), and

let

x2 =
∞∑
i=1

(m + 1)i−1a−i

56



5. Embedding infinite time Turing machines in the general framework

that encodes the left half of the tape. And, for the other required (auxiliary)

tape, let

x3 = n
∞∑
i=0

(m + 1)iai

where, as we assumed for the simulation of Turing machines above, a0 de-

notes the code of a symbol under the head of M, and, for every i ∈ N,

0 ≤ ai < m (the blank symbol has code 0), that encodes the right half of

the tape, and let x4 encodes the left half of the (auxiliary) tape as x2 above.

Again, let Sq,a0 be the new state, Aq,a0 be the printed symbol, and ∆q,a0

be −1, 1 for moves in the left or the right direction, respectively, or 0 for final

states (for which, by convention, there are not any movement). Then,

fM(x1, x2, x3, x4) =
n−1∑
q=0

m−1∑
a0=0

∆2
q,a0

h((m + 1)n, x1 − q − na0)

(
1 + ∆q,a0

2
(xr

1, x
r
2, x

r
3, x

r
4)+

1−∆q,a0

2

m−1∑
a−1=0

h(m + 1, x2 − a−1)(xl
1, x

l
2, x

l
3, x

l
4)) (5.2)

where

(xr
1, x

r
2, x

r
3, x

r
4) =

(Sq,a0 +
x1 − q − na0

m + 1
, (m+1)x2+Aq,a0),

x3 − na0

m + 1
, (m+1)x4+max{Aq,a0 , a0})

(xl
1, x

l
2, x

l
3, x

l
4) =

(Sq,a0 + (m + 1)(x2 − q + n(Aq,a0 − a0)) + na−1,
x2 − a−1

m + 1
,

(m + 1)(x3 + nmax{Aq,a0 , a0} − na0) + na−1,
x4 − a−1

m + 1
)

is the required real recursive function to simulate M. Notice that the above

real recursive function fM is analytical which has as a consequence the low-

est level of complexity of the simulation. Moreover, in each computational

step between consecutive limit ordinals until ω2, we calculate the maximum

max{Aq,a0 , a0}, between the current symbol in the tape a0 and the symbol

that will printed in the tape Aq,a0 , that we keep track in the auxiliary pair

(x3, x4). So, in each limit ordinal, the pair (x3, x4) gives us the codification of
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the corresponding limit configuration which is the one obtained by the origi-

nal infinite time Turing machine applying the lim sup operator to each cell of

the tape (see [HL00] for further details).

Let fM be a real recursive function that simulates the transition function

of an infinite time Turing machine M. Then, for every ωk and k ∈ ω,

lim
n→∞

fωk+n
M (xωk

1 , xωk
2 , xωk

3 , xωk
2 ) = (xω(k+1)

1 , x
ω(k+1)
2 , x

ω(k+1)
3 , x

ω(k+1)
4 )

where (xω(k+1)
1 , x

ω(k+1)
2 , x

ω(k+1)
3 , x

ω(k+1)
4 ) is the code of a limit configuration

of M in ω(k + 1).

In the previous section, we saw how to simulate the transition function

of a Turing machine with a particular real recursive function and, moreover,

how the iteration of such function, in ω, can be simulated with a suitable

system of differential equations. Next, we will see how the same system of

differential equations can be reused to define the transition function of an

infinite time Turing machine M, iterating the corresponding real recursive

function simulation fM (in 5.2), restricting ourselves to ω2 and to the iteration

schema given in Definition 5.2.1. Considering Hω = ∪n≥0Hn, we have

Proposition 5.2.1. There are real recursive functions from Hω which can simulate
any infinite time Turing machine in ω2. �

Proof. Let fM be the real recursive function that simulates an infinite time

Turing machine M. We are looking for real recursive functions f, g : R → R
4

defined by a system of differential equations, analogous to the one given in

(5.2), to simulate the iteration between consecutive limit ordinals until ω2.

Then,

• If (x1, x2, x1 − q0, x2) is the initial configuration, then

lim
z→∞

f
|bzc|
M (x1, x2, x1 − q0, x2) =

lim
z→∞

f(2|bzc|) = lim
z→∞

g(2|bzc|) = (xω
3 + qlimit, x

ω
4 , xω

3 , xω
4 ).

• For every k > 0, if (xωk
1 , xωk

2 , xωk
1 − qlimit, x

ωk
2 ) is the limit configuration

in ωk, then

lim
z→∞

f
ωk+|bzc|
M (xωk

1 , xωk
2 , xωk

1 − qlimit, x
ωk
2 ) = lim

z→∞
fωk(2|bzc|) =

lim
z→∞

gωk(2|bzc|) = (xω(k+1)
3 + qlimit, x

ω(k+1)
4 , x

ω(k+1)
3 , x

ω(k+1)
4 )
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5. Embedding infinite time Turing machines in the general framework

where fωk(2|bzc|) and gωk(2|bzc|) is the solution of the following system of

differential equations

fωk(0) = gωk(0) = (xωk
1 , xωk

2 , xωk
3 , xωk

4 )

∂z gωk(z) = (fM(fωk(z))− fωk(z))
π

2
sin(πz)s(z)

∂z fωk(z) =
(gωk(z)− fωk(z))πsin(πz)

cos(πz) + δ(cos(πz)− 1)− 1
s(−z)

where s(z) = Θ(sin(πz)).

f
ωk+|bzc|
M (xωk

1 , xωk
2 , xωk

3 , xωk
4 ) =

fωk(xωk
1 , xωk

2 , xωk
3 , xωk

4 , 2z)s(2z) + gωk(xωk
1 , xωk

2 , xωk
3 , xωk

4 , 2z − 1)(1− s(2z)),

since s(2z) is 1, if z ≤ |bzc|+ 1
2 ; otherwise, 0.

In this case, for every k > 0, fωk
M ∈ Hmax(1,k)

It is important to notice that we are using nothing more than a simple

modification of the system of differential equations, introduced in [MC04a],

to simulate our transfinite iteration. In each limit ordinal, we take a different

initial configuration that is obtained by our iteration schema, applied since

the last limit ordinal. Moreover, we can easily see that the above simula-

tion of infinite time Turing machines is restricted to ω2 because we only have

available a finite number of limits to use, according to the intended classifi-

cation in the η-hierarchy.

As we have seen in the previous chapter, the α-approximation for the

bold-face halting problem HALTα (the light-face halting problem haltα) for

an infinite time Turing machine M asks us if we can reach the halting state in

fewer or equal than α steps of computation, giving an input (x, y) (an input

0). As we already know from [HL00], these two approximations are decidable

since α is writable or clockable. More generally, the bold-face halting problem

for an infinite time Turing machine M asks: does M, given an input (x, y),

reachs the halting state? Or, similarly, for the light-face halting problem: does

M, given the input 0, reachs the halting state? According to [HL00], both

versions of such halting problem are semi-decidable.

Adopting the above iteration schema, both ω2-approximations of bold-

face and light-face halting sets can be solved by real recursive functions in

the following way:
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Proposition 5.2.2. For every infinite time Turing machine M,

1. there exists a real recursive function in H6 which is the characteristic function
of the halting problem HALTω2 for M.

2. there exists a real recursive function in H6 which is the characteristic function
of the halting problem haltω2 for M. �

Proof. Let H(x) = 1 if the state written in x is final; otherwise 0, which can be

defined by

H(x) =
∑
q∈F

m−1∑
a=0

h((m + 1)n, x− q − na).

Let

HM(x1, x2, x1, x2) =

(ηyf
ω|byc|
M (x1, x2, x1, x2))H( lim

y→∞
(ηyf

ω|byc|
M (x1, x2, x1, x2))f

ω|byc|
M (x1, x2, x1, x2))

where

ηyf
ω|byc|(x1, x2, x1, x2) =

{
1 if limy→∞ fω|byc|(x1, x2, x1, x2) exists

0 otherwise

The function HM is a real recursive characteristic function of the halting prob-

lem for M. For haltα is a particular case of HALTα for input 0.

Recall that an infinite time Turing machine can reach an halting state in

the following circunstances: in between limit configurations and, then, it re-

mains to the ω2 limit configuration, or in some limit configuration where the

limit state is also an halting state. So, we only need to observe the limit config-

urations until the halting appears and, then, to do this until ω2 which justifies

the real recursive function in H6 constructed in Proposition 5.2.2.

To obtain the function computed by an infinite time Turing machine M,

it is enough to iterate the steps up to the reaching of limit configuration pro-

vided by M in ω2. If M ends in the final state for some (initial) tape config-

uration (x1, x2), then there exist k0, n0 ∈ N such that fωk+n
M (x1, x2, x1, x2) is

constant for some n ≥ n0 until the next limit ordinal, i.e., ω(k + 1), and, ever

since, for every k > k0.
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5. Embedding infinite time Turing machines in the general framework

Definition 5.2.3. Let M be an infinite time Turing machine. We say that the

function FM(x1, x2) is ω2-computable by M if

FM(x1, x2) =

lim
z→∞

[fω|bzc|
M (x1, x2, x1, x2)g(H( lim

z→∞
(ηzf

ω|bzc|
M (x1, x2, x1, x2))

f
ω|bzc|
M (x1, x2, x1, x2)))].

where g is defined as in Definition 5.1.1. �

Then FM is defined whenever the limit exists in each limit ordinal ωk (for

k ∈ N), and the value of H is 1 (i.e., the machineM reaches for the initial tape

(x1, x2) a final state); otherwise is undefined.

So, we can establish a result that, in the next section, will correlate the

arithmetical hierarchy with the infinite time Turing machines through their

simulation with real recursive funtions with infinite limits.

Proposition 5.2.3. Every ω2-computable function is obtained by a real recursive
function in H7.

Proof. Since the result of a given function, computed by an infinite time Tur-

ing machine over ω2, is obtained in a limit configuration in ω2, the real recur-

sive function for FM, given in Definition 5.2.3, is in H7.

5.3 The arithmetical hierarchy in ω2

In this section, we correlate the arithmetical hierarchy with the η-hierarchy

through the simulation of infinite time Turing machines in ω2 by real recur-

sive functions with infinite limits in [MC04a].

We will introduce just below the relations of natural numbers taken from

the arithmetical and analitical hierarchies. For a complete study of such hi-

erarchies and their characterizations in classical recursion theory you should

consider the survey in [Odi89].

The class Σ0
0 = Π0

0 contains only relations of natural numbers which have

recursive characteristic functions. The upper stages of Σ0
n can be constructed,

inductively, from the lower stages in the following way, for every n ∈ N:
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Σ0
n+1 = {P : (∃P ′ ∈ Π0

n)P (m1, . . . ,mk) ≡ ∃mP ′(m1, . . . ,mk,m)}
and

Π0
n+1 = {P : (∃P ′ ∈ Σ0

n)P (m1, . . . ,mk) ≡ ∀mP ′(m1, . . . ,mk,m)}.

and, for every n ∈ N, we also have

∆0
n = Σ0

n ∩Π0
n.

We call ∆0
ω = ∪n≥0∆0

n the class of arithmetical relations.

In particular, the class Σ0
1 is sometimes called the class of recursively enu-

merable sets. Due to the indecidibility of the halting problem for Turing ma-

chines, membership of some n ∈ N for some R ∈ Σ1 is only semi-decidable,

i.e., some any given n, there is an algorithm which is guaranteed to termi-

nate if n ∈ R; but not otherwise. This fact establish the relationship between

arithmetical hierarchy and the computational power of Turing machines.

The next well-known result—the Post’s Theorem—gives a different, purely

recursion-theoretical, definition for arithmetical hierarchy, and explains the

similarities of the various levels.

Theorem 5.3.1. A relation R is:

1. ∆0
n+1 if and only if R is recursive relative to a set in Σ0

n or a Π0
n relation.

2. Σ0
n+1 if and only if R is recursively enumerable in a Σ0

n or a Π0
n relation.

Proof. See Post’s Theorem (pp. 372) in [Odi89].

Another interesting characterization of the arithmetical hierarchy is the so

called the limit lemma of Schönfield, which says that ∆0
2 sets are those which

can be recursively approximated. But, in general,

Proposition 5.3.1. For every n ≥ 1, A is ∆0
n+1 if and only if there is an n + 1-ary

(total) recursive function g such that

cA(x) = limm1→∞ . . . limmn→∞ g(x,m1, . . . ,mn).

Proof. See The Limit Lemma (pp. 374) in [Odi89].

Next, we must look for the results obtained by Jerzy Mycka and José Félix

Costa about the relationship between the arithmetical hierarchy and the η-

hierarchy given in [MC04a]. And, then, from Proposition 5.1.1 and know-

ing that all natural recursive sets and relations have Turing computable total

characteristics (given by real recursive functions), it is shown that:
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Proposition 5.3.2. Σ0
0 = Π0

0 ⊂ H2, and, for every i ∈ N, Σ0
i and Π0

i are in Hi+2,
i.e., ∆0

ω is real recursive.

Proof. See Propositions 5.1 and 5.2 in [MC04b].

The class of analytical relations is denoted by ∆1
ω is obtained analogously

to arithmetical hierarchy ∆0
ω. In particular, ∆1

0 = ∆ω.

Proposition 5.3.3. Π1
1 is in H6.

Proof. See Proposition 26 (pp. 24-25) in [MC04a].

Recently, Bruno Loff, Jerzy Mycka and José Félix Costa show by easy an-

alytical maps that hyper-arithmetical hierarchies — such as the analytical hi-

erarchy — are non-degenerate, i.e., that they do not collapse. These proofs

are not done in the classical manner (see [Odi89] for a classical proof), but

as corollaries of the non-collapsing character of the η-hierarchy, and will pro-

vide a clue on how analytical methods can be used to prove classical results

of computability and complexity theories.

As it shown in [HL00], the computational power of infinite time Turing

machines is beyond the resolution of halting problem, namely they decide

sets of arithmetical and analytical hierarchies which are indecidable by Tur-

ing machines. To decide a predicate of the form ∃nR(x, n), where n ∈ N,

we can simply try out all the possible values of n in turn. One either finds a

witness n or else knows at the limit that there is no such witness, and in this

way decides whether ∃nR(x, n). Iterating this idea, we conclude by induc-

tion on the complexity of the statement that any first order number theoretic

question is decidable with only a finite number of limits, that is, before stage

ω2. In fact, the class of sets that are decidable in time uniformly before ω2

is exactly the class of arithmetic sets, the sets of reals that are definable by a

statement using quantifiers over N (see [HL00, Theorem 2.6 ]).

The next theorem, introduced in [HL00], shows another example of the

computational power of infinite time Turing machines that transcends the

computational power of Turing machines.

Theorem 5.3.2. Every arithmetic set in Σ0
ω is recursive.

Proof. See Theorem 2.1 (pp. 8) in [HL00].
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The inductive argument in the proof of the above theorem shows that a

Σ0
n set is recursive whose characteristic function is computed by an infinite

time Turing machine using at most n limits. Next, we identify the classes of

recursive (arithmetic) sets which take relatively few limits to be computed by

a given infinite time Turing machine.

Theorem 5.3.3. The arithmetic sets are exactly the recursive sets whose character-
istic functions are computed using a bounded number of limits.

Proof. See Theorem 2.6 (pp. 12) in [HL00].

In fact, the class of sets that are decidable in time uniformly before ω2 is

exactly the arithmetic sets, the sets of reals that are definable by a statement

using quantifiers over the natural numbers.

Corollary 5.3.1. Every arithmetic set can be computed by an ω2-computable func-
tion in H7.

Proof. See Proposition 5.2.3.

In fact, we show that the simulation of the transition function of a Turing

machine, in terms of real recursive functions with infinite limits [MC04a],

can be regain to simulate a particular kind of infinite time Turing machines,

namely whose are restricted to finite binary inputs and operating only until

ω2. With a particular form of iteration over ordinals, we justify the restriction

to ω2 because the finiteness of η-hierarchy. Moreover, we show that the ω2-

approximation of bold-face and light-face halting problems for infinite time

Turing machines can be achieved by a real recursive function in H6. And,

then, to compute a ω2-computable function, the function computable by our

restricted form of infinite time Turing machines, we need a real recursive

function in H7, and, thus, their computational power is sufficient to compute

the arithmetic hierarchy, as the result obtained by Joel Hamkins in [HL00].
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Chapter 6

Conclusions and further work

We feel that the work on the computability theory and computational com-

plexity of analog computation, as well as its applications, considering the

approach based on real recursive functions with infinite limits, introduced in

[MC04a], after the seminal work of [Moo96], is very far from its end. In this

dissertation, we provide a modest and incipient contribution to open such

approach to hybrid computation, and to contribute to launch the seeds to

embedding several hypercomputation models [Ord06], including other than

infinite time Turing machines of Joel Hamkins and Andy Lewis.

We summarize our work, succinctly, emphasizing the main contributions

to the development of real recursive theory, particularly the role of real recur-

sive functions with infinite limits [MC04a] in the following applications:

1. In the first application, we show that the ingredients needed to deal

with Fourier series, namely the piecewise smooth periodic functions,

can be embodied in the framework of real recursive vector functions,

originally introduced in [Moo96] and revised and expanded, with infi-

nite limits, in [MC04a]. It seems obvious that not all piecewise smooth

periodic functions can be accepted by finite automata over continuous

time (e.g. [Rab03]). Then, we also show that a special kind of automa-

ton over continuous time are only be able to accept partially periodic

piecewise linear signals, for which it is possible a characterization by

ω-words.

2. In the second application, we introduce a new kind of iteration schema
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over ordinals and we regain the codification over the reals for finite in-

puts, introduced in [Moo96], as well as the system of differential equa-

tions involved in the simulation of Turing machines presented, recently,

in [MC04a]. Then, we show that there are recursive functions with in-

finite limits to simulate infinite time Turing machines and their com-

putational power, namely their ability to decide their halting problems

in H6, restricted to ω2, and the arithmetic sets with a finite number of

limits in H7.

Below, we list some questions raised by our work, providing also new

directions for further research .

• Although probably not very relevant for a computability-oriented study,

but very interesting when we want to study another application of infi-

nite limits, a recursive class of distributions, also known as generalized

functions, could also be constructed using supremum and infimum op-

erators over an interval (see [Myc03] for further details).

• It would be interesting to study how our model of hybrid computation

can be extended to take into account interaction in an analog network,

following the definitions of interaction suggested by Boris Trakhtenbrot

in [Tra99].

• Investigating a more robust iteration schema, we must be able to extend

the given simulation for infinite time Turing machines until ωω.

• Ralf Schindler initiated, in [Sch03], the study of infinite time complexity

theory by showing the P 6= NP conjecture for infinite time Turing ma-

chines, using methods from descriptive set theory to analyze the com-

plexity of classes P and NP . Recall that all reals have length ω and the

polynomial functions of ω are bounded by those of the form ωn. Then,

a A ⊂ 2ω is in P if there is a program p and a natural number n such

that p decides A and halts on all inputs in time less than ωn. Moreover,

A ⊂ 2ω is in NP if there is a program p and a natural number n such

that x ∈ A if and only if there is y such that p accepts (x, y), and p halts

on all inputs in time less than ωn.
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6. Conclusions and further work

It would be interesting to study such conjecture using methods of real

and complex analysis to define P and NP classes in the light of the

above (new) definition of these classes for infinite time Turing machines,

considering the development already done for complexity theory of

real functions in [MC06].

• Peter Koepke has been working on a generalization of standard Turing

computability on tapes of length ω, to computability on tapes of arbi-

trary ordinal length [Koe05]. Such work was inspired by both infinite

time Turing machines of Joel D. Hamkins, Jeff Kidder and Andy Lewis

[HL00] and Silver machines introduced by Jack H. Silver (see [Ric79]).

It would be very interesting to understand deeply how and what Turing

machines compute in transfinite ordinal time and space, having in mind

this very recent work of Peter Koepke ([Koe05]). And, then, to see how

we can transform our simulation of infinite time Turing machines by

real recursive functons with infinite limits to provide a simultaneous

simulation of Turing machines in both ordinal time and ordinal space.

• New directions for application of Scott topology of continuous domains

have been emerged in computation on classical spaces, because contin-

uous domains are the natural setting for continuous mathematics, since

the representations are more direct and straightforward than those pro-

vided by algebraic domains (see [Eda97] for further details). In [ES98],

it is shown that the notion of computability in Scott continuous do-

mains is equivalent to the approach taken in [Wei00], which is equiv-

alent to that of [PE89].

It would be interesting to study how the approach to analog compu-

tation based on real recursive functions with infinite limits in [MC04a]

can be also correlate with the above definition of computability over the

reals in Scott continuous domains in [ES98].

• Computer simulations of the current iteration schema of a given real re-

cursive function light up several deficiencies when we try to solve com-

putationally, and then iterate, the system of linear differential equations

[CMC00, CMC02], in part, because of the presence of θ-clock functions.

So, we need other forms of systems of differential equations and, also,
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to study a new schema for iteration of elementary real recursive func-

tions, which are solutions of linear differential equations of higher or-

der, and show that such functions do not increase more rapidly than

Busy Beaver function.
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