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ABSTRACT 

Introduction 

The secondary use of Electronic Healthcare Records (EHRs) often requires the identification 
of patient cohorts. In this context, an important problem is the heterogeneity of clinical data 
sources, which can be overcome with the combined use of standardized information models, 
Virtual Health Records, and semantic technologies, since each of them contributes to solving 
aspects related to the semantic interoperability of EHR data. Our main objective is to develop 
methods allowing for a direct use of EHR data for the identification of patient cohorts 
leveraging current EHR standards and semantic web technologies. 

Materials and Methods 

We propose to take advantage of the best features of working with EHR standards and 
ontologies. Our proposal is based on our previous results and experience working with both 
technological infrastructures. Our main principle is to perform each activity at the abstraction 
level with the most appropriate technology available. This means that part of the processing 
will be performed using archetypes (i.e., data level) and the rest using ontologies (i.e., 
knowledge level). Our approach will start working with EHR data in proprietary format, 
which will be first normalized and elaborated using EHR standards and then transformed into 
a semantic representation, which will be exploited by automated reasoning. 

Results 

We have applied our approach to protocols for colorectal cancer screening. The results 
comprise the archetypes, ontologies and datasets developed for the standardization and 
semantic analysis of EHR data. Anonymized real data has been used and the patients have 
been successfully classified by the risk of developing colorectal cancer. 

Conclusion 

This work provides new insights in how archetypes and ontologies can be effectively 
combined for EHR-driven phenotyping. The methodological approach can be applied to other 
problems provided that suitable archetypes, ontologies and classification rules can be 
designed. 

  



INTRODUCTION 

Objective 

Our main goal is providing methods allowing for a direct utilization of data from electronic 
health records (EHRs) in the process of identification of patient cohorts. Leveraging of 
current EHR standards and semantic web technologies is also regarded as an important 
objective in this work. 

Background and significance 

With the increasing adoption of EHRs there is a growing interest in methods to enable the 
secondary use of EHR data, e.g. in clinical research. This secondary use often involves the 
identification of patient cohorts from EHR data (or EHR-driven phenotyping), which is an 
expensive and time-consuming process. According to recent reviews [1], there are many 
publications reporting on automated systems to facilitate this task. Most of these works rely 
on proprietary formats for data integration, and rarely use EHR interoperability standards like 
HL7, openEHR, or ISO13606. In this context, an important problem is the heterogeneity of 
clinical data sources, which usually differ in the data models, naming conventions, and degree 
of detail for representing similar data [2]. Another problem related to clinical data sources is 
the “impedance mismatch” [3] that usually exists between EHR data and the data required by 
the EHR-driven phenotyping algorithms, at a rather high level of abstraction.  

There is evidence that the use of standardized information models can help to solve the 
integration problem of clinical data sources. Some initiatives use a Virtual Health Record 
(VHR) over the set of local EHR systems to overcome the aforementioned problems [4,5,6]. 
The VHR includes a generic information model potentially capable of representing a wide 
range of clinical concepts, and a query language. Standardization of the VHR is regarded as 
an important issue. Consequently, several works have based their VHR on standard EHR 
architectures. However, the use of a VHR based on a standard EHR architecture is not 
sufficient for semantic interoperability in the context of EHR-driven phenotyping. The main 
problem is the partitioning of concepts between the information and domain models. To solve 
this problem it is necessary to make explicit all the assumptions about the representation of 
data. Thus, specific domain concept definitions are needed rather than the generic concepts 
provided by EHR architectures. Examples of such definitions are openEHR/ISO13606 
archetypes [7], CDA templates, and detailed clinical models [8]. Currently, the Clinical 
Information Modeling Initiative (CIMI) [9] is working on providing a common format for the 
definition of health information content. 

In addition, there is an increasing use of semantic web technologies for managing EHR 
information and knowledge. The reason for this is the potential of technologies like OWL 
[10], which enables a formal representation of the domain information entities and knowledge 
that can be exploited by automated means. In line with this, important international initiatives 
[11,12] consider that semantic web technologies are fundamental to achieve consistent and 
meaningful representation, access, interpretation and exchange of EHR data. To mention 
some examples, EHR standards have been represented by means of OWL ontologies with 
different purposes [13,14,15]. OWL technologies make automated reasoning possible, which 
has been exploited in the validation of clinical models [16,17], and for reasoning over EHR 
data [18,19]. There are also numerous studies making use of ontologies for biomedical data 



integration [20]. One of the problems identified is the availability of ontologies corresponding 
to the needs of a specific application. 

With the purpose of providing methods allowing for the smooth execution of EHR-driven 
phenotyping algorithms, in this work we propose to leverage domain concept definitions 
based on standard EHR architectures, on the one hand, and ontology-based descriptions of 
inclusion/exclusion criteria with the potential for automated reasoning, on the other hand. Our 
proposal is to use archetypes for the former and the OWL formalism for the latter. Essential 
to our proposal, a set of archetype-based concept models of the kind of a VHR will serve to 
solve the integration and mismatch problems inherent to the direct utilization of EHR data by 
phenotyping algorithms. Additionally, OWL ontologies will ensure a precise characterization 
of these algorithms, with the added value of automated support via classification reasoning, 
which can be of great help in the process of identification of patient cohorts. 

MATERIAL AND METHODS 

Our methodological approach takes advantage of the best features of EHR standards and 
ontologies, at data and knowledge levels, respectively. Our main principle is to perform each 
activity at the abstraction level with the most appropriate technology available. This means 
that part of the processing will be performed using archetypes (i.e., data level) and the rest 
using ontologies (i.e., knowledge level). Our approach (see Figure 1) assumes that the EHR 
data are stored in a proprietary format in the database of the clinical institution. EHR data 
undergo a transformation pipeline, where the first step is a pre-processing to convert the 
relational data instances into XML extracts that can be readily used in the next step.  

Phenotyping algorithms usually require performing a series of arithmetic and logical 
operations (or abstractions) on the data, and subsequently reasoning using these more 
elaborated data. The second step of our approach deals with the former processing using 
archetypes. In this work, we will use openEHR archetypes [21], however the same approach 
could be applied to other EHR standards. In this step the XML extracts will be converted into 
normalized EHR data compliant with the underling EHR architecture, and then this data will 
be transformed to meet the requirements of the phenotyping algorithm. For instance, if the 
algorithm uses the number of adenomas of a patient, first the information about each adenoma 
finding would be normalized, and afterwards the count would be calculated. Accordingly, a 
series of archetypes will be necessary to abstract from the raw data to the normalized data to 
be processed by the phenotyping algorithm. The corresponding abstractions and 
transformations will be carried out via archetype mappings. The design of this archetype layer 
(or phenotyping archetype) is specific for the particular phenotyping algorithm, while it is the 
result of a trade-off between reusability and simplicity. In the phenotyping archetype, a 
distinction can be made between first-level archetypes and second (and so on) level 
archetypes, depending on whether their value can be obtained from the EHR data or, on the 
contrary, require data that are not directly available in the EHR. The outcome of this second 
step is a collection of archetype-compliant data instances suitable for being consumed by the 
next steps.  

The objective of the third step is the transformation of the data instances into a semantic 
representation. So far, the clinical data of a patient are represented using archetype-compliant 
XML extracts. This representation has limitations with regard to expressing domain 



knowledge, and therefore neither supports inference nor can be used to perform reasoning as 
required by phenotyping algorithms (see above). Our proposal is that the inclusion/exclusion 
criteria defined in the phenotyping algorithm are implemented in OWL, and that the 
classification is performed through automated reasoning. To achieve this, a mapping is 
required between the phenotyping archetype and a domain ontology, which needs to cover the 
concepts and properties of the domain in question. This ontology can be built on purpose or 
re-used in case quality ontologies for the domain exist. Depending on the scope of the study, 
extensions to existing ontologies are likely to be needed, and/or a network of ontologies 
rather than a single one can be required. Once this step is performed, the data will be 
available in a formalism for which automated classification and reasoning are natural tasks. 

The fourth step of our approach requires enriching the domain ontology with appropriate 
classification rules, so that a reasoner can automatically compute the groups of patients as 
well as guarantee the consistency and logical correction of the ontology. The output of this 
step will be the clinical group associated with each patient. Key methods of the data 
transformation pipeline are summarized in Tables 1 and 2, and detailed in Annex I. 

 
Figure 1. Overview of the methodological approach 

  



 

Table 1. Summary of activities performed at archetype level 

Clinical concept modeling using archetypes (archetype level) 

Goal Development of the phenotyping archetype for the normalization and abstraction of 
the EHR data to be used in the phenotyping algorithm 

Input • Documentation about the domain and phenotyping algorithm (e.g. medical 
encyclopedias, clinical guidelines) 

• Terminological resources (e.g. SNOMED CT [22]) 
• Archetype repositories 

Output • (Semi)formal specification of domain concepts 
• Phenotyping archetype 

Tasks • Analysis and specification of domain concepts 
• Design and development of phenotyping archetype 

Tools • UMLS Terminology Services [23] 
• openEHR Clinical Knowledge Manager [24] 
• LinkEHR mapping module [7] 

From EHR data to archetypes (archetype level) 

Goal Transformation of EHR data into archetype-compliant normalized EHR extracts 

Input • Source EHR schemas and data 
• (Semi)formal specification of domain concepts 
• Phenotyping archetype 

Output • Specification of EHR data-archetype mapping 
• Set of XQuery scripts (one for each archetype) implementing the mappings  
• EHR data expressed as archetype-compliant XML documents 

Tasks • Definition of high-level mappings between source schemas (local schemas or 
archetypes) and phenotyping archetype. 

• Compilation of high-level mappings into XQuery scripts. 
• Execution of XQuery scripts on EHR data and/or archetype instances. 

Tools • LinkEHR archetype editor [25] 
• Saxon [26] 

 

  



 

Table 2. Summary of the activities performed at ontology level 

Domain knowledge modeling using ontologies (ontology level) 

Goal Development of the ontologies for representing the domain knowledge 

Input • (Semi) formal specification of domain concepts 
• Repositories of ontologies 

Output • Set of ontologies representing the domain knowledge 

Tasks • Selection of existing ontologies appropriate for being reused 
• Development of the OWL ontologies by extension of selected ontologies or 

from scratch 

Tools • Bioportal [27] 
• Protégé [28] 

From archetyped data to OWL (ontology level) 

Goal Transformation of the normalized EHR extracts into a semantic representation to 
facilitate further processing and exploitation. 

Input • EHR data expressed as archetype-compliant XML documents  
• Set of ontologies representing the domain knowledge  
• Phenotyping archetype 

Output • Specification of archetype-ontology mapping 
• Set of OWL individuals representing the normalized EHR extracts 

Tasks • Definition of the mappings between the phenotyping archetype and the domain 
ontology 

• Application of the mappings to the normalized EHR extracts 

Tools • SWIT mapping and transformation modules [29] 

OWL reasoning (ontology level) 

Goal Design and application of the phenotyping algorithm to the OWL individuals 

Input • Set of OWL individuals representing the normalized EHR extracts  
• Set of ontologies representing the domain knowledge  
• Specification of the phenotyping algorithm 

Output • OWL ontology that implements the phenotyping algorithm 
• Classification of the OWL individuals according to the phenotyping algorithm 

Tasks • Implementation of the phenotyping algorithm in OWL  
• Application of the phenotyping algorithm through automated reasoning 



• Querying of the knowledge base to retrieve the classification of each subject 

Tools • Protégé [28] 
• Hermit  [30] 
• OWLAPI [31] 

RESULTS 

Case study description 

Colorectal cancer is one of the most important mortality causes in many developed countries 
according to Global Burden of Disease study, with an expected increase in incidence for the 
coming years [32]. Developing effective mechanisms for the early detection of colorectal 
cancer would contribute to a better management and control of this disease. Our case study 
focuses on the program for colorectal cancer screening in the Murcia region (Spain). To date, 
the physicians involved in this program apply the screening protocols drawn from the 
European and American guidelines (see [33]) to classify patients in levels of risk, and, 
according to such classifications, make clinical decisions. As result, a database recording 
clinical data and decisions taken has been compiled. This database, with data about more than 
20,000 patients, is the source of the anonymized EHR data used in our study. Our hypothesis 
is that our approach can help physicians in their activity by suggesting the classification of the 
patients according to their risk of colorectal cancer. 

Next, we summarize our main results. More information, including the archetypes, 
ontologies, mappings and datasets, is available at http://miuras.inf.um.es/colorectal.  

Archetype infrastructure and mapping 

In our case study, we started by analyzing the archetypes in the openEHR Clinical 
Knowledge Manager to identify suitable archetypes. The most suitable one was openEHR-
EHR-OBSERVATION.lab_test-histopathology, that models a generic anatomical pathology 
or histopathology test. In order to accommodate the additional concepts required by our 
phenotyping algorithm, the archetype was specialized using the LinkEHR archetype editor. 
The specialization, named openEHR-EHR-OBSERVATION.lab_test-histopathology-
colorectal_screening, incorporates detailed information about adenoma findings, such as type, 
maximum size of the recorded dimensions (width, breadth and height), dysplasia grade, and 
whether they are sessile and/or advanced. Our case study requires concepts at different level 
of granularity: at finding and study levels. In order to represent study level concepts 
(maximum size of all adenomas and number of adenomas) we developed a second-level 
archetype (openEHR-EHR-EVALUATION.colorectal_screening.v1) from scratch.  

For the generation of archetype instances we need to access the required EHR data and then 
to transform them into archetype instances. Firstly, the data access module of LinkEHR was 
used to generate a canonical XML view over the EHR system. This XML view was then used 
as source schema in the mapping of the openEHR-EHR-OBSERVATION.lab_test-
histopathology-colorectal_screening archetype, since their instances can be obtained directly 
from EHR data. When a local EHR is involved in a mapping scenario, the mapping 
specification requires a clear understanding of the source schema, thus we worked closely 



with the database administrator. Figure 2 shows an example of value correspondence used to 
map the first-level archetype to the local EHR. Finally, we defined the mapping between the 
first- and second-level archetypes. In this case and due to the presence of aggregation 
functions we employed a structural mapping [7] to control the grouping context. An excerpt 
of this mapping is shown in Figure 3. Since the source path of the structural mapping is the 
root entity of the first-level archetype the counting of adenomas and the calculation of the 
maximum size of adenomas is done at study level. With this approach we were able to 
validate at each step the XQuery script [34] generated by the LinkEHR mapping tool. Figure 
6 illustrates an example of the data transformations applied to the adenoma dimensions 
(length, width and depth) during the whole process, i.e. from local data to OWL instances. As 
can be observed, the canonical XML document is transformed into an XML instance of the 
finding (first-level) archetype. The mapping in Figure 2 is used in this transformation. 
Concretely it is employed to assign the value to the maxsize element 
(archetype_node_id=”at0.0.31”) with the maximum size of any recorded dimension of a 
particular finding. By contrast, the mapping between the first- and second-level archetypes 
calculates the maximum size of any recorded dimension only for adenomas and at study level. 
For this purpose, a mapping with a similar structure as the one displayed in Figure 3 was 
used.  

 

 

Figure 2. Value correspondence for calculating the maximum size (depth, width, or length) of an adenoma 
finding. As it can be observed, if none of the dimensions has been recorded, the value -1 is assigned 



 

Figure 3. Calculation of the number of adenomas in a histopathology study. The variable $finding 
represents the path of microscopic findings (CLUSTER at0.81.6) in the source archetype. The complete 
source instance provides the context for grouping and counting 

OWL infrastructure and reasoning 

The starting point was a domain ontology developed by our clinical partners, called precol, 
which was designed for the data management activities they perform rather than for 
supporting automated reasoning. Then, we inspected Bioportal ontologies looking for more 
appropriate formalizations of the concepts and the inferencing capabilities required by the 
phenotyping algorithm. Given our goal, we decided that the best option was to re-engineer the 
classes of the precol ontology over which reasoning is to be performed using Protégé. The 
ontological infrastructure includes different ontologies for representing domain entities 
(colorectal-domain), the rules for determining the risk level (colorectalscreening-rules), and 
the data (colorectal-instances). The colorectal-domain ontology extends precol by adding 
some classes, properties and axioms oriented to reasoning.  Figure 4 shows an excerpt of the 
inferred taxonomy of Finding. There, we can see different types of Adenoma, each of which 
is defined through sufficient conditions, which is an effective way of representing the axioms 
for automated reasoning. The reasoner exploits this taxonomic structure to answer the queries. 

Next, we manually defined the mappings between the phenotyping archetype and the 
colorectal-domain ontology using SWIT [29]. An excerpt of the mapping rule for Finding is 
shown in Figure 5, where the lines show the correspondence between the archetype and 
ontology entities. Once defined, the mappings were automatically executed on the archetyped 
data instances to generate the OWL dataset. It should be noted that in this study, the mapping 
is defined between the first- and second-level archetypes and the domain ontology. Figure 6 
illustrates how the data is transformed into OWL. There, an individual of the class 
Histopathology Report is created. This report has two findings, whose data come from the 
two ELEMENTs defined in the Histopathology colorectal screening archetype (top-right). 
Besides, this report has a max_size, whose value is obtained by executing the mapping with 
the colorectal screening archetype (bottom-left). 

 

 



 

Figure 4. Excerpt of the domain ontology 

 

 

Figure 5. Partial view of the mapping for Finding 

 

The European and American screening protocols have been implemented in the colorectal 
screening-rules ontology. Table 3 explains the rules defined in this ontology for low, 
intermediate and high risk according to the European and American protocols. Finally, OWL-
DL reasoning over the OWL dataset generates the classifications according to each protocol, 
which are retrieved by using the OWLAPI or through DL queries [35]. 

 

 

 

 

 

 



 

Figure 6. Example of a complete data transformation process 

 



Table 3. The classification rules defined for the American and European protocols 

Group OWL rule and explanation 

High risk 

American 

Rule: 

(HistopathologyReport and  

((hasAdenoma some AdvancedAdenoma) or (number some integer[>= 3]))) 

or   (HistopathologyReport and (max_size some integer[>= 20])) 

Explanation: 

A histopathology report whose findings describe at least one advanced 
adenoma or at least 3 adenomas, or an histopathology report whose largest 
adenoma has at least 20mm 

The domain ontology contains the properties that an adenoma must meet to 
be classified as advanced by the reasoner  

Number represents the amount of adenomas described in the histopathology 
report. This value is calculated in the archetype layer. This could have been 
calculated in the ontology layer but that would require more time for 
reasoning  

max_size represents the size of the largest adenoma and this value is 
calculated in the archetype layer, since it cannot be easily calculated in the 
ontology layer 

High risk 
European 

Rule: 

(HistopathologyReport 

 and ((max_size some integer[>= 20]) 

 or (number some integer[>= 5]))) 

Explanation: 

A histopathology report whose findings describe an advanced adenoma of 
size equal or greater than 20mm or at least 5 adenomas 

For optimization purposes, the condition has Adenoma some 
(AdvancedAdenoma and (size some integer[>=20])) is not included, since it 
is guaranteed by max_size some integer[>= 20] 

 

Intermediate 
risk European 

Rule: 

HistopathologyReport 



  and (((hasAdenoma some AdvancedAdenoma) 

 and (max_size some integer[< 20]) 

 and (number some integer[< 5])) 

 or ((hasAdenoma only NormalAdenoma) 

 and (number some integer[> 2]) 

 and (number some integer[< 5]))) 

Explanation: 

A histopathology report that meets one of the following conditions 

a) It contains less than 5 adenomas, at least 1 of which is advanced, and the 
size of the largest adenoma is less than 20mm 

b) It contains 3 or 4 normal adenomas 

It should be noted that normal adenoma and advanced adenoma are disjoint 
classes. 

Low risk 
European 
/American 

 

Rule: 

HistopathologyReport 

 and (hasAdenoma only NormalAdenoma) 

 and (number some integer[< 3]) 

Explanation:  

A histopathology report that only contains at most 2 normal adenomas, but 
does not contain any advanced one. 

This rule is the same for both protocols. 

 

Evaluation 

We have carried out an overall evaluation using a small selection of 33 histopathology reports 
from the database. These reports were selected to cover a wide range of value combinations. 
Based on the mappings specifically designed for this purpose, appropriate archetype and 
OWL instances have been generated. OWL-DL reasoning was applied to classify the 
histopathology reports according to the European protocol. The classification results matched 
the results obtained by manually applying the protocol in 100% cases. 

In addition, we have evaluated the performance of the main steps of our data transformation 
pipeline, namely the archetype level mapping, the ontology level mapping, and the OWL 
reasoning. In this evaluation we used a bigger number of histopathology reports (503 reports), 
randomly selected. Default values provided by our expert were used in case of missing data, 



e.g. a missing value in the dysplasia type was interpreted as a low-grade dysplasia. To 
evaluate the performance of the mapping steps we tested the instance generation scripts to 
analyze the response time thereof. The mean time required for the archetype mapping step 
was 13 milliseconds per report, and about 150 milliseconds per report for the ontology 
mapping step. Regarding the performance of the reasoning step, the mean time to classify 
each report using Hermit was 2.1 seconds.  

Table 4. Discrepancy matrix 

  Database classification 

  High-risk 
Intermediate-
risk 

Low-risk 

OWL 
classification 

High-risk 69 5 2 

Intermediate-
risk 

102 44 24 

Low-risk 26 17 206 

 

Finally, we have compared the results of the OWL classification step with the classifications 
done by physicians as recorded in the original database (see Table 4). Despite the default 
values, the reasoner did not yield any classification result for a small number of reports (8 
reports), due to data values not covered by the classification rules (e.g. dysplasia type with 
"could not be determined" as value). Focusing on the reports for which the reasoner yielded a 
classification, this classification matches the database one in a 64.4% of the cases. Among the 
discrepancies (35.6% of the cases), a 58% corresponds to reports classified as high-risk by 
physicians and as intermediate-risk by the OWL classifier. This suggests that physicians may 
tend to assign a higher risk level when compared to the protocol. Note that discrepancies with 
respect to the protocol do not necessarily imply a non-compliance, as physicians were not 
supposed to follow it. The list of discrepant cases and the corresponding data files are 
available in http://miuras.inf.um.es/colorectal. A sample of 17 cases from this list was 
presented to the physician for revision, selected among discrepancies involving low risk 
versus the other 2 classifications. The physician determined that the OWL classification was 
the correct one in 100% cases. Analyzing the reasons for the misclassifications in the 
database remains as future work. 

DISCUSSION 

In this work, we have presented a novel method to support EHR-driven phenotyping that 
combines EHR standards, archetypes, ontologies and reasoning. The novelty of the approach 
lies in how these technologies are combined for taking full advantage of their benefits. On the 
one hand, archetypes define semantically rich data structures based on EHR standards. They 
abstract from how the data are stored in a particular EHR system and, therefore, provide a 
meaningful way for exchanging healthcare data. Our approach considers the use of an 
archetype-based VHR to normalize and further elaborate EHR data (at the data level) so that 
the requirements of phenotyping algorithms can be met. On the other hand, ontologies serve 



to provide a formal specification of domain knowledge for phenotyping purposes. Current 
languages like OWL make automated reasoning possible such that new knowledge can be 
inferred. Our approach uses OWL ontologies and classification reasoning (at the knowledge 
level) for the bulk of phenotyping algorithms.  

Phenotyping algorithms require working at both data and knowledge levels, since the 
inclusion/exclusion criteria are calculated from raw EHR data but usually also need data not 
directly available in the EHR. E.g. in our case study, the classification of a patient in the 
“high risk” group requires to find either one advanced adenoma or at least three adenomas. In 
turn, the classification of an adenoma as “advanced” is done based on the specific value 
ranges for the size, histology and dysplasia of the adenoma. We have addressed the 
classification tasks at the knowledge level, and processing tasks such as counting and 
negation (e.g. if an adenoma is “not sessile”) at the data level. The separation of concerns 
between data and knowledge levels is not a clear-cut issue. The decision will depend on the 
particular application as well as on the features of the representation language chosen for the 
knowledge level. To explore this issue, for our case study we have developed an archetype 
infrastructure which is able to determine directly at data level e.g. if an adenoma is advanced. 
This has been done to facilitate the reusability of the archetype infrastructure in platforms 
other than OWL. As criterion, it can be considered to include a domain concept definition in a 
particular level according to the expected reuse of the corresponding artifact (ontology or 
archetype).  

Reuse is one of our main interests, of both archetypes and ontologies. The reusable archetype 
infrastructure provides standardized access to clinical data, possibly coming from different 
EHR systems, by just defining the necessary mappings between the source databases and the 
first-level archetypes (note that the mappings for second and higher-level archetypes can be 
fully reused). Coupled with the archetypes, the ontology infrastructure (including definitions 
and mappings) can also be reused to work with different EHR systems. The definitions in the 
ontology themselves can indeed be reused to a large extent, e.g. in the use case we have used 
them to define the rules for both the American and European protocols without modifying the 
archetype infrastructure.  

We use OWL classes with sufficient conditions for defining the categories of interest related 
to the phenotyping algorithm. This means that those classes represent explicitly the 
knowledge on the categories as OWL content and, therefore, can be combined with additional 
knowledge for further studies and inference. Alternative representations like SPARQL [36] 
could have been used. In that case, however, the conditions of each category of interest would 
be embedded within queries, with no possibility of exploitation as separate knowledge. 
Besides, the SPARQL inference possibilities based on properties are limited. E.g. it would not 
be possible to identify which findings are advanced adenomas by just using SPARQL, unless 
the queries replicated all the conditions for a finding to be classified as such. In that case, the 
most reasonable option would be to reason over the OWL content first, to obtain all the 
finding classifications from the data, and then issue the SPARQL queries against the inferred 
knowledge base.  

The use of OWL is appropriate for phenotyping algorithms where the classification of 
patients is based on the analysis of individual patient features, rather than e.g. features of 
relatives. Otherwise, some options are: (1) dealing with the problem at the data level; and (2) 
implementing those rules with languages such as SWRL[37] or SPARQL and combine them 



with OWL reasoning. The decision must be made based on the particular problem. Examples 
of the first solution can be seen in our case study (see Table 3), since operations like count, 
maximum, and negation cannot be easily performed using OWL reasoning. Our solution was 
to perform such activities at the data level, and the time performance obtained suggests that 
our modeling decisions have been effective. Consequently, our recommendation is to 
carefully analyze the requirements of the phenotyping algorithm, taking also into account the 
reuse prospects of the archetypes/ontologies (see above). 

Terminologies should play an important role to bridge the gap between EHR data and 
archetypes, and between archetypes and ontologies. In previous works we have managed 
SNOMED-CT content in both EHR-archetype [38,39] and archetype-ontology [17] 
transformation layers. In our view the exploitation of the terminological bindings defined in 
the archetypes and the increasing availability of terminologies in a processable form should 
be helpful not only to drive the transformation process but also for the semi-automatic 
generation of the required mappings. However, for simplicity, in this research work we have 
opted for disregarding terminological issues, focusing instead on the combination of EHR 
standards and semantic web technologies. 

CONCLUSION 

This work provides new insights in how archetypes and ontologies can be effectively 
combined for EHR-driven phenotyping. The main contribution of this work is the 
methodological proposal which describes how those technologies can be combined and how 
we can take full advantage of their benefits. This is a progress with respect to our previous 
works because, we had used ontologies for representing archetypes and data to facilitate 
clinical data and models interoperability [7] and used knowledge-rich clinical models based 
on archetypes to link clinical decision support systems with EHR systems [38,39], but never 
combined in an effective data analysis pipeline as proposed here.  

With respect to related work, we are aware of the MobiGuide and EURECA projects [40,41], 
which focus on linking clinical decision support with EHR systems with the help of 
archetypes and/or semantic web technologies. However, to the best of our knowledge, none of 
these approaches has achieved the level of semantic interoperability and integration we 
demonstrate in this work. The approach of the SHARPn project [42] is similar to ours, and 
has proved to be effective in a platform for the secondary use of EHR data. The major 
differences are the use of Clinical Element Models [43] (instead of archetypes), the rule-based 
description of phenotyping algorithms, and the processing of textual EHR data. Compared to 
SHARPn, our approach does not cover the latter aspect. However it outstands for the clinical 
models used, allowing for the standardized representation of rather abstract clinical concepts, 
as opposed to raw EHR data. 

The approach is rather generic and can be applied to other problems provided that suitable 
archetypes, ontologies and classification rules can be developed. Moreover, the approach 
promotes and emphasizes on the use of international standards and recommendations like 
openEHR/ISO13606 archetypes and OWL. As future work we envisage to perform a more 
principled clinical validation of our results. Furthermore, we plan to incorporate the issues of 
terminological knowledge and ontology alignment in our approach. 
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ANNEX I 
 

Clinical concept modeling using archetypes 

A crucial task in our approach is the design of the archetype layer that will serve to abstract 
from the raw EHR data to the normalized data that the phenotyping algorithm requires. To 
achieve this, an analysis and specification of the domain concepts are carried out. Based on 
this analysis, the design and development of the phenotyping archetype are undertaken. This 
step necessitates a deep understanding of the domain in question, and also a good insight into 
available archetype models. Inputs to this step are documentation resources about the domain 
and phenotyping algorithm, such as medical encyclopedias and clinical guidelines, as well as 
terminological resources. Existing archetype resources are also used as an input in this step. 
The outputs comprise both a specification of the domain concepts and the phenotyping 
archetype itself. The tools to be used in this step are the UMLS Terminology Services (UTS) 
[1], the openEHR Clinical Knowledge Manager (CKM) [2] and the LinkEHR archetype 
editor [3]. 
The data used in the phenotyping algorithm often refer to more or less abstract clinical 
concepts that are not stored in the EHR but can be calculated using e.g. arithmetic operations, 
logical operations, or combinations thereof. Moreover, abstracted data might be in turn 
required for the calculation of other data at a higher level of abstraction. An example from a 
previous study [4] is the concept metastatic solid tumor, which depends equally on the 
existence of a primary solid tumor and a metastatic tumor, both in turn abstract concepts. To 
mirror this, in previous works [4,5] we proposed using a collection of interrelated archetypes 
representing the clinical concepts relevant to the domain (a sort of VHR), which can be 
referred to as knowledge-rich clinical models based on archetypes. Here, a distinction can be 
made between first-level archetypes, whose value can be obtained from the EHR data, 
directly or by means of rather simple expressions, and second (and so on) level archetypes, 
which require data that can be derived from the EHR but are not available as such.  
Prior to the design of the set of archetypes we have performed a thorough analysis of the 
clinical concepts required by the phenotyping algorithm. This is important not only for the 
identification of suitable archetypes in existing repositories but also to obtain a precise 
characterization of the concepts themselves, e.g. including a logic description, if feasible. As 
far as possible, we select as a starting point the most suitable archetypes from the repository. 
If necessary, the selected archetypes are specialized to meet the needs of the particular 
algorithm. In this way we seek to increase the reuse chances of our archetype-based models, 
which could potentially be shared by other applications in the same domain. Also to increase 
reuse, we harness the above (logic) concept specifications as semantic annotations for the 
corresponding archetypes. 
Both the domain analysis and the archetype design are labor-intensive and manual tasks 
requiring technical skills and, at the same time, a good understanding of the domain. In 
particular, the search for suitable archetypes is an exploration process which critically 
depends on the domain expertise of the modeler. Thus, if no archetypes are found using key 
domain concepts as search terms, alternative keys e.g. based on the clinical procedure should 
be tried. For instance, if the domain refers to findings identified after a colonoscopy, 
alternative search terms may comprise colonoscopy or histopathology. The archetype should 
not only have a meaningful name, but should also accommodate the information requirements 
(e.g. attributes) of the concept. Clearly, the search and browse facilities of the repository are 



crucial in this task. Once suitable archetypes have been selected, the design of the archetype 
layer should be driven by the concept dependences identified as part of the domain analysis. 
 

From EHR data to archetypes 

Since the required data are held in local EHR systems we need to convert them into data 
structures compliant with the supporting archetypes. Therefore, it is necessary to spell out the 
relationships between the source schemas (EHR or archetypes) and target schemas 
(archetypes), i.e. their mappings. In complex mapping scenarios as such induced by archetype 
the common solution is to separate the specification of the relationships between the schemas 
from the implementation of the actual transformation [6]. 

This step has two main inputs, namely the source schema (either the local EHR schema or a 
set of archetypes) and the target archetype. We distinguish three main tasks: 1) mapping 
specification between source and target schemas; 2) compilation of the mapping specification 
into an executable program; and 3) execution of the resulting program over the source 
instances.  

In our solution, we employ LinkEHR mapping module [3,6] in the first two tasks. In 
LinkEHR the relationships between source and target schemas are expressed by users in the 
form of high-level declarative schema mappings. Such mappings are automatically compiled 
by the tool into XQuery [7] scripts that perform the actual data transformation. Finally, the 
XQuery script is executed by an XQuery engine (in our case Saxon [8]) and applied to source 
instances to generate instances compliant with the target archetype. Although not strictly 
necessary, the mapping process was carried out starting with first-level archetypes and 
continuing with second-level ones, and so forth, i.e. following the flow of data. Thereby we 
were able to validate at each step the generated XQuery script. 

Two types of high-level mappings are supported, namely value and structural 
correspondences. Value correspondences specify how to calculate the value of an atomic 
attribute in the target from a set of source values. They are defined by a set of pairs, each 
consisting of a function that specifies how to calculate the value of the target atomic attribute 
and a condition that must be satisfied to apply the function. Apart from the assignment of a 
fixed value, the simplest kind of transformation function is the identity function which copies 
a single source value into a target value. But quite often it is necessary to specify complex 
functions, for this purpose LinkEHR comes with a wide range of transformation functions 
covering mathematical, logical, string, type conversion, date and time and metadata (which 
allow access to archetype metadata such as descriptions or terminology bindings). For 
instance, Table 1 contains a simple value correspondence transforming gender codes. It 
transforms the local code in path /patient/gender into a normalized one. Note that the order is 
relevant and only the first applicable function is used. 

Table 1. Example of value correspondence 
!"#$%&' !()*$"+)'
!"#$%&'$!(&')&*+,-,./0..
!"#$%&'$!(&')&*+,1,. 2.
!"#$%&'$!(&')&*+,3,./0..
!"#$%&'$!(&')&*+,4,. 5.

!"#$%&'$!(&')&*+2./0..!"#$%&'$!(&')&*+5. !"#$%&'$!(&')&*.
$*6&. 7.



 

 

A number of terminology functions are available to perform terminology abstraction by 
reasoning over the taxonomic (is-a) hierarchy of SNOMED CT [9], which can be exploited in 
handling EHR data encoded in this terminology. These allow e.g. calculating the data value 
for the concept metastatic tumor based on an expression involving the descendants of the 
SNOMED CT concept "Secondary malignant neoplastic disease". Aggregation functions are 
also available, which operate on a given grouping context and perform operations such as 
counting and adding.  

Value correspondences can be also used to perform a mapping between terminologies, if 
needed. More importantly, as illustrated above, value correspondences with terminology 
functions can be used to perform the necessary abstractions to bridge the gap between EHR 
data and archetyped data. However, the LinkEHR support for terminology functions is limited 
to date. In case more advanced support is required external terminology servers might be 
used, since their functionality can be incorporated by extending the set of LinkEHR 
transformation functions.  

The nested nature of archetypes makes the grouping semantics (how to group and nest data in 
the target) a key aspect. LinkEHR has a default grouping semantics that minimizes 
redundancy. In those scenarios where this default semantics is not suitable, structural 
mappings should be used. They are defined by a set of paths in the source and a filter. They 
control the creation of target instances, in such a way that a new target instance is constructed 
for each combination of source values that satisfies the filter. Structural mappings are very 
useful when using aggregation functions since they allow us to control the grouping context, 
for instance in the calculation the maximum size of adenomas at patient level instead of at 
study level. 

Domain knowledge modeling using ontologies 

Another crucial task in our approach is the design of the ontology layer that will support the 
implementation of the phenotyping algorithm and will obtain the classification of the patients 
by means of automated reasoning. OWL ontologies provide a formalization of domain 
knowledge and permit to represent such content independently of the source EHR schema. 
The representation without structural details facilitates its exploitation by phenotyping 
algorithms and its reuse for different tasks.  

An input of this step is the result of the analysis done during the clinical concept modeling 
step. This analysis provides the relevant domain concepts that will have to be represented in 
the ontology. Best practices in ontology engineering recommend to reuse existing ontologies 
and to create modular ontologies [10]. Such recommendations would mean in practical terms 
that we will need to reuse some concepts from different ontologies and that the resulting 
ontology infrastructure will probably be a networked ontology. Thus, repositories of existing 
ontologies are another input for this step.  

Finding the appropriate concepts for reuse is not an easy task. Repositories like Bioportal [11] 
provide search options but other tools like Watson [12] might help to find relevant concepts 
and ontologies on the web. In case of different candidate ontologies for re-use, decisions will 



have to be made based on the quality of the ontologies and their appropriateness for the task. 
It should be noted that the ontologies available do not usually meet all our requirements. On 
the one hand, existing ontologies might not include all the concepts we need. On the other 
hand, many currently available biomedical ontologies have been designed for annotation 
purposes and therefore are not suitable for automated reasoning. For example, Bioportal 
returns 23 matches for the concept adenoma in ontologies like SNOMED-CT, NCI 
Thesaurus, MedDRA, MeSH or Experimental Factor Ontology. However, to the best of our 
knowledge, none of them includes the properties we need to classify adenomas as normal or 
advanced, as clinicians need for supporting their decisions. 

Consequently, extensions and re-engineering of ontologies are likely to be required. This is 
usually a manual task done with the support of tools like Protégé [13], which permits the 
addition of new concepts and axioms to existing ontologies, as well as creating new ones. In 
case new ontologies are developed, principles like the ones proposed by the OBO Foundry 
[14] could contribute to produce quality, interoperable ontologies. For this purpose we 
implement the ontologies in OWL-DL [15], which is the OWL subset based on Description 
Logics. By proceeding in this way, the domain knowledge is made explicit in a set of OWL 
ontologies and therefore ready to be exploited by means of automated reasoning. 

From archetyped data to OWL  

This step aims to transform the normalized EHR extracts into OWL. This step has three main 
inputs: (1) the normalized EHR extracts, which are the source data to be transformed; (2) the 
archetypes used for representing these extracts, since they provide the data schema; and (3) 
the domain ontologies, which provide the knowledge schema. This transformation of 
archetyped data into OWL does not pursue representing in OWL the archetype structure as 
we did in previous work with a different purpose [16], but to represent the data according to 
an appropriate domain conceptualization, that is, the transformation of the clinical content.  

Technically speaking, the transformation method has two main tasks: (1) definition of the 
mapping rules between the archetype and the ontology; and (2) application of mapping rules 
to the normalized EHR extracts.  The first task permits to map to source and target schemas, 
which drives the transformation of the EHR data and provides a flexible way to determine 
which pieces of data have to be transformed into OWL. Each mapping rule associates 
archetype entities with OWL classes and properties. The execution of a particular mapping 
rule will permit the transformation of a data unit into its semantic representation.  A mapping 
rule would associate, for instance, the representation of the adenoma size in the archetype 
with its corresponding class and property in the ontology. The execution of this mapping 
would take the value of the size (e.g. 10) from the normalized EHR extract and create an 
individual of the adenoma class in the ontology, with a value of 10 for the property. The 
mapping rules are manually defined and require a good understanding of both the archetypes 
and ontologies involved, whereas the transformation of the data can be automatically 
performed once the mapping rules have been defined. It should be noted that once the 
mapping rules are defined, they can be stored and reused in further transformation processes. 
Given that the EHR data is transformed in a one-by-one basis, the method must avoid the 
duplicity of OWL individuals. This does not only refer to the problems related to the 
existence of different values for a functional property (like size) but also to the issues derived 
from combining the information about a particular patient coming from different extracts. 
Identity conditions permit to deal with this issue.  



The tasks performed in this step have been supported by our semantic transformation engine 
[17,18], called SWIT, which is capable of generating RDF and OWL content from both 
relational and XML data.  The result of this step is the collection of OWL individuals 
representing the content of the normalized EHR extracts in a semantic format. 

OWL reasoning 

The final step is to obtain a partition of the patients according to the phenotyping algorithm. 
A major motivation for using OWL in this step is its capability to perform sound and 
complete automated reasoning. The inputs of this step are: (1) the collection of OWL 
individuals representing the clinical data; (2) the domain knowledge specified in OWL 
ontologies; and (3) the phenotyping algorithm.  First, the phenotyping algorithm has to be 
implemented in OWL. For this purpose an OWL ontology will be created. This ontology will 
reuse the domain ontologies previously developed, which will permit the joint exploitation of 
classification rules, domain knowledge and EHR data by means of automated reasoning.  
The ontology will contain one class per group of interest. OWL-DL classes have sets of 
axioms associated and two types of axioms are relevant in this work: (1) subClassOf; and (2) 
equivalentClass. The latter are the most relevant ones for reasoning, because they permit to 
define the sufficient conditions for an OWL individual to be classified as a member of the 
OWL class. Defining the inclusion/exclusion criteria as EquivalentClass axioms will permit 
the reasoner to automatically partition the clinical data into the groups of clinical interest.  
These axioms have to be carefully designed and optimized taking into account: (1) OWL’s 
open world assumption; (2) how reasoners work; and (3) distribution of activities between the 
archetype and ontology layers. Our approach tries to perform the activities in the most 
appropriate layer. For example, operations like counts, negations or obtaining the maximum 
value would drop the time performance if done using OWL reasoning. Consequently, we 
propose performing these operations at the archetype level, whereas conceptual classifications 
like detecting whether an adenoma is normal or advanced and obtaining the category to which 
a patient belongs are in principle performed at the ontology level. 
Once this ontology is ready, an OWL-DL reasoner like Hermit [19] can be applied over the 
complete semantic dataset in order to infer all the possible information given the EHR data. In 
particular, we are interested in obtaining the classification of the EHR data according to the 
phenotyping algorithm. Hence, the final activity in this step is to retrieve the resulting 
classifications. This can be done by using different query languages available for OWL 
content such as DL-query [20] or SPARQL [21], or through a programmatic API like 
OWLAPI [22]. This has been the choice made in this project given that we needed to run 
simple queries, asking about the membership of the extracts in the phenotyping algorithm 
classes. 
.
.  
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