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Magnetic field implementation in multiband k·p Hamiltonians of holes in

semiconductor heterostructures

J. Planelles∗ and J. I. Climente
Departament de Quimica Fisica i Analitica, Universitat Jaume I, Box 224, E-12080 Castelló, Spain

(Dated: March 27, 2013)

We propose an implementation of external homogeneous magnetic fields in k·p Hamiltonians
for holes in heterostructures, in which we made use of the minimal coupling prior to introduce
the envelope function approximation. Illustrative calculations for holes in InGaAs quantum dot
molecules show that the proposed Hamiltonian outperforms standard Luttinger model [Physical
Review 102, 1030 (1956)] describing the experimentally observed magnetic response. The present
implementation culminates our previous proposal [Phys. Rev. B 82, 155307 (2010)].

PACS numbers: 73.21.-b, 73.21.La, 75.75.-c

I. INTRODUCTION

The interaction of a magnetic field with a charged par-
ticle with spin comes into the Hamiltonian through cou-
pling to the total (orbital plus spin) angular momentum.
In crystals, the total angular momentum is the sum of the
Bloch angular momentum, which contains atomic orbital
and spin contributions, and the envelope orbital angular
momentum.1,2 Determining the coupling constant (g fac-
tor) is an important requirement to study the magnetic
properties of materials. In bulk systems, the value of the
g factor is strongly influenced by band mixing, spin-orbit
interaction and crystal anisotropy.4

In the last years, there is increasing interest in con-
trolling and exploiting the g factor of carriers confined
in semiconductor quantum dots (QDs) for spin prepa-
ration, conservation and manipulation aiming at spin-
tronic and quantum information devices.5–10 The mag-
netism of these structures is significantly different from
that of bulk crystals because the weak magnetic confine-
ment is supplemented by a strong spatial confinement.
The latter has a profound effect on the energy structure,
carrier-carrier interactions, band mixing and spin-orbit
interactions,3 which, in turn, influence the g factor value.
As a matter of fact, it has been shown that quantum con-
finement in QDs leads to strongly anisotropic g factors for
both electrons and holes,11–13 as well as to a quenching
of the g factor value.14–16

Up to date, most theoretical studies investigating the
magnetic response of QDs rely on effective mass and k ·p
models. The standard inclusion of magnetic fields in
k · p Hamiltonians consists in replacing the canonical
momentum p by the kinetic momentum p − qA, sup-
plemented with the spin Zeeman term, in the differential
equation fulfilled by the envelope function (here q is the
carrier charge and A the potential vector defining the
magnetic field).17–19 This approximation, hereafter re-
ferred to as the Luttinger approximation, has been suc-
cessful in explaining several experimental observations in
heterostructures,3,20,21 it is implemented in the widely
employed semiconductor software package nextnano,22,23

and it is currently being used to determine the g fac-

tors of confined carriers.14,23,24 However, a number of
situations have been identified where it provides quali-
tatively incorrect predictions. For example, in quantum
rings under axial magnetic fields, the Luttinger approx-
imation predicts the optical gap to decrease with the
field strength,25 contrary to magneto-photoluminesence
observations.26 Similarly, in vertically coupled QDs, the
Luttinger approximation predicts that an axial magnetic
field can tune the hole tunneling rate,27 but this effect
is not observed in related experiments.28 The underly-
ing reason is that the Luttinger approximation includes
off-diagonal magnetic terms in the Hamiltonian, which
artificially enhance the heavy hole-light hole (HH-LH)
band mixing.25,28

In Ref. 29, an alternative formulation of the mag-
netic interaction was suggested, in which the replacement
of the canonical momentum by the kinetic one is car-
ried out prior to the envelope function approximation
(EFA). The resulting Hamiltonian has no off-diagonal
magnetic terms directly coupling HH and LH, and the
results become then consistent with the experimental
measurements.25,28

In the present work, we extend Ref. 29 theory in or-
der to account for the spin Zeeman term, and iden-
tify the coefficients that should accompany the mag-
netic terms in this approximation, which were pending
clarification.28 The remote band influence is considered
through the zero-field effective masses, which are known
to provide a meaningful description even in strongly con-
fined QDs30–33, and effective g-factors. We run calcula-
tions comparing this model with the Luttinger approxi-
mation and show that the magnitude of the Zeeman split-
ting we estimate is closer to experimental values for ver-
tically coupled InGaAs QDs. Thus, our theory offers im-
proved accuracy in current attempts to understand and
predict g factor values of holes in QDs.
The paper is organized as follows. In Section II, we

derive the multiband k·p-EFA Hamiltonian for holes in
the presence of a magnetic field. Starting from a gen-
eral formulation, the Hamiltonian is then particularized
to the case of QDs with axial symmetry. In Section III,
we use the obtained Hamiltonian to calculate the Zee-
man splitting of vertically coupled QD molecules. The
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results are compared with previous implementations of
the magnetic field and experimental data. Conclusions
are given in Section IV.

II. THEORY

A. The Hamiltonian

The classical Hamiltonian of a charged particle with
anisotropic mass response to external forces, subject to
the action of a magnetic field defined by a potential vector
A is:

H =
∑

i

π2
i

2mi
=
∑

i

(pi − q Ai)
2

2mi
, (1)

where q is the charge and mi, i = x, y, z the anisotropic
mass.

Elemental particles, in addition to charge, have spin. We
can introduce heuristically spin by making the formal
replacement π → σ ·π in the above equation and taking
into account the next two identities involving vectorial
operators:

(σ · a)(σ · b) = a · b+ iσ · (a × b) (2)

p×A+A× p = −i~∇×A = −i~B (3)

In the above equations a, b are vector operators, the
components of σ are the Pauli matrices and B represents
the magnetic field. This formal replacement turns the

kinetic energy T = (p−qA)2

2m into

TD =
(p− qA)2

2m
− q~

2m
σ ·B, (4)

as it should appear in the Dirac equation. If the mass is
anisotropic we should write instead:

TD =
1

2

(

∑

i

σiπi

mi

)





∑

j

σjπj

mj



 =

=
1

2
(σ · π)(σ · π) = 1

2
π2 +

i

2
σ · π × π

(5)

where πi =
πi√
mi

.

The σ · π × π term in (5) can be expanded as follows:

σ · π × π = σx
1

√
mymz

[πy , πz] + σy
1√

mxmz
[πz , πx]

+ σz
1

√
mxmy

[πx, πy ]

(6)

where [πi, πj ] = πiπj − πjπi.

We may define σ with components σi√
mj mk

, where i, j, k

represent a cyclic permutations of x, y, x. Then, we have:

σ · π × π = σ · (π × π). (7)

In the other hand, since π×π = (p− qA)× (p− qA) =
−q(p × A + A × p) = i q ~∇ × A = i q ~B we find out
that,

i

2
σ · π × π = −q~

2
σ ·B. (8)

From now on, we will restrict ourselves to the case of axial
symmetry, i.e., to the particular case B = B0 k, mx =
my = m⊥. Then, the above term turns into − q~

2m⊥

σz B0

and the complete Hamiltonian reads,

H =
∑

α=⊥,z

(pα − q Aα)
1

2mα
(pα − q Aα)

− q~

2m⊥
σz B0 = T − q~

2m⊥
σz B0

(9)

By employing the symmetric gauge A = B0

2 [−y, x, 0],
we see that Az = 0. Then, z component of the kinetic
energy is not affected, Tz = pz

1
2mz

pz , while in-plane

component is:

T⊥ = p⊥
1

2m⊥
p⊥+

q2A2
⊥

2m⊥
− qA⊥

2m⊥
· p⊥ − q

2
p⊥ · A⊥

m⊥
(10)

Since m⊥(ρ, z) then, p⊥(
1

m⊥

) = − i ~
ρ [x, y, 0] ∂

∂ρ(
1

m⊥

) and

p⊥ · A⊥

m⊥

Ψ = A⊥

m⊥

· p⊥ Ψ, so that the in-plane component
of the kinetic energy results,

T⊥ = p⊥
1

2m⊥
p⊥ +

q2A2
⊥

2m⊥
− q

m⊥
A⊥ · p⊥

= −~
2∇⊥

1

2m⊥
∇⊥ +

q2B2
0ρ

2

8m⊥
− q B0

2m⊥
(x p̂y − yp̂x)

(11)

and the complete Hamiltonian is in turn

H = −
∑

α=⊥,z

∇α
1

2mα
∇α+

q2B2
0ρ

2

8m⊥
− q B0

2m⊥
L̂z−

q B0

2m⊥
σz

(12)
This equation particularized to effective electrons (m >
0, q = −1) is,

He = −
∑

α=⊥,z

∇α
1

2mα
∇α+

B2
0ρ

2

8m⊥
+

B0

2m⊥
(L̂z+σz) (13)

What about holes (m = −|m| < 0, q = 1)? Holes are
tricky particles that require a careful tackle. We know
that in the case of a one-band model, electrons and holes
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energy dispersion are mirror image of each other. Then,
we should assume that,

Hh =
∑

α=⊥,z

∇α
1

2|mα|
∇α − B2

0ρ
2

8|m⊥|
− B0

2|m⊥|
(L̂z + σz)

(14)

B. Envelope and Bloch functions

In solid state physics the wave function |Ψ(r)〉 is

expressed as a sum of products |Ψ(r)〉 =∑N
i |JJz〉i|f〉i,

where |JJz〉 are the Bloch band-edge and |f〉 are the
envelope functions.2,18 Let us call H0 to the Hamil-
tonian, eq. (14), in absence of magnetic field and
H(B) to the second and third terms of this equation
describing the action of the external magnetic field.
The Luttinger-Kohn H0 matrix Hamiltonian operator17

acting on the envelope vector function can be obtained
by applying H0 onto |Ψ(r)〉. Then, left-multiplying by
the different Bloch functions 〈JJz|i and integrating over
the unit cell. Afterwards, the effect of remote bands is
incorporated by replacing the actual mass by effective
masses in the matrix elements of H0.

In the presence of magnetic field H0 must be supple-
mented by H(B) coming from H(B) and |Ψ(r)〉, through
a similar procedure. Since all terms in H(B) act as pure
multiplicative operators on the envelope function compo-
nents except for L̂z, we have that,29

H(B)|JJz〉|f〉 = |f〉H(B)|JJz〉 − |JJz〉
B0

2|m⊥|
L̂z|f〉 (15)

Axially symmetric systems have well defined z-
component Fz of the total angular momentum and, addi-
tionally, the components of the envelope function associ-
ated to the Bloch function |JJz〉 have also a well defined
M = (Fz − Jz) orbital angular momentum,35,36 so that

L̂z|f〉 = (Fz −Jz)|f〉. Then, we calculate the (J ′J ′
z, JJz)

matrix element of H(B) as follows:

〈J ′J ′
z|H(B) (|JM〉|f〉) =

〈J ′J ′
z|
(

H(B) − Fz − Jz
2|m⊥|

B0

)

|JJz〉 · |f〉 (16)

i.e.,

H
(B) = − B2

0ρ
2

8|m⊥|
I−Fz − Jz

2|m⊥|
B0 I− B0

2|m⊥|
(Lz + σz) (17)

Next, we incorporate de effect of the remote bands like in
electrons: the mass m⊥ arising in the two first terms of
H(B) is replaced by the effective mass parameter appear-
ing in the corresponding matrix elements of H0, while

the third term in H(B) becomes −κµBB0Jz. The proce-
dure yields the following non-zero matrix elements for the
6x6 valence Hamiltonian for zinc-blende crystals, which
includes heavy hole, light hole and split-off bands.

H
(B)
11 = −(γ1 + γ2)

[

B2
0ρ

2

8
+

B0

2
(Fz − 3/2)

]

−
3

2
κµBB0

H
(B)
22 = −(γ1 − γ2)

[

B2
0ρ

2

8
+

B0

2
(Fz − 1/2)

]

−
1

2
κµBB0

H
(B)
33 = −(γ1 − γ2)

[

B2
0ρ

2

8
+

B0

2
(Fz + 1/2)

]

+
1

2
κµBB0

H
(B)
44 = −(γ1 + γ2)

[

B2
0ρ

2

8
+

B0

2
(Fz + 3/2)

]

+
3

2
κµBB0

H
(B)
55 = −γ1

[

B2
0ρ

2

8
+

B0

2
(Fz − 1/2)

]

−
1

2
κ′µBB0

H
(B)
66 = −γ1

[

B2
0ρ

2

8
+

B0

2
(Fz + 1/2)

]

+
1

2
κ′µBB0 (18)

where µB = |q|/2m is the Bohr magneton, while κ and κ′

are effective g factors for holes which become 4/3 and 2/3
respectively if we remove the contribution of the remote
bands.
Note that the magnetic terms in Eq. (18) differ from

those of the Luttinger approximation (see Table 3 in
Ref. 29). In particular, there are no off-diagonal mag-
netic terms mixing HH and LH subbands. They also
differ from our previous proposal29 in two aspects: (i)
the spin degree of freedom is now included, and (ii) the
remote bands contribution to the linear-in-B term com-
ing from the Bloch function (third term in Eq. (17)) is
now included through hole g factors (κ, κ′).

III. ILLUSTRATIVE CALCULATIONS

In this section we implement the magnetic terms de-
scribed above in a 4-band k·p Hamiltonian coupling HH
and LH states. Hereafter we refer to this asHκ. For com-
parison, we also implement the magnetic terms following
the Luttinger approximation, Hlutt (Table 3 of Ref. 29
but adding diagonal spin terms, −κµBB0Jz), and our
previous proposal Hmass (four-band Hamiltonian taken
from Ref. 37).
To test the performance of the different Hamiltonians,

we compare with available experimental data for an In-
GaAs/GaAs QD molecule subject to a longitudinal mag-
netic field.28 The Hamiltonian is solved numerically for
a structure formed by two vertically stacked cylindrical
QDs. The QDs have radius R = 15 nm and height H = 2
nm, with an interdot barrier of thickness S = 2.8 nm.
InGaAs Luttinger parameters are used for the masses,
(γ1 = 11.01, γ2 = 4.18, and γ3 = 4.84),38 and a valence
band offset of 0.2 eV is taken at the interfaces. In bulk,
the κ constant takes a value of 7.68 (for pure InAs).39

However, quantum confinement severely quenches this
value. In QDs, one can safely disregard the contribu-
tion from remote bands, and simply consider that com-
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ing from the HH-LH subband coupling.24 Therefore, we
take κ = 4/3.
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FIG. 1: Magnetic field dispersion of the highest hole states
in a QD molecule calculated with different implementations
of the magnetic terms. (a): Hlutt, (b): Hmass, (c): Hκ.
Solid and dashed lines are used for the bonding and anti-
bonding hole states. The arrow in (a) indicates the bonding-
antibonding ground state reversal.

Figure 1 shows the energy of the highest valence band
states. These are the |Fz| = 3/2 hole states with bond-
ing (solid lines) and antibonding (dashed lines) molec-
ular character.40 Panels (a), (b) and (c) correspond to
estimates obtained with Hlutt, Hmass, and Hκ, respec-
tively. One can see there are conspicuous differences in
the energy spectra. For example, both Hlutt and Hmass

predict that for the ground state, the B-linear term dom-
inates over the B-quadratic (diamagnetic) one, so that
its energy increases with the field. This would imply a
decrease of the excitonic gap, in sharp contrast with pho-
toluminescence experiments of InGaAs QDs, where the
gap increases quadratically, indicating that the diamag-
netic term is dominant. This is precisely the situation
predicted by Hκ, Fig. 1(c).
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FIG. 2: Bonding-antibonding energy splitting as a function of
the magnetic field. Dashed line: Hlutt. Dashed-dotted line:
Hmass. Solid line: Hκ.

Further insight is obtained by comparing energy dif-
ferences within each spectrum. We first compare the
energy splitting between the bonding and antibonding

states, ∆bab as a function of the magnetic field. Fig. 2
shows ∆bab calculated with the three Hamiltonians. Hlutt

(dashed line) predicts that the energy splitting decreases
with B0, becomes zero at B0 = 5.3 T and negative after-
wards, which means that the ground state has changed
from bonding to antibonding character. This ground
state crossing is indicated by a green arrow in Fig. 1(a).
The modulation of ∆bab with longitudinal magnetic fields
is a consequence of the off-diagonal magnetic terms in
Hlutt.

27 However, no such behavior is found in exper-
iments, where ∆bab remains roughly constant with the
field. This is shown by the symbols in Fig. 2, which rep-
resent experimental data taken from Ref. 28. Clearly,
both Hmass (dashed-dotted line) and Hκ (solid line) suc-
ceed in reproducing the approximately constant value of
∆bab.
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FIG. 3: Zeeman splitting as a function of the magnetic field.
Dashed line: Hlutt. Dashed-dotted line: Hmass. Solid line:
Hκ.

In order to discriminate between Hmass and Hκ, in
Figure 3 we compare the Zeeman splitting of the ground,
∆z, calculated with all three Hamiltonians and the ex-
perimental values, represented by symbols. It can be seen
that Hmass (dashed-dotted line) vastly overestimates the
Zeeman splitting, while Hκ (solid line) offers the closest
description. It is worth noting that the experimental val-
ues of ∆z are even smaller than those predicted by Hκ.
The inclusion of strain and piezoelectric effects may be
relevant for a quantitatively improved description.24,42

Last, we compare the envelope angular momentum ad-
mixture obtained with the different Hamiltonians. In a
four-band model, the hole states of cylindrical QDs are
four-component spinors of the form:

|Fz , n〉 =
∑

Jz=−3/2,3/2

|fM 〉 |3
2
Jz〉. (19)

where n is the main quantum number and M = Fz − Jz
is the envelope azimuthal angular momentum of a given
component. We calculate the expectation value of the
ground state envelope angular momentum at different
fields and plot the results in Figure 4. At zero field
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FIG. 4: Envelope angular momentum expectation value of
the ground state as a function of the magnetic field. Dashed
line: Hlutt. Dashed-dotted line: Hmass. Solid line: Hκ.

〈M〉 = 0.02, indicating that the ground state largest com-
ponent is by far the HH (|Jz | = 3/2) with M = 0, with
a small admixture with finite M components. When the
magnetic field is switched on, Hlutt predicts a faster in-
crease of 〈M〉 than Hmass orHκ (the bump at B0 = 5.4T
is due to the bonding-antibonding reversal). Since the de-
gree of envelope angular momentum admixture is critical
in determining the effective g factor of holes,24 and we
have shown that only Hκ provides a consistent descrip-
tion of the magnetic response, Fig. 4 implies that the
widely used Luttinger approximation is likely to overes-
timate the g factor values in confined systems.

IV. SUMMARY

We have derived a multiband k·p Hamiltonian for va-
lence holes confined in heterostructures subject to an ex-

ternal magnetic field. The magnetic field has been imple-
mented incorporating the minimal coupling p → p− qA
prior to introduce the EFA. The inclusion of the remote
bands has been considered through effective masses for
the envelope function terms and effective g factors for
the magnetic terms originating in the (unit cell) Bloch
functions. For QDs, owing to the strong confinement,
the latter have been replaced by the bare hole values,
disregarding the influence of remote bands.

The resulting Hamiltonian has been compared with
the widely employed Luttinger approximation and our
previous proposal. When tested against experimental
data for InGaAs QDs under axial magnetic fields, the
Hamiltonian presented in this work clearly outperforms
the others. In particular, it succeeds in simultaneously
describing the increase of the excitonic gap with the field,
the constant splitting between bonding and antibonding
states and the small Zeeman splitting observed in photo-
luminescence experiments, with no fitting parameters.

The Hamiltonian we have formulated is expected to
improve current attempts to estimate the g factors of
holes confined in QDs for spintronic, quantum informa-
tion and optical applications.
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