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Predictive Power Control for PV plants with Energy
Storage

Emilio Pérez, Hector BeltrariMlember, IEEENéstor AparicioMember, IEEE
and Pedro Rodrigue&enior Member, IEEE

SPECIAL ISSUE ON “APPLICATIONS OF SOLAR ENERGY TO POWEREMST

Abstract—This work presents a model predictive control dispersion of PV systems across regions to reduce clouds’
(MPC) approach to manage in real-time the energy generated effect [7], or the integration of energy storage (ES) system
by a grid-tied photovoltaic (PV) power plant with energy staage with RES [8]-[12]. The latter empowers RES with extended

(ES), optimizing its economic revenue. This MPC approach . - .
stands out because, when a long enough prediction horizon is capabilities such as production shifting [13], peak shgon

used, the saturation of the ES system (ESS) can be advancedhe possibility to provide ancillary services [14]. Theree a
by means of a prediction model of the PV panels production. nowadays several ES technologies available in the marigt [1
Therefore, the PV+ES power plant can modify its production ® [15]. All of them still expensive for PV applications though
as to manage the power deviations with regard to that commitd Therefore, an accurate ES sizing calculation and an opgitniz

in the daily and intraday electricity markets, with the objective
of reducing economic penalties. The initial power commitmet control strategy for the PV+ES power plant turn to be key

is supposed in this work to be given by a higher level energy issues for the future economic viability of these hybridnta
management operator. By a proper definition of its objective Thus, different proposals have been recently publishedive d

function, the predictive control allows to economically ofimize PV power plants with ES [9], [16]-[20]. However, most of
the PV+ES power plant performance. This control strategy is yham are focused on isolated grids and microgrids or rely on

tested in simulations with actual data measured for differat basi trol h hich . fal ES ¢
days with varying meteorological conditions. Results proide a PaSIC CONlrol approaches which require ot a large system

good reference on the economic benefits which can be obtained(ESS).
thanks to the MPC introduction. This paper presents an advanced control approach designed

Index Terms—Energy storage, photovoltaic systems, predictive to manage In real-tlme.the power production of a g”d't'.ed
control. PV+ES power plant with a reduced ESS capacity which
participates in the electricity market. The main contribat
of this control proposal lies on the fact that it can antitgpa
future saturations of the ESS (likely to occur with reduced

LOBAL warming and climate change are nowadaygating) and, therefore, modify the response of the hybrid

understood to be a serious problem for the planet whiglower plant so as to minimize the economic penalties due
have much to do with electric power generation [1]. Thu$p the power production deviations referred to the power
environmental together with geopolitical concerns are mgnocommitted in the electricity pool. This control approach is
the main reasons for the huge increase experienced woedwieisted through simulation with actual data for various days
in the use of renewable energy sources (RES) during the lagth varying meteorological conditions and predictionghwi
decade [2], [3], with wind and solar power standing out idifferent degrees of accuracy.
particular. The paper starts by describing the problem of integrating PV

Solar photovoltaic (PV) power is one of the fastest-growinglants into the electricity market and with a proposal tavsal
technologies in the RES domain. This is partially due to tHeking advantage of an advanced control methodology. @ecti
support policies received in many countries in the form dfl overviews some of the most important electricity magket
premiums and feed-in tariffs. This trend will pose in brief gonfigurations worldwide. After that, Section IV presents
problem for the balance and stability of the power system the control methodology with its mathematical formulation
some countries [4] as a consequence of the variability of tection V is devoted to the discussion of the results obthine
solar irradiation [5], [6]. This intermittent charactettierefore when this control approach is applied. The differences in
a clear drawback for this technology which, although beirigge power plant performances and the economic improvement
statistically predicted in an averaged mode, is stochastite achieved are analyzed. Finally, some conclusion remarks ar
short-term. Different solutions are already being implated discussed in Section VI.
to mitigate this intermittency. These consider the geolgicg

|. INTRODUCTION

Il. PROBLEM DESCRIPTION

PlTlh’i‘szc\;\acgklzvas supported in part by the Universitat Jaume lear@rant As just introduced, the work presented here focuses on
E. Pérez, H. Beltran and N. Aparicio are with the Area of Hleal d€fining a control strategy to manage the generation of a grid

Engineering, Universitat Jaume |, 12071 Castello de la®I&pain (e-mail: tied PV power plant which takes part in the electricity marke
pereze@uijies). _ o ~ Therefore, the plant must regularly commit a constant-by-
P. Rodriguez is with the Electrical Engineering Departmebni- h ducti ith h bef h I-ti
versitat Politecnica de Catalunya, 08222, Terrassa, nSpgeimail: pro- NOUrs power production with some hours before the real-time

driguez@ee.upc.edu). delivery instant.
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Given the non-controllable and stochastic nature of tharsol £7€” gy¢ ¢ SOC
resource, and hence that of its corresponding PV power pro-P"ces p: p p
duction, a natural solution is the use of an ESS which allows MPC ES ES grid

accumulating the surplus energy in those periods in whic?)* > ESS !

solar production is higher than the plant power commitment ¢/ Weather
and delivering it back in the opposite situation. f y
Although most of the work in the existing literature re- Py orecas

garding the operation of PV+ES systems focuses on iso-

lated networks, several approaches [9], [12], [16], [18} alig. 1. Model Predictive Control scheme.

already devoted to grid-connected systems. Each of those

proposals pursues different control objectives (mainlgkpe

shaving). To the authors’ knowledge, the field of grid-tiethe operation of the power plant so as to optimally reduce
market participant PV+ES power plants is still emergingconomic penalties.

However, some contributions have been made for combinedlhe application of MPC has already been treated in the
wind-storage systems in the electricity market which coufPntext of RES. In [23] and [24], authors proposed an electri
be extended to other non-programmable RES such as PVERErgy system integrating various RES (combining PV and
[21], the authors use an optimization scheme similar to tiee owind installations) and used the MPC to optimize an eco-
proposed here, although solved by dynamic programming.@mic objective function with the possibility to includesal
[22], an iterative methodology, based on technical or mtarkénvironmental costs. Those proposals differ substayfiadm
based criteria, is proposed_ A|th0ugh related to our pramjg the one presented here, since the goal in those cases is to use
some extent, those works still have a crucial differencey ththe RES to respond quickly to sudden increases in the power
focus mainly on the day-ahead scheduling stage, and not®stem demand, avoiding the use of high-price coal plants.
the real-time operation. For this stage, all those workseshal his implies that the energy from the RES is not fully profited

a common strategy, i.e. they define a power reference to gfhtrary to the goal of the present work. Furthermore, there
p|ant, Prefa and compute the power exchange with the ES§, no ES introduction and the PV power prediction is done in

Pgs, according to the following equation: a period too short to be used with market participation goals
A more similar approach to the one proposed in this work
Pgs(t) = Preg(t) — Ppy () (1) is found in [25], where the authors propose an analogous

WherePPV is the actual PV pane|s production_ If the Comtormulation applled to a wind farm with ES. However, the
puted Ps(t) exceeds the admissible power or if it producegontrol target in that work is not to enable the system to
the ESS saturation, it is reduced to an adequate value. ~ Participate in the electricity market, but to smooth the avin
The described strategy is valid for the control objectivegoduction. Furthermore, the stochastic nature of wind grow
defined on those works, but for the problem considered in tHigoduction only allows forecasting a few steps ahead, which
paper, it brings some difficulties. This is so because thegpows not compatible with market participation. In this sense,
plants attending the electricity market must provide a powghe different electricity market designs highly influende t
commitment in advance, when the actual PV production durifigoblem presented here. That is the reason for the market
the power plant operation is still not known with precision@nalysis introduced in the following.
Thus, it can only be approximated with a certain degree of
accuracy. In this context, when the delivery time arrivés, i lIl. M ARKET PARTICIPATION
might happen that, even with the presence of the ESS, thdn order to properly test the PV+ES operation improvement
committed power cannot be achieved because of the E&Hhieved with this new control approach, it is important
saturation. This fact forces the PV+ES plant to feed diyectto know the electricity market structure and its scheduling
to the grid the power generated in the PV panels, incurring aonfiguration. These mainly depend on the different coastri
economic penalty. Therefore, with the basic strategy desdr and their corresponding regulations. In this sense, cmtr
in (1), this event occurs at a non-controlled moment, whao cwith restructured electricity industries usually haveward
be very detrimental from the economic point of view (becausearkets where, depending on the market design, electigity
of the energy cost during that period of time). traded either centralized on a power exchange or bilagerall
In this paper, a different strategy based on the Moddirectly. Electricity is traded in intervals (hereinaftexferred
Predictive Control (MPC) philosophy is proposed to contrab as settlement periods) that may be one hour long or less.
these systems. This proposal substitutes the basic approsi@rket participants can modify their bids and offers for any
in (1) and compute®xs(t) not only considering thé,..;(t) settlement period before the gate closure. After that pibist
andPpy (t) at that given moment, but also taking into accounto longer possible to change the energy committed for certai
what are the future referenceB,.;(t + k), the predicted PV coming settlement periods. Each settlement period iseskttl
power productioanv(t+k), and the future energy prices inindependently of the periods around it. Some regions run
the electricity market, Fig. 1. As this MPC-based strateg)y continuous markets with gate closures some minutes before
performed in real-time, it can use much more accurate shoattual delivery (5 min in Australia, 60 min in the United
term PV power predictions. This characteristic enables tiéngdom and in some U.S. markets). On the contrary, other
control system to detect ESS saturation in advance and ynodiégions have daily markets (especially suited for the unit
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commitment of thermal generators) that close in the day@dhecan be used by the controller, allowing a performance im-
of the energy delivery. provement.

During real-time, i.e. after gate closure, generators pro-On the contrary, the main drawbacks of MPC are the need
duction may differ from the one committed in the markefor an accurate prediction model of the controlled outputs
and also demand may change. Thus, system operators naumst the computational effort required to solve a constdaine
continuously balance the sum of all individual imbalancesptimization problem, which can be too consuming for fast
(system net imbalance) through balancing mechanisms. Tgrecess applications.
cost of the regulating energy required by the balancing
mechanisms is usually assigned to those market partisipagt problem formulation
who are responsible for the net imbalance. This mechanis
mainly affects intermittent energy sources due to theiereht
unpredictability.

Therefore, market design has a clear influence in the im- - . . -

. . orizon N, while the problem constraints are satisfied.
balance settlement of intermittent energy sources suchvas . . ) .
. o . o Unlike for the case of the basic subtraction strategy (1), if
In this way, this will vary depending on the possibilities to

reschedule production with updated forecasts, the prisesy predictive control is applled_ o the sys_tem, th_e predictn
S the future solar production is updated in real-time. Thamef
or whether RES are fully charged for their imbalances. L .
. : . . limitations to track future power commitments can be detgct
Among the different market configurations, the Spanis o . .
; . In_advance, making it possible to shift the power reference
market has been selected for the simulations performed.in

. ) . racking failur her moments when nomi nalti
this work. It has some particular characteristics such ast gc g failure to other moments when economic penalties

special intraday market (which permits to reschedule wifh lower.

. . . Similarly, if the solar production is higher than expected
updated production forecasts in the next hours) that idstéa and this fact is detected in advance by the MPC system, the

being continuous is divided into six sessions. On each afethe rgy exceeding the plant production commitment can be fed

; X . n
sessions, the power exchange of the daily market is repeat% he grid during those periods when the energy market price

for the settlement periods still to come in the delivery day. , .
S higher.

In addition, the Spanish market has a two-price system "\ accordance with the previous considerations and the MPC

the imbalances settlement. The imbalance price is the mar+<e . I . L
. . ormulation, the objective function to be maximized can be
price for producers that do not contribute to the system net

Mrhe problem described in Section Il can be approached by
means of an MPC strategy. The main idea is to maximize a
raiven economic objective functiod,, defined within a future

imbalance and a penalty for those that do contribute. Mc:afeovertten as.
since 2007, all generators (including RES) are fully chdrge N
even if they do not participate in the electricity markee.(i. Jy = ZA(k)c(t + k)T (Pyria(t + k) — Prep(t + k)) @)
receive feed-in tariffs). k=0

+ Csoc(t + N+ 1)Egs(t+ N +1)
IV. MODEL PREDICTIVE CONTROL APPLIED TOPV

PLANTS WITH ENERGY STORAGE SYSTEM )
o e P.s(t+ k) is the future constant-by-hours power pro-
A. Model Predictive Control duction committed by the PV plant.
Model Predictive Control (MPC) is a controller design « P,,,(t+Fk) is the power fed to the grid at instafit+ k),

where:

technique based on the following strategy [26]: that is Pyriq(t + k) = Ppv (t + k) + Prs(t + k), being
1) The future outputs for a given horizaN, called the Ppy (t + k) the panel production an®gs(t + k) the
prediction horizon, are predicted at each instansing power exchanged with the ESS.

the process model. These predicted outpyfts+ k|t) o Epg(t+N+1)is the energy stored in the ESS at instant
depend on the known values of past inputs and outputs (¢t + N + 1).
and on the future control signalgt + k|t). o c(t+ k) is the imbalance cost at instafit+ k).
2) These control signals are calculated by optimizing as csc(t + N + 1) is the value of the energy stored in the
determined criterion dependent on the predicted future ESS at instan{t + N + 1).
trajectory and control signals. « A(k) is a weighting sequence.
3) Although a complete sequence o&f future control o T is the sampling period of the MPC.
signals is computed, only(t|t) is effectively sent to Note that the energy stored in the ESS at any future instant
the process, because at the next sampling instant a neWws (¢ + k) can be calculated as:
outputy(¢ + 1) is known. This is known as receding
horizon. Eps(t+k)=FEps(t+k—1)—TPrs(t+k—1) (3)
MPC presents a series of advantages over other conffble objective function (2) consists of two terms: a weighted
methods [26], [27]: multivariable cases can be systemliticasummation of the cost of the future power deviations reterre
designed by assigning a different relative importance theato the plant commitments in the prediction horizon and a term
input and output, allowing an intuitive tuning of the cones;  which values the energy stored in the ESS after that horizon.
constraints can automatically be taken into account anénwh The first term aims to value the economic revenues obtained
future references or disturbances are known, this infdomat from the power fed to the grid in the prediction horizon. As
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described in Section I, in the Spanish electricity martkes received).

system operator settles imbalances by means of a two-price

system. Therefore, the imbalance cost at any given instast m Jgfpt = max Jy (5)
adopt different values depending on the imbalance sign: subject fork = 0... N to:

ot 4 ) = {c,,(t £8) 0 Porialt 1) 2 Preg(t+8) Pyria(t+k) = Ppy(t + k) + Pps(t + k)
en(t + k) if Pyria(t +k) < Prep(t+ k) Eps(t+k+1)=Egs(t+k) —TPgs(t+k)
wherec, andc,, are the constant-by-hours positive and nega- Ppsmin < Pes(t + k) < Pes max (6)
tive imbalance costs, respectively. Egsmin < Eps(t + k) < Egsmax
The different summands in this term are adjusted by means
of a weighting sequence defined agk) = o~ *, with « Note that all variables included in the constraints of the

taking a value between 0 and 1. The introduction of suchsgstem and in the objective function are known in advance,
sequence is useful because otherwise the optimizatiord Coékcept for the future solar productio®py (t + k), and the
present mUltlple solutions with the same maximum, due to tlﬂﬂure imbalance and energy COS{I§, ¢, andcgoe. Therefore,
constant-by-hours nature of the costs. The proposed we@@htmodels to predict each of them are needed. Discussion on
sequence, which increases withgives more relevance to thethese models will be performed in following subsections.
economic benefits obtained in instants of time further from t

current moment than to those obtained in closer instants. Th

reason for this is that, as will be discussed in Section IV-D L
the prediction of the solar production is more accurateras ti C. Optimization problem

goes by, and therefore,_it is more convenient to save up gnergrpeo application of the proposed MPC involves solving, at
for future moments which keep the same |m_balance c_:osts.every sampling instant, the constrained optimization fewb

_ Regardmg the_second te_rm_ of_ the_objectlve funct|or! (2@5) in order to compute the power to be exchanged with
it is introduced in the optimization in order to take iniqhe ESS. This is the most demanding operation in terms of
account that the remaining energy in the ESS after the dontggmpytational cost for any predictive controller and the on

horizon still presents a value. Otherwise, the optimizatiqnat can prevent the use of this technique for applicaticitis w
would always tend to empty the ESS, which obviously is ngg,, sampling periods.

always the optimal strategy. However, it is not straightiard This computational cost mainly depends on the size and

to determlnde_ﬁtms tene_rgy vgluewa(_t +N Jtrhl)’f ats th(_eret kitnd of problem, determined by the objective function and
are many diterent prices depending on he 1uture Nstagly ¢qngiraints. In this case, the size of the problem under
of time in which this amount of energy would be sold,

Furth it is also difficult to decide whether thi consideration is determined by the control horizoh,On the
urthermore, 1t 1S aiso difficult to decide whetner this gyer o hand, the system constraints are linear, being thelesn

should be_valued at a positive or negative m_wbglance PNG&nd of constraints, but the objective function is neitheer
as future imbalance signs are unknown a priori. If posmvE

imbal . tak h timizati i | or quadratic, making the problem difficult to solve in its
Imbalance prices are taken, the optimization will gengra traightforward form. This is due to the fact that the imbak

tepd to discharge the I.ESS' Conversely, if negatlve |mbalar_1ccost (4) is a piecewise function, which depends on the sign of
prices are chosen, it will be more conservative. Note th#t Wi o power deviation
the latter, the optimization might even decide to produce a L ' . . .

One possibility to solve this problem is to formulate it as a

negative imbalance during the optimization horizon in ord brid : troduc bi iable t it th
to avoid a potentially more expensive imbalance after it. A yond system, introducing a binary variable to cope wi

this is not a desirable behavior, the energy stored is vatied plecewise objective function. This kind of problems hasrbee

positive imbalance price, i.@so(f+ N +1) = cp(t+ N +1). an active research topic in the field of predictive contrahia

Apart from the objective function, it is also necessary geent years [28]. However, for a general case, they require

define some constraints on the power to be fed to the grid?ﬂlve a mlxe_d Integer I|r_1e_a}r program (M”‘P) which would
future instants: be computationally prohibitive for the size of the proposed

roblem.
o For an efficient performance of the ESS, its state gf . .
. Therefore, an alternative approach, based on transforming
charge (SOC) must be kept between a minimum and,a .~ o ) . _
the objective function into a linear one, is proposed. Thinma

maximum level:Egs min and Egs maz- . . . . .
e e dea is to substitute the variabl,.;;(¢t + k) by two different
» The power exch_anggd by_the_ system with the ESS ,(i)nnes,P,,(tJrk) andP, (t+k), which replaceP,,, for the cases
both possible directions) is limited by the converter’s

rated power Capacity’ss mas = —Prs.min. When this is higher or lower thaR,.(t + k), respectively:

The proposed predictive controller can be obtained by . {Pp it Pyyia > Pro

solving the optimization problem (5), which includes the P, )
P, if Pyria < Prey

g
previous constraints to be satisfied in all the future instan
together with a receding horizon strategy (applying onlg th
first power exchange with the ES®gs(t), and solving a  In order to avoid this piecewise representation, the same

new optimization problem every time new measured data arquation can be written as a a linear expression with the
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appropriate constraints:

Pyrialt +k) = Py(t + k) + Po(t + k) — Prep(t + k) (7)
Py(t+k)> Pres(t+k) (8)
Pyt +Fk) < Prep(t + k) )

(Po(t+ k) — Prep(t+k)) - (Po(t+ k) — Preg(t+k)) =0
(10)

where (10) is introduced to force that eith®(t + k) =
Pres(t+ k) or P,(t+ k) = Pres(t + k) and, therefore, from
(7) Pyria(t+ k) = P,(t+ k) of Pyria(t+k) = Py(t+ k), re-
spectively. This transformation allows to rewrite the aibjee
function as a linear one:

JN—ZQ

k=0

[ep(t + k) (Py(t + k) — Pres(t +k))
(11)
+en(t+k) (Pu(t+ k) — Preg(t + k)]

+ Csoc(t+ N+ 1)Egs(t+ N+ 1)

With this new formulation, the optimization problem (5) carRh

be rewritten as:
JP" = max Jy = max Jy (12)
subject fork =0... N to:
Eps(t+k+1)=Eps(t+k)—TPps(t+k)
Pgsmin < Pps(t+k) < Pes mas
Egsmin < Egs(t+k) < Egs mas
P,(t+k)+ Po(t +k)— Pres(t + k)
= Ppy(t+ k) + Pes(t + k)
Py(t +k) > Pres(t + k)
Py(t+ k) < Pres(t + k)
( (t+k) 7ef(ﬁ+k3)) ( rt(t+k)

(13)

Brep(t+k)) =

At this point, the original problem with a non-linear objeet

function and linear constraints has been transformed into
equivalent problem with a linear objective function, sever

linear constraints and a single non-linear constraint).(IBis

where C' contains all the terms iy, which do not depend
on the decision variables?, (¢t + k) and P, (¢t + k).

Now note thate, (t+k) > ¢, (t+k) at any moment because
of the nature of the electricity markets, as it has been disaa
in Section Ill. Indeedg,,(t+ k) is the price at which a market
participant has to buy energy to the system if it is not able
to supply all the energy committed, and therefore it is paid a
a price higher than the market one,(t + k)). Conversely,
cp(t+ k) is the price at which the extra energy exceeding the
commitment has to be sold to the market, which is therefore
lower than the market one. Consequently, for the same instan
(t+k):

n(t+k)>em(t+k)>cp(t+k) (15)

From (14) and (15) it can be deduced that, whenever it
is possible, it is more beneficial to increagg(t + k) than
P,(t + k). Now, observe that, apart from constraints (8), (9)
and (10), both variables appear always as a summation. This
means that, when regarding the charging and discharging of
e ESS, it is the same to increase one or the other. Obviously

s P, produces a higher increase in the objective function,
where possible, the optimizer will leav@, at its minimum,

P, = P,.s. On the other hand, if it is not possible to satisfy all
the constraints, the optimizer will leav@, at its maximum,
P, = P,..y, and will start increasing’,.

This means that, by the same nature of the problem,
constraint (10) is implicitly satisfied when the rest of con-
straints are met, thus it is redundant. Therefore, it can be
eliminated from the formulation of the problem. Note thasth
mathematical fact has a physical interpretation. If, fer same
instant of time(t + k), both P,(¢t + k) and P,(t + k) were
different thanP,.;(¢t + k), there would be simultaneously a
positive and a negative imbalance.

After dropping constraint (10) from (12), the optimization
problem to be solved by the predictive controller can be fjnal
defined as a linear program (LP), which is easily solvablé wit
é'j‘tandard optimization tools.

new problem may not be simpler than the original one in@. Solar production prediction

general case. However, it is interesting to consider now the
particular problem under study. To do so, let us first catﬁula
Egs(t+N+1) by recursive application of (3) and substitution

of (13):
N
Egs(t+ N+1)= FEgs(t TZPES (t+ k)
k=0
= Eps(t TZ (t+ k) + Pu(t + k)
k=0
— Pros(t + k) — Ppy(t + k)

Substituting on (11) and grouping terms:

JN—ZT

k=0
+ (ofk

p(t+ k) = Cooc(t + N + 1)) Pp(t + k)

en(t + k) = Cooe(t + N+ 1)) Po(t + k)] + C

(14)

In order to define a propeﬁpv model which assures
an optimal problem resolution, standard irradiation carve
provided by official databases such as the PVGIS [29] are
used. These are continuously adjusted by the actual PV
production measured till the moment of calculation. Given
that PVGIS data are statistically-averaged during thes/ead
provide monthly-averaged irradiation profiles, these havse
adjusted every day to adapt them to the actual meteorologica
conditions and, thus, generate a realistie,, model for that
day. Here is proposed an adjustment based on the real-time
calculation of the PV energy produced by the panels through-
out the day until a given instant of timéEpy (¢)) and on

its comparison with the ideal enerd¥'ry¢rs(t), according

to the PVGIS model for real sky conditionsvhich should

be expected at any moment [30]. The quotient among these
two energy values provides an instantaneous daily weather-
dependent coefficient which varies throughout the daytime.
This parameter has been called Cloudiness Coeffici@nt)(
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efficiency of the weather forecast techniques are beyond the
scope of this paper.

8 10 12 ime of gy 16 18 20 E. Imbalance settlement prices

Finally, the last inputs necessary for the MPC implemen-
tation are the estimation of the imbalance settlement grice
Liberalized electricity markets have an effective pubtifor-
mation policy for both market participants and the general
public in order to ensure the transparency of the system op-
CC(t) = M erator’s actions and, therefore, the electricity pricespurblic

Epvars(t) and easy to find out. That is the case of the Spanish market,

As the day goes orC(t) gets more stable and closer to th&€Xplained in Section I, which uses a two-price system for
value that it will take at the end of the day. Combining thighbalance settlements. The Spanish system operator gvid
fact with the well-known profile of the production accordingelévant information about market results, including pur
to PVGIS, which exactly define&py ¢rs(t), the prediction Prices of daily and intraday markets, and positive and regat
model is capable to progressively estimatey (¢ + k) more imbalance settlements [34]. As starting estimation, irabeé

Fig. 3. Solar irradiation on the panels and predictions.nSutay.

and is defined as:

accurately according to the following equation: costs (4) are considered for the design of the controller as
R the yearly-averaged price for each settlement period, show
Ppy(t+k) =CC(t) - Ppvers(t +k) in Fig. 4 for year 2010. However, market participants with

Fig. 2 shows the proposed PV power prediction for a cloud proved information of electricity prices and data praiieg
ould employ different estimation models that could take

day at two different instants of time,1 h and 15 h. Both | ; ¢ particular ci i h nal
predictions given by the proposed model are quite accur [0 account particuiar clrcumstances such as seaso sire
ahglldays, and other kind of singular events.

On the other hand, Fig. 3 shows the PV power prediction at t
same instants of time for a sunny day with some clouds during
dawn. In this case, the prediction &t h is quite far under V. RESULTS
the actual PV production. However, the predictioni ath, is The proposed MPC strategy has been tested by simulation
much more accurate because as it is later in the daytifig, using actual irradiation data measured with a samplingogeri
is more precise. T = 4 min in a PV installation located in Seville (Spain). The
It is important to notice that, because of the nature of theminal power of both the PV power plant and the ESS power
problem and the proposed controller, it is not necessary ¢onverter is 500 kW and the considered ESS has an energy
have a very accurate pointwise-in-time prediction of the P¥apacity of only 0.8 MWh, which is likely to saturate.
production, but rather an estimation of the energy giverhigyt The MPC tuning parameters are given in Table |, and the
PV panels in a period of time, i.e. the area under the powe¥ production is predicted bypy as described in Section
curves. Therefore, the proposed prediction model is usefullV-D. Three case studies are proposed: one in which the PV
Note also that more complex weather forecasting systemp®wer production is overestimated in the moment that power
such as satellite images [31] or Doppler radar systems [32hmmitments are settled, other in which this production is
[33], could be incorporated to the proposed MPC philosophynderestimated, and a third one with an accurate estimation
as long as they can provide a numerical PV productidn each of them, the MPC strategy is compared with the basic
prediction at every sampling time. However, the analysid asubstraction strategy (1) in terms of obtained revenuegesé&h
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TABLE |
MPC TUNING PARAMETERS.
N T )\(k) Cp cn
60 4 min 0.999% as in Fig. 4| as in Fig. 4
Csoc (t) PES min PES,max EES min EES max
cp(t) -500 kW 500 kW 0 0.8 MWh

1000

‘
S0C (%)
N (52
U"\ o
é

Power (kW)
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Fig. 6. Underestimation of PV production case study.

! ——
%40’ . | energy in the ESS in order to track the reference during the
g e e e latest hours of the intraday market session, when the imbala
& 29 = = I 0 »  penalties are higher. That is, the MPC allows the system to
e of day reduce its power production during the first hours in order to
Fig. 5. Overestimation of PV production case study. charge the ESS. Moreover, it can be observed how the ESS

finishes the session completely discharged (as in the basic
strategy). Note that this is indeed the optimal behavior, as
are calculated considering the imbalance costs (4) and fmver commitments afte20 h were settled t® because of

energy Cost,,.(t) = ¢,(t), as discussed previously. the PVGIS prediction, and therefore any surplus of energy
would have to be sold at a (much lower) positive imbalance

feim price.
R= ; T (e(t) (Pgria(t) — Pref(t))) (16) If economic revenues are calculated following (16) for both

+ Tewe(toim + 1) Ens(tom + 1) strategies, MPC’s is found to Be4% higher, because tracking
soe\tsum BStsim failure is shifted to less expensive periods.

wheret,;,, is the final simulation instant. Simulation for the 5-hour period lasted a total time of
All simulations are implemented in MATLAB in an Intel 251.6 s in the aforementioned hardware, with an average

Pentium D CPU 2.66GHz with 1 GB of RAM. The LPs areand a maximum computation time for the optimizations of,

solved by the Double Description algorithm [35], by meankespectively3.26 s and3.45 s. The MPC strategy wittV = 60

of the MATLAB interface to the CDD software package [36]and with higher horizons) is therefore fast enough to be

provided by the MPT Toolbox [37]. implemented with the proposed sampling periodiahin.

A. Overestimation of PV production B. Underestimation of PV production

As a first case study, the period of time corresponding to In the second case study, we analyze the opposite situation.
sixth session of the intraday market has been considerélddor That is, during the sunny day whose PV production is shown in
cloudy day which PV production is shown in Fig. 2. For thafFig. 3, the energy management system underestimates the PV
day, the energy management strategy implemented to defimeduction as shows the PVGIS model curve. The working
the power commitments of the PV+ES plant overestimates theriod corresponds in this case to the fifth session of the
PV production of the panels as indicated by the PVGIS modeatraday market and the ESS is initially 80% SOC. The
curve and, therefore, it generates a set of future refesgngeerformance of the basic and the MPC strategies are compared
P,.s(t + k), higher than those that the system is capable o Fig. 6.
produce. The ESS is initially at 30% SOC. Fig. 5 shows the In this case, as the PV production is higher than the
obtained results. committed power, the ESS starts to charge with both stregegi

From Fig. 5, the advantages of the MPC strategy becorbe basic one charges the ESS till the moment it is completely
apparent. The basic strategy starts following exaddly,, full, and from that moment onwards power is directly supplie
adding to the insufficient PV production the power from th&om the PV panels to the grid. On the other hand, the MPC
ESS, which discharges in less than one hour. On the otlsgstem detects in advance that there exists a surplus ofrpowe
hand, the MPC predicts soon that the ESS will discharge if tipegoduction and, as the imbalance prices decrease along that
committed P, are followed. Taking into account the priceintraday session, the system releases part of that surpfaseb
structure, the control system including MPC tends to keebpe price changes a2 h and once again d8 h. Note that the
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the MPC with a highee,,. in order to give more relevance
to the stored energy.

VI. CONCLUSION

v Preg -

Ppy — Predictive - - =Basic

a
=}

—
=
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= 40r -
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20 L T T
11 12 13 14 15

Time of day

Fig. 7. Accurate estimation of PV production case study.

PV systems can mitigate their production variability when
they employ ESS. As these technologies are still considierab
expensive, installations need to be designed with an atcura
ESS rating. However, when a reduced capacity is imple-
mented, the ESS is more likely to saturate, which turns into
failure of the power commitment tracking and economic penal
ties. In this sense, the implementation of an MPC controller
in a PV+ES system has clear benefits, as it allows reducing
penalties associated to imbalances. This is mainly dueedo th
fact that the predictive control strategy has at its dispasa
more accurate prediction of the PV production than the gyste
had when the day ahead bid in the daily market. This helps
to detect in advance when the ES is going to saturate and,
if the imbalance costs are known, shift the tracking failtoe

MPC does not start selling this excess of power before (et§e moment in time when it produces the minimal economic
at 11h), what would allow a smoother power profile, becauggnalties. Therefore, the strategy here proposed impritrees

at that point the prediction does not indicate yet that sonfdtegration of intermittent energy sources with ES thatipar
energy is going to be left over. Contrary to the previous paé@te in an eleCtriCity market. Although generators in caent

as the energy during the control horizon is valued at a pesitiSuch as Spain receive feed-in tariffs instead of partigigan
imbalance price, there arrives a time {(dth) at which storing such a market, they are anyway charged for their imbalances,
energy in the ESS is valued higher than if it was sold, i.€0 it would also be helpful for them. o o
Cgog(fz‘i‘N‘i‘ 1) > Cp(f/)- From this point’ the Op“ma' Strategy The MPC teChanue has been tested in simulation with

involves charging the ESS.

The total economic revenue (16) is in this cass% higher

if the MPC is implemented.

actual irradiation data from a PV installation located ivie
(Spain). Furthermore, the computational cost of the solved
optimization problems (LP) have been shown to be low enough

This simulation, which covered a 4-hour long intradafP allow the implementation of the MPC strategy in a real plan
market session, lasted a total @17 s with an average With a 4-minute sampling time. S
and a maximum computation time for the optimizations of, Lastly, the use of an advanced optimization similar to the

respectively3.32 s and3.81 s.

C. Accurate estimation of PV production

one implemented in the MPC would allow a PV generator to

submit bids into the day ahead market that try to maximize

profits (i.e. higher generation in peak hours) while it agoid
ESS saturation.

Lastly, as a third case study, we analyze the situation for a
sunny summer day in which the PVGIS model and the actual
PV production are very close and the power commitments ar
well defined. The working period is again the fifth intraday
market session and the ESS is initially %1% SOC. The
simulation, which is performed i206.7 s (3.33 s average and 2
3.59 s maximum computation times for the optimizations),
offers the results shown in Fig. 7.

It can be seen how the MPC feeds an excess of eneré?)’}
to the grid just beforel2 h, when it is best paid, and once [4]
again just beford4 h, at the cost of leaving the ESS almost
empty. This is due to the lows,. compared withe, (¢) in those
moments. After 14 h this situation reverts and the ESS starts]
to charge. According to (16), the MPC provides a revenue
1.57% higher. However, it is important to note that although[6]
this is the optimal strategy according to the optimizatiwheix,
in this case one might prefer a most conservative approach,
This way, as the energy surplus is paid at a positive imbelang]
price, it might be considered more effective to save a higher
amount of energy to give some more flexibility to the systentg]
in order to cope with an unexpected overestimation of future
PV production. Such behavior can be accomplished by tuning
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