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Abstract: Albite glass is an important component in many ceramic compositions, often used as liquid phase 

during the sintering process. Nevertheless, in spite of its almost ubiquous presence in the final microstructure of 

these compositions, some properties such as Young's modulus or fracture toughness have not been extensively 

studied in literature. This paper presents an experimental study on a sintered albite glass obtained from sodium 

feldspar powder. The microstructure of the resultant amorphous solid was analyzed via scanning electron 

microscopy and x-ray diffraction. . Fracture toughness was determined at room temperature from the critical 

stress intensity factor (KIC) with a three point bending single-edge notched test (SENB). Young’s modulus and 

coefficient of thermal expansion (CTE) were measured as a function of the temperature. A value of CTE of 

6.6×10-6 ºC-1 within the temperature range 300-500ºC was found. The Young's modulus values of the albite 

glass were within the range from 63.6 to 65.2 MPa. SENB tests revealed a fracture toughness of KIC = 0.78 ± 

0.06 MPa 1/2, which is similar value to those found for borosilicate and soda-lime glasses.  

 

Keywords: albite glass, sodium feldspar, fracture toughness, temperature-dependence, Young’s modulus, 

thermal expansion. 
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1. Introduction 

The understanding of the structure of many silicates melts goes necessarily through a comprehensive 

analysis of the relationship between microstructural features and thermomechanical properties of the melts. 

Many studies addressed to understand these relationships have been carried out using similar melts systems. In 

those works it has been hypothesized that the features of the structure of these materials in the molten state are 

maintained after they have reached the glassy state [1]. This hypothesis that poses the similarity between the 

silicate melts and the glass state was confirmed by Sweet et al. using infrared rays on compositions in the 

system Na2O·SiO2 [2]. A similar conclusion was reached from studies with melts and glasses of the systems 

Na2O·Al2O3·SiO2 and GeO2, in which Raman spectroscopy was used [3].   

Furthermore, this structural parallelism between the melts and their glasses could be verified analyzing 

the X-ray radial distribution functions obtained from a liquid of NaAlSi3O8 composition that was supercooled 

[4]. Moreover, Domine et al. [5] carried out a study with an extensive frequency range of the infrared 

reflectance spectra, concluding that is reasonable to extrapolate the knowledge of silicate glasses to silicate 

melts. As a summary, experiments on quenched glasses are much easier than similar experiments on melts but 

they require the assumption that the structure of the quenched glass reflects the structure of the melt.   

Silicate glasses constitute the base for a long tradition, manufacturing industry, i.e., glass industry. 

Therefore, the correspondence between the glass properties and silicate melt performance in these homogeneous 

systems has been extensively addressed. However, silicate glasses also occur as a glassy matrix of many of the 

products commonly named traditional ceramics together with other crystalline phases such as quartz, feldspar, 

and alumina. Thus, the preparation and characterization of model glasses resembling these glassy matrixes 

represents an inevitable and necessary aspect when designing these ceramics compositions.  

Albite glass is one of the most common glassy matrixes. This glass is originated from sodium feldspar, 

a mineral widely used in the production of porcelain stoneware [6-8], ceramic glazes [9], conventional glasses 

[10], dental ceramics [11, 12], abrasive tools [13], compositions produced by recycling waste [14-17] and metal 

matrix composites [18, 19]. During the manufacture of those materials, the sintering process causes the albite 

crystals to melt at 1100ºC, transforming them into albite glass [20]. 

Thermal conditions along the process configure the final mechanical properties of the material. 

Therefore, in the same manner in which it is essential to know the composition and the proportion of the phases, 

it is also crucial to have each of them well characterized within the range of process temperature. The melting of 

crystals dynamically modifies their behaviour during thermal cycle. This structural change alters, in general, the 
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anisotropy, thus modifying the efficiency with which the thermal and mechanical loads are transmitted through 

its microstructure [21]. 

Thermal and rheological properties of albite glass such as diffusivity, coefficient of thermal expansion 

(CTE), heat capacity and viscosity have already been determined [10, 22-24]. On the other hand, some 

geological features of albite as weathering [25-27], dissolution kinetics in aqueous and/or acid solutions[28-30], 

crystallization kinetics [31], leaching [32] also have been studied. Nevertheless, there are no specific studies 

dealing with fracture toughness (KIC) as well as temperature dependence of the Young's modulus (E) for albite 

glass. 

During sintering, the microstructure of ceramic materials is vulnerable to microscopic stresses during 

cooling, due to the thermal expansion mismatch between the vitreous and crystalline phases. If this mismatch is 

intense enough, cracks can be microscopically detected [33]. From the macroscopic side, this damage 

considerably affects the mechanical performance [34-37]. To control and minimize this damage it is essential to 

know how E and CTE evolve as a function of temperature for each constituent phase. This knowledge allows 

carrying out predictions using computer simulations, where specific properties of each constituent material must 

be known [38-41].  

In this study it is assumed that the main characteristics of the structure remain constant during the 

molten state towards the final glassy state [1-5, 42], so that reliable measurements were carried out for some 

mechanical and thermal properties, at room and higher temperatures.  

This paper is organized as follows. In section 2 the experimental procedure is presented, including the 

preparation of specimens of albite glass and the instrumentation needed to characterize them. Section 3 presents 

the microstructural analysis of the specimens, as well as the results of Young's modulus, fracture toughness and 

coefficient of thermal expansion. In section 4 those results are discussed and, finally, the most relevant aspects 

found for the synthetic albite glass are highlighted.  

 

2. Experimental 

 

2.1- Specimen preparation 

 

To synthesize albite glass, a sodium feldspar powder (Mario Pilato, Spain) was used, whose 

composition is presented in Table 1. After melting, the high percentage of sodium oxide, in comparison with 
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other oxides like calcium and potassium, ensures that the obtained material can be classified as albite glass. 

Sodium feldspar was wet milled using alumina balls at 260 rpm during 30 min, resulting in a particle size of 6.3 

m (D50), as shown in Fig. 1. The milled powder was then melted in an electric furnace (Carbolite model BLF 

1800). The heating rate was initially 25ºC/min up to 500ºC and then decreased to 10ºC/min up to a temperature 

of 1650ºC, which was maintained during 3.5 h. With the aim of obtaining an amorphous state, the material 

resulting from melting was subjected to a quenching process in air to reach room temperature. The albite glass 

was crushed and dry milled during 15 min at 260 rpm. The powder generated was granulated with 8 wt.% of an 

aqueous solution with a concentration of 5 wt.% PVA (Polyvinyl alcohol, Mowiol 4-88, molecular weight 

31000 g/mol, Sigma-Aldrich). With this mixture, ten specimens were uniaxially pressed at 35 MPa, whose final 

dimensions were 7.0×1.7×0.6 cm. After drying during 3 h, the specimens were fired in an electric furnace 

(Pirometrol R-series). Samples were heated at 210ºC/min until reaching 500ºC; the heating rate was then 

decreased to 25ºC/min up to 1200ºC. The samples were maintained at this temperature for 6 min. The furnace 

was then turned off and samples were cooled down inside the kiln until reaches room temperature. Finally, the 

bulk density was measured by Archimedes’ principle. The porosity was then calculated from picnometric [10] 

and bulk density. 

 

Table 1 Chemical composition of sodium feldspar (albite, Na2O 2O3 2). 

Oxide Composition studied 

(wt.%) 

Theoretical composition 

(wt.%) 

SiO2 69.90 68.74 

Al2O3 18.70 19.44 

Na2O 10.00 11.82 

K2O 0.30 --- 

CaO 0.50 --- 

MgO 0.10 --- 

Fe2O3 0.06 --- 

Loss on ignition 0.30 --- 
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Fig. 1 Particle size distribution of sodium feldspar after milling. 

 

2.2- Microstructural characterization 

 

To identify potential crystalline phases, the analyzes were performed on the surface of the sample via 

X-ray diffraction test. The selected instrument (D8 Advance, Bruker, Germany) used Cu K 1,2 (1.5406 Å) 

radiation, with a goniometer radius of 250 mm. The data were collected on a diffractometer with Bragg-

Brentano geometry ( / ), between 5 and 90º (2 ), with a step size of 0.015º to 1s per step. The diffractometer 

optics consisted of a primary system of Soller slits and a fixed aperture of 0.5 mm. A rapid solid-state detector 

(Vantec, Bruker, Germany) fitted with a system of Soller slits and nickel filter was used. The X-ray tube 

operated at 40 kV and 45 mA. 

The glass microstructure was studied using a scanning electron microscope (FEI Quanta 200 ESEM 

FEG), coupled with a chemical analysis sensor (EDAX) to obtain an auxiliary chemical analysis from the 

observed image. To perform this analysis, the samples were cut in cross section and embedded in a block made 

of epoxy resin. The exposed surface was polished using fine abrasives progressively until finishing with 1 µm 

diamond. Subsequently, the specimens were washed with distilled water in an ultrasonic bath. Once clean and 
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dried, they were inspected and photographed with the backscattered electron signal of the scanning electron 

microscope of field emission. The backscattered electron signal provides information on composition. The 

observation was performed using accelerated electrons with different potentials (10, 15 and 20 kV) in such a 

way that the lower the acceleration potential of the electrons, the weaker the signal. Additionally, the samples 

were also analyzed using a microanalysis equipment energy dispersive X-ray (EDX) attached to the microscope. 

 

2.3- Thermal and mechanical characterization 

 

The coefficient of thermal expansion (CTE) and the glass transition temperature (Tg) were determined 

by a dilatometer (Adamel-Lhomargy, model DI-24), calibrated with a pattern of sapphire. The thermal cycle 

used was a warm up of 5ºC/min to the maximum temperature of 1000ºC. 

The measurement of Young’s modulus (E) was carried out using the impulse excitation technique [43-

45]. This technique is a procedure that consists in generating a flexural vibration by means of a non-destructive 

mechanical impulse. This frequency depends on two magnitudes: the mass of the specimen and its stiffness. The 

latest factor can be determined by its dimensions, specific shape and the elastic modulus of the constituent 

material. An apparatus (Grindosonic, model MK5I) was especially conceived to measure the natural frequency 

of vibration along a programmable thermal cycle. Once the vibration sequence is captured, the signal is 

subjected to a time-domain analysis. In this way, the fundamental frequency of the object can be accurately 

detected as a function of the temperature. The cycle consisted of heating up to 700ºC at a constant rate of 

6.6ºC/min. Once this temperature was reached, the measuring device was turned off and the specimen was 

cooled within the chamber until reaching the room temperature. 

For the case concerning this work prismatic specimens were used. With this configuration, the 

relationship between the frequency of the first vibrational mode and the elastic modulus is given by the 

following expression [43-45]. 

2 LE f A
e                                                          (1) 

where f is the natural frequency of the object,  is the material density, L and e are length and thickness of the 

specimen, respectively, and A is a correction factor given by 
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2

0.946 1 6.585 eA
L                             (2)

 

 

This correction factor involves that dimensions of the specimen must satisfy L/e > 10 [43-45]. 

Fracture toughness was measured only at room temperature. The stress intensity factor associated to 

fracture mode-I, KIC, has been obtained according to ASTM C1421-10 [46] using a configuration of single-edge 

notched bending (SENB). An initial precrack with 0.5 mm width was made using a high precision circular saw 

provided with a diamond wheel. The initial incision was then inspected under the optical microscope to 

determine the real cut depth. A detail of the length measurement of the initial crack is depicted in Fig. 2. 

 

 

Fig. 2 Optical micrograph of a cross sectional area of the notched region and measurement of the precrack 

length. 

The specimen was arranged in a three-point bending bridge, and mounted on a universal testing 

machine (Instron, model 6027), at a strain rate of 1 mm/min. The Griffith's criterion [47] is an adequate 

procedure to determine the fracture toughness in brittle materials. This criterion establishes a simple relationship 

between the initial crack length and the fracture toughness given by [48] 

 

     IC RK Y a        (3) 
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where a is the initial crack length, R is the maximum stress at fracture measured during the experimental 

realization and Y is a factor that depends on the specimen geometry. A total of eight specimens were tested.  

 

3. Results 

 

3.1- Microstructural characterization 

 

As set out above experiments on quenched glasses are much easier than similar experiments on melts 

but require the assumption that the structure of the quenched glass reflects the structure of the melt, for which 

there is some evidence in silicate systems [42]. Based on this evidence, the XRD can be used to analysis the 

amorphous phase of albite. 

Fig. 3 shows the results of XRD analysis of albite glass. This result confirms the absence of crystalline 

phases, thus ensuring the amorphous character of the produced glass. According to Navarro [10], the theoretical 

bulk density of albite glass is 2418 kg/m . In the present work, measurements revealed a value of 2285 ± 3 

kg/m , which corresponds to a porosity of ca. 5%. It is worth mentioning that Taylor et al. found a value of 2382 

kg/m  [42], which is also close to  the result found here. These data mean that the degree of homogeneity of this 

albite glass is fairly good, what moreover is clearly reflected by the micrographs from Fig. 4, where the typical 

aspect of the final microstructure obtained from one of our specimens is shown. From a mechanical point of 

view, this low percent of porosity has a negligible impact on the mechanical performance, in particular on the 

Young's modulus [49, 50]. 

Table 2 shows the semi-quantitative chemical analysis of glass by EDX, which is very similar to the 

theoretical composition of albite glass (Na2O Al2O3 6SiO2). 
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Fig. 3 XRD of albite glass. 

  

Fig. 4 SEM micrographs of albite glass at different magnifications: (a) 250×; (b) 1000×. 

Table 2 Experimental vs. theoretical chemical composition (Na2O 2O3 2). 

Oxides Experimental 

(wt.%) 

Theoretical 

(wt.%) 

SiO2 72.05 68.74 

Al2O3 18.81 19.44 

Na2O 9.14 11.82 
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Sum 100.00 100.00 

 

3.2- Thermal and mechanical characterization 

 

In Fig. 5, the temperature dependence of the coefficient of thermal expansion is shown. As it can be 

seen, the glass of albite reveals a nearly linear behaviour up to ~750ºC, from which the vitreous transition begins 

to take place. Concerning the aforementioned linearity, the difference between the two values of CTE within the 

two most commonly used temperature ranges resulted to be poorly significant, as it can be appreciated in Table 

3. The glass transition temperature measured by the dilatometer was 819ºC, which is consistent with data 

available in the literature [10, 51]. 

 

Fig. 5 Coefficient of thermal expansion and transition temperature of albite glass.  

Table 3 Coefficient of thermal expansion of albite glass. 

CTE Value (ºC-1) 
50-300 6.3 10-6 

300-500 6.6 10-6 

500-650 6.2 10-6 
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Fig. 6 shows the elastic modulus of albite glass as a function of the temperature. During the first 

records of the thermal cycle, with the temperature increasing, a slight drop of stiffness of 1.5 MPa was detected 

within the range between 20 and 120ºC. From this point, a clear change of trend was produced, in which the 

elastic modulus started to increase progressively. Once the temperature reached the maximum prescribed value 

of 700ºC, the elastic modulus recovered the lost stiffness, reaching the original value at room temperature. This 

variation of elasticity corresponds to 2.2% of the elastic constant at room temperature. On the other hand, 

regarding the elastic modulus at room temperature, after carrying out a statistical analysis considering all 

specimens, 50% of the values were within the range from 64.2 to 65.7 MPa. 

 

Fig. 6 Temperature influence on the elastic modulus of albite glass. 

 

The results of fracture toughness are shown in Table 4. The second column in this table shows the 

initial crack length measured with the aid of the optical microscope. The measured load to fracture of each 

specimen is listed in the third column. The last column is the stress intensity factor obtained using Eq. 3. These 

results show that statistically 50% of the data are within the range from 0.72 to 0.82 MPa m1/2. This interval 

would represent the inter-quartile range in a box plot. It is worth mentioning that, in the obtained distribution, 

the mean value is KIC = 0.78 ± 0.06 MPa·m1/2. This result confirms that the fracture toughness of the albite glass 
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is very close to the fracture toughness of other types of glasses, such as soda-lime glass (KIC ~ 0.75 MPa·m1/2) 

[52]. 

 

Table 4 Albite glass fracture toughness: specimen tag, mean precrack length, maximum applied load, stress at 

rupture and fracture toughness. 

Sample a ( m) Load (N) R (MPa) KIC (MPa.m1/2) 

1 2454.5 134.10 8.56 0.79 

2 2079.5 91.41 9.03 0.78 

3 2874.0 55.36 5.91 0.70 

4 2287.0 63.39 7.16 0.69 

5 2499.0 61.33 7.07 0.74 

6 2217.0 80.85 8.96 0.84 

7 2408.0 78.55 8.80 0.88 

8 1813.8 88.32 9.89 0.80 

 
 

As a reference, typical porcelainware compositions and many dental composites usually exhibit 

fracture toughness between 1.5 and 5 MPa m1/2 [53-58].  

 

4. Discussion 

The microstructural characterization showed that the albite glass presented high purity and low 

porosity. According to the mechanical characterization of albite glass, Fig. 6,  the elastic modulus at room 

temperature was 65 GPa, which is similar to the elastic modulus of soda-lime glass (73 GPa) [59]. This result 

also shows that the E value of albite glass had a very weak dependence on the temperature within the range from 

20 to 700ºC. In addition, this process was completely reversible within this range. According to Soga [60], the 

elastic modulus in glasses depend on the chemical composition, microstructure, temperature and packing state. 

In particular, it was shown that the soda-lime glasses exhibit a linear behaviour from room temperature up to 

540ºC (Tg), which was not found for amorphous albite. 

The fracture toughness obtained for albite glass represents the typical value of homogeneous and brittle 

materials such as glasses. This value is coherent with those results found for borosilicate and soda-lime glasses 

[10, 52, 61, 62], which are around 0.7 MPa m1/2. In general, the fracture toughness of glasses is lower than that 
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of polycrystalline ceramics and ceramic composites [60]. These latest usually exhibit higher fracture energy 

since they may count with micromechanisms that hinder the crack propagation (microcrack toughening, 

bridging, process-zone toughening or transformation toughening, among others). In an amorphous structure 

those mechanisms are typically absent, what explains the obtained value. 

The measurements of the fracture toughness and the elastic modulus of albite glass represent an 

interesting contribution to the knowledge of the mechanical properties of this type of glass. This knowledge is 

very useful to predict the fracture resistance of many ceramic compositions. Often these materials make use of 

albite glass, or quite similar, as liquid phase for driving the formation of the microstructure. The current 

experimental measurements can be used as input data in many theoretical predictions where ceramic composites 

made of crystalline particles embedded in a vitreous matrix are involved [63-65]. 

 

5. Conclusions 

 

In this paper albite glass was obtained and characterized. Coefficient of thermal expansion, glass 

transition temperature, Young's modulus and fracture toughness were measured. 

The chemical analysis confirmed an albite glass with an acceptable purity. Likewise, the obtained 

material microstructure has been also analyzed by scanning electron microscopy, revealing a low residual 

porosity. Regarding albite properties, the coefficient of thermal expansion presented a nearly linear dependence 

on the temperature, up to the glass transition at 819ºC. The elastic modulus was practically unchanged by the 

effect of temperature in the range between 20ºC and 700ºC, presenting values within the range from 63.6 to 65.2 

MPa. The albite glass fracture toughness, 0.78 MPa m1/2, is within the range obtained for typical glass 

compositions, such as borosilicate or soda lime glasses. 
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