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The predictor and controller design for an inferential control scheme over a network is addressed. A linear
plant with disturbances and measurement noise is assumed to be controlled by a controller that communicates
with the sensors and the actuators through a constrained network. An algorithm is proposed such that the
scarce available outputs are used to make a prediction of the system evolution with an observer that takes
into account the amount of lost data between successful measurements transmissions. The state prediction is
then used to calculate the control actions sent to the actuator. The possibility of control action drop due to
network constraints is taken into account. This networked control scheme is analyzed and both the predictor
and controller designs are addressed taking into account the disturbances, the measurement noise, the scarce
availability of output samples and the scarce capability of control actions update. The time-varying sampling
periods that result for the process inputs and outputs due to network constraints have been determined as
a function of the probability of successful transmission on a specified time with a Bernoulli distribution. For
both designs H∞ performance has been established and LMI design techniques have been used to achieve a
numerical solution.

Keywords: Networked control, inferential control, networked estimation, linear matrix inequalities

1. Introduction

Networked based Control Systems (NCS) have been studied extensively in recent years due to
the benefits they offer to real control system implementation. However, the use of a network in a
control loop introduces some negative effects that can degrade the system performance, as packet
dropouts, variable sampling intervals and communications delays, as well as communication
constraints due to its shared nature. The works Chow and Tipsuwan (2001), Ling et al. (2007),
Hespanha et al. (2007), Heemels et al. (2010), Gupta and Chow (2010) show and classify the
different problems that appear when dealing with process control over networks, describing some
possible solutions, analysis schemes and open problems. One of the main problems when dealing
with control over networks is the delay and dropout between controller and actuator, that leads
to a time-varying delay on the closed loop. Different types of models are used in the literature,
that can be classified in continuous time Wen and Zeng (2012), Liu and Yang (2012), discrete
time or hybrid event-driven ones Souza et al. (2011), for which different design procedures are
proposed. Which model is applied depends on the mechanisms used to sample the output, holding
or resetting the control input Schenato (2009) and the message sending protocols. When both
the measurements and the control actions are sent through a network, the control strategies
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presented in the literature can be classified in state feedback, output feedback or observer based
state feedback control. In the first and second strategy the control actions are only updated (or,
at least, sent) when a measurement of the full state or the output, respectively, is available. In
the observer based approach, the control actions are updated (or, at least, sent) independently
of the output sampling mechanism. The control goals also differ between some works that only
deal with the stability of the closed loop (neglecting the disturbances), and other ones that take
into account the presence of state disturbances and some kind of performance optimization is
carried out with H∞ or guaranteed cost control strategies.
In recent years, a significant attention has been paid to observer based networked control

systems. In Yang et al. (2006), Luan et al. (2011), Guo et al. (2012), Liu and You (2012) an
observer based control for a NCS was addressed assuming delays on both the input and output
channel.
In Wang et al. (2007), Li et al. (2010), Liu et al. (2011) an observer based control approach

for NCS is proposed where the received measurements as well as the applied control actions
are driven to zero when communication fails. Those approaches make use of the most probable
measured output and input in the state estimation procedure assuming independent Bernouilli
distributions on the input and output packet dropout phenomena and, with this technique, the
enlargement of the state vector is avoided. The design of the observer based controller is carried
out off line, while in Hristu-Varsakelis and Zhang (2008) the control action computation is done
online through an LQG strategy that was latter generalized in the paper Moayedi et al. (2011).
In this work, both the reset and zero order hold strategies are addressed, as well as different
approaches related to the acknowledgement on the success on packet transmissions.
In Zhang and Yu (2007) the problem of input packet dropout was dealt with a zero order

hold approach, and a polyquadratic approach was used to assure the stability of the closed loop
system. In Fang and Wang (2008), Che et al. (2010), Wen et al. (2011) this problem was dealt
assuming a stochastic Bernoulli distribution of the packet dropouts and state disturbances on the
models, but the measurement noise was assumed to be null. The controller and the observer were
obtained simultaneously via an LMI procedure, leading to constant gains on the observer and the
controller that are applied at each control period with the available (possibly) delayed outputs.
In Yu et al. (2009) the idea of a varying gain depending on the last transmission interval (the time
elapsed between the last two successfully sent control actions) was introduced. This has been
recently extended in Shi and Yu (2011), Wang et al. (2011) where a Markovian characterization
of the time-varying delays is done, and where the disturbances have been considered but again,
the measurement noise has been neglected.
The input channel network-induced delay has been addressed recently through different pre-

diction strategies Gonzalez et al. (2011, 2012) trying to compensate the delay. In Ishido et al.
(2011), Xia et al. (2011), Yang et al. (2008) the strategy is based on sending a packet with
consecutive predicted inputs to a buffer located on the actuator side, that decides which input
must apply taking into account the possible input packet dropout. The study of observers for
the scenario presented in this work has been initially addressed in Peñarrocha et al. (2012a) with
an online approach, and in Peñarrocha et al. (2012b) with an offline approach.
For the knowledge of the authors, the off line design of an observer based control approach for

systems with time delay and packet dropout in both channels using a zero order hold approach
has not been considered taking into account the measurement noise phenomena.
When dealing with noisy sensors, in the observer based NCS approach, the observer gains must

be fitted depending on the availability of output measurements in order to extract and filter more
efficiently its information. Furthermore, the effect of the noise over the state estimation error
should be taken into account in the predicted state feedback approach in order to smooth the
output.
In this work, the design of an observer based control strategy for systems with state distur-

bances and measurement noise, controlled through a network, is addressed, assuming data drops
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Figure 1. Proposed control scheme using a network with variable accessibility constraints. A solid line denotes continuously
transmitted signals, a dashed line denotes a periodically transmitted signal and a dotted line denotes an arbitrarily on time
transmitted signal

due to accessibility constraints and transmission delays in both channels, sensors to controller
and controller to actuators. The observer has a time varying gain that depends on the consecu-
tive measurement packet dropouts, and the state estimation error is taken into account in the
H∞ controller design. The sensors, actuators and controller are assumed to be time driven, and
the probability of successful access to the network from the nodes is assumed to be defined by a
Bernoulli distribution that can also be slowly varying with time. The disturbance attenuation,
as well as the probability of dropped data is taken into account in the design of the observer
and the controller. As the state is not assumed to be measured, an observer is designed to im-
prove the results of previous works, taking into account disturbances and measurement noise,
and the knowledge of new measurements reception. An observed state feedback controller is
then designed taking into account the state uncertainty due to the use of an observer. The idea
can be easily extended to the design of full state feedback controllers with state measurement
noise. The main contributions are the consideration of measurement noise, and the use of an
off line calculated time varying gain in the observer, that depends on the elapsed time between
consecutive received measurements.
The paper is organized as follows. In Section 2 the problem is presented, including the plant

description, a proposal of the network message protocol for control purposes, and the sampling
scenario resulting from the network operation. In section 3, the predictor-based (inferential)
control algorithm is proposed, and, in section 4, the closed loop dynamics is analyzed. In section
5 the predictor is designed, and the controller design is addressed in section 6. In section 7 several
examples are shown and, finally, the main conclusions are summarized in Section 8.

2. Problem statement

Figure 1 shows the proposed networked control problem with a plant with input and output
interface devices, a controller, and a network that allows the communication between controller
and process signals. The networked control scheme is described as follows.
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2.1. Plant description

The plant is assumed to be a continuous-time process with several control inputs (u(τ)) applied
by some actuators and several controlled outputs (y(τ)) measured by some sensors. The process
behaviour is assumed to be defined by the dynamic equations

ẋ(τ) = Acx(τ) +Bcu(τ) +wc(τ) (1a)

y(τ) = C x(τ) + v(τ) (1b)

where all the signals are continuous-time, being u(τ) ∈ R
nu the input of the process, y(τ) ∈ R

ny

the output measured by a noisy sensor, x(τ) ∈ R
n the state, wc(τ) ∈ R

n the process disturbance
and v(τ) ∈ R

ny the sensors measurement noise. Ac, Bc and C are matrices of proper dimensions,
where the pair (Ac,C) is assumed to be detectable and the pair (Ac,Bc) is assumed to be
controllable.
The input signals of the actuators, u(τ), are updated every T seconds through a zero order

holder (ZOH) with the value of each correspondent u[t] contained in a packet that is stored on
an unitary buffer (denoted by ↑ U on the figure).
That buffer can be accessed via a network at any arbitrary instant of time in order to update

the packet stored in it. The sensors measurements are sampled every T seconds and all the
sampled values (y[t]) are encapsulated in a packet and written on a unitary buffer (Y ↓ on the
figure), that can be accessed by the network at any arbitrary instant of time. It is assumed that
both the sampler and the zero order holder are synchronized and, therefore, the input update
and the output sample occur at the same time. Based on this assumption, an equivalent sampled
data model of (2) at period T can be written as

x[t+ 1] = Ax[t] +Bu[t] +w[t] (2a)

y[t] = Cx[t] + v[t] (2b)

where all the signals are discrete-time sampled data signals, being u[t] = u(tT ) the con-
trol inputs, y[t] = y(tT ) the sampled outputs, x[t] = x(tT ) the discrete state, w[t] =
∫ (t+1)T
tT

eAc(T−τ)wc(τ)dτ the equivalent discrete process disturbance and v[t] = v(tT ) the sensor
measurement noise at time tT . A, B and C are matrices of proper dimensions that can be
obtained from the matrices of the continuous model by

A = eAcT , B =

∫ T

0
eAc(T−τ)Bcdτ. (3)

2.2. Network message protocol for control purposes

The controller, sensor nodes and actuators share the information through a network This network
is assumed to be shared with other devices that are not shown in the control scheme, and so,
the controller can not always access the network at the desired instants of time (there are
accessibility constraints). However, once the network is accessed by a node, it is assumed that
the message is sent, without drops or errors, and the transmission delay is varying but bounded
by τm < T . The following times are defined: T : The basic control period. τc < T : The control
actions computation time. τs < T : The maximum time that takes all the sensors to make a
measurement. τm < T : The maximum time needed to complete the transmission of a message
once the network is accessed. τca: The time elapsed since the controller starts trying to access
the network to send the message with the packet control inputs, till the message actually starts
to be sent to the input buffer. τsc: The time elapsed since the output buffer starts trying to
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access the network to send the message with the packet output measurements, till the message
actually starts to be sent to the controller.
When the control actions have been calculated (τc seconds after the interrupt start at τ = tT ),

the controller tries to send a message to the control input buffer through the network with the
values of the inputs (u∗[t+ 1]). The controller keeps trying to send the message until it is sent,
or until the time spent is larger than τca,max = T − τc − τm. In that case, the control actions are
discarded (i.e. u[t+1] = u[t]), and the controller stops trying to send the message until the next
control period. An input availability factor αu[t] is defined that takes values 0 or 1 depending on
the successful inputs transmission. In the case the message is discarded, αu[t] = 0. If the message
can be sent, the actuators input buffer is updated and the applied inputs at period t + 1 are
u[t+ 1] = u∗[t+ 1], and αu[t] = 1. This means that the controller knows which are the applied
inputs at every time.
The operation to read a package with the sampled outputs values is different, since it is the

input buffer who tries to send the measured values to the controller. Once the sensors have
obtained the measurement, and they have been encapsulated in a single packet and stored in
the input buffer, the input buffer keeps trying to send the message with the output values to the
controller during the interval T − τs − τm, while there is time for the message to arrive to the
controller before the next sampling instant. If the message has not been sent in this time, the
input buffer discards the full packet and stops trying to send the message until a new packet is
stored. An output availability factor αy[t] is defined that takes values 0 or 1 depending on the
successful outputs transmission. At instant t+1, if the controller has received the measurements,
y[t], it stores them and defines αy[t] = 1, otherwise αy[t] = 0 and the outputs are assumed to
be lost (due to drop out or to the impossibility of the input buffer to access the network).
With the previously described operation mode, the access restriction and time-varying

network-induced delay effects on the networked control system are transformed into a prob-
lem of controlling a process with randomly missing synchronous measurements with constant
delay, and with random, sporadic but synchronous inputs updates, avoiding the design of a
control system with time-varying delays.
Note that the message transmission delay and network accessibility constraints depend on the

network, not on the controller algorithm, but the time dedicated to establish communication
with the sensors and actuators is limited by the control period T . This means that if a low
control period T is selected, then the probability of having output samples and input updates
at the required time will also be low. This implies that the selection of the control period must
be a compromise between the closed loop response time of the process and the time needed to
transmit the messages (that depends on the network traffic) in order to have a sufficient number
of successfully transmitted output samples and input updates.
On the next section, the time-varying sampling period distribution and time-varying input

update period distribution that result from the network access constraints are bounded as a
function of the probability of having a successful output and input transmission, respectively.

2.3. Sampling scenario that results from the network operation

Let us define βy as the controller’s probability of receiving a packet with the output measurements
y[t], i.e. as the probability that τsc < T − τs − τm. In terms of the output availability factor this
is expressed as:

βy = P (αy[t] = 1). (4)

Note that the complementary probability of failing on receiving the output samples is P (αy[t] =
0) = 1− βy.
Let us also define βu as the actuators probability of receiving an input update u[t], i.e., as the
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probability that τca < T −τc−τm. In terms of the input updating success factor this is expressed
as:

βu = P (αu[t] = 1), (5)

and the complementary probability P (αu[t] = 0) = 1− βu.

These probabilities are not equal in general, and do not depend only on the network operation
(delays and access restrictions), but also on the selected control period T . Both probabilities are
assumed to be slowly time-variant (due to changes in network traffic), but lower bounded by
values βu,min and βy,min that represent the worst expected network behaviour.
Note also that those probabilities can be modified by the user if the period T is changed

during the controller operation. This can be useful if some degradation on the state estimator
or in the output behaviour is detected. In this sense, a strategy to change the period online
could be developed in order to maximize the performance of the controlled system. In this work,
however, this idea is not addressed and the changes on the probabilities βu and βy are assumed
to be related only to network changes due to its shared nature.
With the proposed network operation mode, the s-th sampled outputs are available at a

certain instant t = ts (when the transmission can be completed). The number of basic control
periods between two consecutive measurements received by the controller at instants ts−1 and
ts is denoted with Ns, being Ns = ts − ts−1.
Following the same previous idea, for the inputs update a similar definition is proposed. tk is

the instant when the k-th inputs update takes place, while Nk is defined as the number of basic
periods between two consecutive control inputs received by the actuators at instants tk and tk+1,
i.e. Nk = tk+1 − tk.
Both values Ns and Nk vary randomly with time. Their distributions are a function of the

probabilities βy and βu, associated to the availability factors αy[t] and αu[t], respectively. These
factors are assumed to be binomial independent variables, such that P{αy[t] = 1} = βy,
P{αu[t] = 1} = βu . The probability of Nk to be equal a given value N can be calculated
as the probability of having N − 1 consecutive values of αu = 0 and then one value αu = 1,
leading to the equation

P{Nk = N} = P

{
N−1⋂

i=1

(αu[t+ i] = 0) ∩ (αu[t+N ] = 1)

}

=(1− βu)
N−1βu. (6)

that is also valid changingNk byNs and βu by βy. The above function is monotonically decreasing
in N , i.e., the lower the N , the higher the probability. The next result allows to obtain a
probabilistic bound on the values of Ns and Nk based on this equation.

Lemma 2.1: Let α[t] be a binomial variable with P{α[t] = 1} = β. Let us call Nj ∈ N (j can
refer either to k or s) the number of periods between two consecutive instants when α = 1. For
a given ε ∈ (0, 1), if N̄ is chosen to fulfill

N̄ ≥ ln(ε)

ln(1− β)
+ 1, (7)

then, P{Nj > N̄} ≤ ε.
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Proof : The probability that Nj is higher than N̄ can be expressed by means of (6), leading to

P{Nj>N̄}=1−P{Nj ∈{1, . . . , N̄}}=(1−β)N̄−1≤ε.

Taking logarithms on the above expression and taking into account that ln(1− β) < 0, expres-
sion (7) is obtained. �

Equation (7) will be used in the design procedure to calculate the maximum value of Nk and
Ns that will be taken into account in the design equations. The selection of a sufficiently low
value of ε will guarantee that the probability of having a larger Nk or Ns is very small. On the
other hand, the equation (6) will be used in the design procedure to calculate the probability of
having a control input update Nk periods after the last update.

3. Inferential control algorithm proposal

The controller uses the randomly available sampled outputs values received through the network
to estimate the state at the basic control period T , and to predict it one period ahead. With this
prediction, it calculates the control actions for the next period using a state feedback scheme,
and tries to transmit the value to the actuators zero order hold buffer. The main difficulty is
that at the time when the control actions are calculated, the controller does not know if the
transmission to the actuators will be possible or not, and hence the controller design must be
based on the probability of successful communication.
The controller is programmed to execute a periodical interrupt every T seconds. At the start

of the interrupt, the controller has the following information:

• αy[t− 1] and hence, if y[t− 1] is available or not.

• αu[t− 2] and hence the previously applied u[t− 1].

• αu[t− 1] and hence the values u[t] that are being applied in the current period.

• x̂[t − 1|t − 2], i.e. the estimation of the previous state with the information of 2 periods
before.

The tasks that are scheduled in the interrupt code during time τ ∈ [t · T, (t + 1) · T [ are as
follows:

(1) The values of the sampled outputs of the previous control period (if available) are used to
update the estimation of the state at the previous control period using the equation:

x̂[t−1] = x̂[t−1|t−2] +L[t−1](y[t−1] −Cx̂[t−1|t−2])αy [t−1], (8a)

where L[t] is a time varying gain that must be designed.
(2) The current state (x[t]) is estimated running the model in open loop. Let us call this

estimation x̂[t|t− 1]:

x̂[t|t− 1] = Ax̂[t− 1] +Bu[t− 1]. (8b)

(3) The state at the next period (x[t+1]) is predicted running again the model in open loop.
Let us call this prediction x̂[t+ 1|t− 1]:

x̂[t+ 1|t− 1] = Ax̂[t|t− 1] +Bu[t]. (8c)

(4) The control actions for the next period (let us call it u∗[t+1]) are calculated as a function
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of the predicted state at t+ 1. A standard discrete state feedback controller is used

u∗[t+ 1] = K x̂[t+ 1|t− 1],

where K is a gain that must be designed to guarantee the stability and an adequate
disturbance attenuation.

(5) The control actions, u∗[t+ 1], are tried to be transmitted to the actuator zero order hold
buffer until τm seconds before the next periodical interrupt, while the sensor buffer tries to
transmit the measured outputs, y[t] to the controller. If the outputs have been received,
the values y[t] are stored and the output availability factor is set to one, i.e., αy[t] = 1. If
they have not been received, then αy[t] = 0. If the control inputs transmission was possible,
the input availability factor is set to one and the input values for the next control period
are stored as the calculated ones. If the transmission was not possible, the input values
for the next control period are stored as the previous ones (due to the use of a zero order
hold) and the input availability factor is set to zero, i.e.,

u[t+ 1] =

{
u[t], αu[t] = 0,
u∗[t+ 1], αu[t] = 1.

In summary, the applied control actions can be expressed as a function of the predicted
state as

u[t+ 1] = K x̂[t+ 1|t− 1]αu[t] + ᾱu[t]u[t], (8d)

with ᾱu[t] = (1− αu[t]).

The time varying gains L[t] and the constant gain K must be designed to guarantee the
stability of the observer and the closed loop, and an adequate attenuation of the disturbances
and measurement noise. The first step is to derive the closed loop dynamics equation that results
from combining the process equations with the previous algorithm. This is the purpose of the
next section.

4. Closed loop dynamics analysis

In the next theorem, the time varying matrix that defines the global closed-loop dynamics
is obtained. For this purpose a relationship between the vectors of inputs, states and states
estimation error is established.

Theorem 4.1 : Consider the control scheme shown in figure 1 where the input updates and
output measurements are synchronously taken every T seconds. Assume that there exists an
equivalent sampled-data model given by (2) that defines the dynamic behaviour at the sampling
instants. Then, if a controller is implemented using algorithm (8), the closed loop dynamic
behaviour is defined by equations





x[t+ 1]
u[t+ 1]
x̃[t]



 = ACL[t]





x[t]
u[t]

x̃[t− 1]



+BCL[t]





w[t]
w[t− 1]
v[t]



 , (9)
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y[t] = [C 0 0]





x[t]
u[t]

x̃[t− 1]



+ v[t], (10)

where x̃[t] is the state estimation error defined as

x̃[t] = x[t]− x̂[t], (11)

and where matrices ACL[t] and BCL[t] are

ACL[t] =






A B 0

KAαu[t]

(
KBαu[t]
+ᾱu[t]

)

−KA2αu[t]

0 0 (I −L[t]Cαy[t])A






, (12)

and

BCL[t] =





I 0 0

0 −KAαu[t] 0

0 (I −L[t]Cαy[t]) −L[t]αy[t]



 . (13)

Proof : To prove the theorem, first, the state estimation error dynamics is obtained and then,
the state and control input evolution are used to obtain the global closed loop dynamics.
From the definition of the state estimation error (11), the state estimation can be written as

x̂[t] = x[t]− x̃[t]. From equation (2a) the following relationship can be obtained

Ax[t− 1] +B u[t− 1] = x[t]−w[t− 1].

Using these expressions in the state estimation equation (8b) it leads to

x̂[t|t− 1] = x[t]−Ax̃[t− 1]−w[t− 1]. (14)

Advancing one period the equation (8a), and using the above expression and equation (2b), the
evolution of the state estimation error can be written as

x̃[t] = (I −L[t]αy[t]C) (Ax̃[t− 1] +w[t− 1])−L[t]αy[t]v[t]. (15)

Note that this dynamics only depends on the output availability factor αy[t], and does not
depend on the input update availability.
The state prediction at instant t+ 1 calculated by (8c) can be rewritten using (14) as

x̂[t+ 1|t− 1] = A (x[t]−Ax̃[t− 1]−w[t− 1]) +Bu[t] (16)

Introducing this expression in (8d) to obtain the control action it leads to

u[t+ 1] = K (A (x[t]−Ax̃[t− 1]−w[t− 1])+Bu[t])αu[t]

+ ᾱu[t]u[t]. (17)
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Note that this dynamics only depends on the input update availability factor αu[t], and does
not depend on the output measurement availability.
Finally, expressions (15), (17) and the model (2) can be expressed in matrix form as in (9).

�

Remark 1 : The closed loop dynamics obtained on the previous theorem shows that the closed
loop behaves as a linear stochastically time-varying system where the dynamic matrix ACL[t]
presents a triangular structure.
It is important to stress that the estimation error does not depend on the process state

or inputs, nor in the input update availability factor, but only depends on the disturbance,
measurement noise and output availability factor as shown in the equation

x̃[t] = (I −L[t]Cαy[t])(Ax̃[t− 1] +w[t])−L[t]αy[t]v[t]. (18)

This means that the state observer can be designed independently of the controller to achieve a
stable behaviour and an appropriate disturbance and noise attenuation level. As a result of the
observer design, a bound in the state estimation error can be obtained.
On the other hand, the dynamics of the system state depends on the estimation error of the

designed observer but not on the measurement noise. It can also be noticed that does not depend
on the output availability factor. The resulting dynamics can be written as follows:

[
x[t+ 1]
u[t+ 1]

]

=

[
A B

KAαu[t] KBαu[t] + ᾱu[t]

] [
x[t]
u[t]

]

+

[
I 0 0

0 −KAαu[t] −KA2αu[t]

]




w[t]
w[t− 1]
x̃[t− 1].



 (19)

In Peñarrocha et al. (2005), Wu et al. (2011), Gawthrop and Wang (2011) the separation
principle for observer-based NCS systems that present a triangular structure was demonstrated,
leading to an independent design of the observer and the controller gains. Furthermore, the
work Wu et al. (2010) demonstrated that the mean square stability of NCS systems with a time
varying model that is only updated when successful transmissions occurs is equivalent to the
mean square stability at the (fast) control period.
The previous results show that both the controller and the predictor can be designed indepen-

dently to have a mean square stable behaviour at their updating periods, and this guarantees
the mean square stability of the closed loop. They also show that the predictor design must
take into account only the problems with irregular outputs sampling, while the controller design
needs to take into account only the irregular inputs update. As a result, the design strategy is
proposed as follows:

(1) Obtain some bound on the disturbance and measurement noises, for example, ‖w[t]‖RMS

and ‖vi[t]‖RMS , i = 1, · · · ny, that will be used in the design steps.
(2) Design a stable observer that minimizes the effect of the disturbance and measurement

noise on the state estimation error (18), using the previous bounds and taking into account
the irregular output sampling (i.e., the dependency on the availability factor αy[t] with
probability βy). This design should give as a result a law for the gain L[t] and a bound
on x̃[t], for example, ‖x̃‖RMS .

(3) Design a controller to stabilize the system and to minimize the effect of the state estimation
error and disturbances, using the previous norms, and taking into account the non periodic
input update (i.e., the dependency on the availability factor αu[t] with probability βu).
For this design, equation (19), where the disturbance vector includes the state estimation
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error, must be used. The result should be a law for K.

5. Predictor design

In order to design the predictor needed to compute the control actions, the prediction error
dynamics is first obtained.

Theorem 5.1 Prediction error dynamics: The prediction error dynamics of the algorithm (8)
applied to system (2) when there is no modeling error and the measurements are available every
Ns periods (with Ns time variant), is described by the linear time-variant system

x̃s = (I −LsC)



ANs x̃s−1 +

Ns∑

j=1

Aj−1w[ts − j]



 −Ls vs (20)

that is updated every time new measurements are available. The estimation error vector is defined
when the measurements are available (t = ts) as x̃s ≡ x̃[ts] = x[ts]− x̂[ts]. The state prediction
error between measurements (from t = ts−1 to t = ts − 1) is given by (r ∈ [0, Ns − 1])

x̃[ts−1 + r] = Arx̃s−1 +
r−1∑

i=0

Ar−i−1w[ts−1 + i]. (21)

Proof : At the measuring instant ts, the state estimation error in (18) can be expressed (with
αy[t] = 1) as

x̃[ts] = (I −LsC) (Ax̃[ts − 1] +w[ts − 1])−Lsvs. (22)

being Ls = L[ts] and vs = v[ts]. At the instants when no measurements are available, the state
estimation error evolution is obtained taking αy[t] = 0 in (18)

x̃[t] = Ax̃[t− 1] +w[t− 1], ts−1 < t < ts. (23)

Introducing recursively equation (23) from t = ts−1 to t = ts−Ns+1 into (22), it leads to (20)
taking into account that ts − Ns = ts−1. Expression (21) can be obtained using recursively
equation (23) from t = ts−1 + 1 to t = ts−1 + r. �

Remark 1 : Let us assume that N̄s is the maximum number of periods between available
measurements, i.e., a bound of Ns. Then, if a new vector gathering the disturbances between
measurements is defined as

Ws =
[
v⊤
s w[ts − 1]⊤ · · · w[ts − N̄s]

⊤
]⊤

,

the prediction error dynamics at measuring instants can be written in a compact way as

x̃s = As x̃s−1 +BsWs (24)

where

As = (I −LsC)ANs , (25)

Bs =
[
−Ls (I −LsC)Λ(Ns)

]

n×(1+N̄sn)
(26)
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being Λ(Ns) the matrix defined as

Λ(Ns) = [

Ns

︷ ︸︸ ︷

I A A2 · · · ANs−1 0 · · · 0
︸ ︷︷ ︸

N̄s

] (27)

The state estimation error dynamics at the inter-sampling periods (21) can also be compacted
as

x̃[ts−1 + r] = Arx̃s−1 + F (Ns, r)Ws, r ∈ [0, Ns − 1] (28)

where F (Ns, r) is a n× (1 + N̄sn) matrix defined by

F (Ns, r) = [0n×1 0 · · · 0
r

︷ ︸︸ ︷

I A · · · Ar−1
︸ ︷︷ ︸

Ns

0 · · · 0]. (29)

The observer dynamics depends on the vector gain Ls defined at measuring instants (t =
ts), that must be designed to assure: the predictor stability, robustness to the irregular data
availability and a proper attenuation of the disturbances and measurement noises. One possible
approach is online gain calculation (Kalman filter approach), but this would not lead to any a
priori information about achievable bounds on the state estimation error (as expected in the
proposed strategy in Remark 1). Furthermore, a high online computational effort is needed
because a stationary state can not be reached. Therefore, an off line gain scheduling is proposed,
trying to find a priori state estimation error bounds, and reducing the online computational cost
needed. As the number of periods between consecutive measurements (Ns) can be known online,
the design of gain Ls in this work is addressed defining a different gain for each possible value
of Ns. In order to calculate the set of gains Ls off line, an upper bound (N̄s) in Ns must be
assumed. To calculate that bound, equation

N̄s =

⌈
lg(ε)

lg(1− βy)
+ 1

⌉

. (30)

is used, where ε is chosen to be sufficiently low to guarantee that the probability of having
Ns > N̄s is very small. The result of the off line calculation is a finite set of gains

Ls = L(Ns) ∈ L = {L(1),L(2), . . . ,L(N̄s)}, (31)

and a bound on the norm of the state estimation error (calculated at the basic control period).
Every time a new measurement is available, a different gain Ls is applied, depending on the
number of periods (Ns) that the predictor has been waiting for new measurements.
With this approach, matrices As and Bs in (24) can be defined as a function of Ns:

As = A(Ns) = (I −L(Ns)C)ANs , (32a)

Bs = B(Ns) =
[
−L(Ns) (I −L(Ns)C)Λ(Ns)

]
(32b)

Theorem 5.2 H∞ observer design: Consider the predictor algorithm defined by equations (8b)
and (8a) applied to system (2) and assume that the outputs are available every Ns ≤ N̄s periods.
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For given γv1 , · · · , γvny
, γw ∈ R

+, assume that there exist N̄s matrices QN ∈ R
n×n, a symmetric

positive definite matrix P ∈ R
n×n, and matrices XN ∈ R

n×ny(with N = {1, . . . , N̄s}) such that
the following LMI fulfills










MA(1) MB(1)
⊕N̄s

N=1QN +QT
N − P

...
...

MA(N̄s) MB(N̄s)
P −A1 −A2

⋆ ⋆ Γ−A3










≻ 0, (33)

with ⋆ denoting symmetric terms and

MA(N) =
√
pN (QN −XN C) AN , (34a)

MB(N) =
√
pN
[
−XN (QN −XNC)Λ(N)

]
(34b)

A1 =

N̄s−1∑

N=0

pN+1A
N⊤

AN ; A2 =

N̄s−1∑

N=0

pN+1A
N⊤

F (N̄s, N),

A3 =

N̄s−1∑

N=0

pN+1F (N̄s, N)⊤F (N̄s, N),

Γ = diag{γv1 , · · · , γvny
,
1

N̄s

γwI},

where pN is the probability of having an outputs sampling period of N , given by pN = (1 −
βy)

N−1βy, N = 1, . . . , N̄s − 1, and pN̄s
= 1−∑N̄s−1

N=1 pN , and matrices Λ(N) and F (N̄s, N) are
given by (27) and (29).
Then, defining the predictor gain as LN = Q−1

N XN , the state estimation algorithm defined
by (8b) and (8a) converges asymptotically to zero in the absence of disturbances and, under
zero initial condition, the RMS norm of the state prediction error, computed at the basic control
period, is bounded by

E{‖x̃[t]‖2RMS} <

ny∑

i=1

γvi‖vi[t]‖2RMS + γw‖w[t]‖2RMS (35)

Proof : The conditions Q⊤
N + QN − P ≻ 0 imply that QN are of full rank and P is strictly

positive definite. Therefore the following matrix inequality is fulfilled

(QN − P )⊤P−1(QN −P ) � 0

which is equivalent to

Q⊤
NP−1QN � Q⊤

N +QN − P . (36)

Introducing XN = QNLN in (33), taking into account (36) and applying Schur complements
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one obtains







(∑N̄s

N=1 pNA(N)⊤PA(N)
−P +A1

)
∑N̄s

N=1 pNA(N)⊤PB(N) +A2

⋆

(∑N̄s

N=1 pNB(N)⊤PB(N)
−Γ+A3

)






≺0 (37)

As A1 � 0, inequality (37) implies

x̃⊤
s−1





N̄s∑

N=1

pNA(N)⊤PA(N)−P



 x̃s−1 < 0.

Assuming that there are no disturbances or measurement noises, using (24) and (32a), the above
expression leads to

E{x̃⊤
s Psx̃s} − x̃⊤

s−1Ps−1x̃s−1 ≺ 0,

which assures mean square stability of the prediction error if the Lyapunov function Vs = x̃⊤
s P x̃s

is defined.
Now, multiplying inequality (37) by

[
x̃⊤
s−1W

⊤
s

]
on the left, and by its transpose on the right,

it leads to

E{Vs} − Vs−1+

Ns−1∑

N=0

pN+1x̃[ts−1+N ]⊤x̃[ts−1+N ]−W⊤
s ΓWs < 0,

where the predictor dynamic error (24) and open loop prediction error (28) have been taken into
account. Assuming a null initial prediction error (x̃0 = 0) and adding from s = 1 to s = S it
leads to

VS +

S∑

s=1





N̄s−1∑

N=0

pN+1x̃[ts−1+N ]⊤x̃[ts−1+N ]−W⊤
s ΓWs



<0. (38)

As P ≻ 0, then VS > 0, leading to

S∑

s=1





N̄s−1∑

N=0

pN+1x̃[ts−1+N ]⊤x̃[ts−1+N ]−W⊤
s ΓWs



 < 0. (39)

Introducing the definitions of Γ and Ws it can be written that

S∑

s=1





N̄s−1∑

N=0

pN+1x̃[ts−1 +N ]⊤x̃[ts−1 +N ]−
ny∑

i=1

γvivi[ts]
2

− 1

N̄s

γw

N̄s−1∑

N=0

w[ts−1 +N ]⊤w[ts−1 +N ]



 < 0. (40)
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Dividing by S this expression, and taking the limit when S tends to infinite, the RMS norm of
the signals at period T is obtained as in (35).

�

The previous result needs the assumption that Ns can not take values above N̄s. This is only
true if the network can guarantee the output measurements transmission when N̄s − 1 periods
have elapsed without any output receptions. If the network can not assure this, but N̄s is selected
according equation (30), Ns can take larger values, but with a very low probability ε. In those
sporadic cases, the use of the gain calculated for N̄s is proposed, i.e. L(Ns) = L(N̄s) ∀Ns ≥ N̄s.
Therefore, the predictor gains can be designed following the previous procedure, but a test for
stability that takes into account the unboundedness of Ns is needed. The next result expresses
this stability test.

Theorem 5.3 : Assume that for a given set of matrices L(Ns), the gains L(1), . . . ,L(N̄s − 1)
are used for the values Ns = 1 to N̄s − 1, and the gain L(N̄s) is used when Ns ≥ N̄s. Assume
also that there exists a symmetric positive definite matrix P ∈ R

n×n such that the following
conditions hold

P −
N̄s−1∑

i=1

βy(1− βy)
i−1AiTX(i)Ai

+ βy(1− βy)
N̄s−1AN̄s

⊤
QAN̄s ≻ 0, (41)

√

1− βy|λ̄(A)| < 1, (42)

with

Q = vec−1

{(

I − (1− βy)(A
⊤ ⊗A⊤)

)−1
vec
{
X(N̄s)

}
}

(43)

X(i) = (I −L(i)C)⊤P (I −L(i)C) (44)

then, the observer is stable in the average sense for all the possible sampling scenarios described
by the probability βy (from Ns = 1 to ∞).

Proof : Let us first define the Lyapunov function V(x̃s) = x̃⊤
s P x̃s. The expected value of the

Lyapunov function at each instant when new measurements are available depends on the time
when the previous measurements were available, and is given by

E{V(x̃s)} = x̃⊤
s−1





N̄s−1∑

i=1

βy(1− βy)
i−1Ai⊤X(i)Ai+

∞∑

i=N̄s

βy(1− βy)
i−1Ai⊤X(N̄s)A

i



 x̃s−1

if null disturbances are assumed. The second addend can be written as βy(1 −
βy)

N̄s−1(AN̄s)⊤QAN̄s , with Q =
∑∞

i=0(1 − βy)
iAi⊤X(N̄s)A

i. The infinity sum Q will only
result in a finite value if the eigenvalues of the powered matrices are lower than one, i.e., if
√

1− βy|λ̄(A)| < 1. If this condition is fulfilled, using the encapsulating sum formula, the previ-
ous sum can be written as expressed on equation (43). The stability in the average sense will be
satisfied if E{V(x̃s)} < V(x̃s−1), that is an equivalent condition to that expressed in (41). Note
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that the expression is an LMI as the vec{·} and vec−1{·} operators keeps the linearity over the
decision variables on matrix P . �

Remark 2 : The condition
√

1− βy|λ̄(A)| < 1 is always fulfilled if the process is open loop
stable. However, if the system is unstable, this condition imposes a restriction in the relation
between the network accessibility and the maximum unstable eigenvalue in order to guarantee
the stabilizability of the closed loop (the lower the network accessibility, the lower the maximum
eigenvalue allowed).

In the case that LMI (41) is not feasible, then a lower value of ε, i.e. a larger value of N̄s,
should be selected to recalculate the predictor gains.

Remark 3 Design procedure: If the norms of the disturbance and noises are known, then
minimizing the sum

ny∑

i=1

γvi‖vi[t]‖2RMS + γw‖w[t]‖2RMS

along LMI (33) will lead to the observer gains set, L(Ns), that minimize ‖x̃[t]‖RMS . This mini-
mization can be solved with standard convex optimization tools.

6. Controller design

Theorem 6.1 :

Consider the controller algorithm defined by equations (8) applied to system (2). Assume that
during period tk the controller can transmit to the input buffer the value u∗[t + 1]. Then, the
state dynamics of the control system with control algorithm (8) when there is no modelling error
and there is one input update every Nk control periods (with Nk time variant), is described by
the linear time-variant system

x[tk+1+Nk] =

(

ANk+
Nk−1∑

i=0

AiBK

)

x[tk+1] (45)

+

Nk−1∑

i=0

Ai (w[tk+Nk−i]−BKξk)

that is updated every time a new input update is available, and being ξk the disturbance contri-
bution of the 2-step prediction used on the control action calculation that is given by

ξk = w[tk] +Aw[tk − 1] +A2x̃[tk − 1]. (46)

Proof : If during the t = tk-th period the input buffer is accessed (αu[tk] = 1), the control
actions that will be applied at period tk + 1 can be written as a function of the state, state
estimation error and disturbances (using the second row on matrices ACL and BCL in (9)) as

u[tk + 1] = KAx[tk] +KB u[tk] (47)

−KA2x̃[tk − 1]−KAw[tk − 1],

with u[tk] the control action that has been applied since the last input update was available at
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t = tk −Nk−1. Combining (2a) with (47), it leads to

u[tk+1] = Kx[tk+1]−K
(
w[tk]+Aw[tk−1]+A2x̃[tk−1]

)
. (48)

The evolution of the state from the instant in which the input update is done (tk + 1) until the
next input update occurs (at instant tk +Nk + 1) is given by

x[tk+i] = Ax[tk+i−1] +B u[tk+1] +w[tk+i−1] (49)

where i = 2, . . . , Nk+1 and the control action is the value written on the buffer during period tk
(u[tk +1]). Introducing expression (48) in (49) and applying it recursively from i = 2 to i = Nk,
it finally leads to (45). �

Remark 1 : If a new vector gathering the disturbances between input updates is defined as

Wk =
[
w[tk + N̄k]

⊤ · · · w[tk + 1]⊤ ξk
]⊤

,

with N̄k the maximum input update period considered in the control system, then, the system
evolution between input update instants can be written in a compact way as

x[tk + 1 +Nk] = Ak x[tk + 1] +BkWk (50)

(51)

where

Ak = ANk +

Nk−1∑

i=0

AiBK, (52)

Bk =
[

Λ′(Nk) −
∑Nk−1

i=0 AiBK
]

(53)

being Λ′(Nk) the matrix defined as

Λ′(j) = [0 · · · 0

j
︷ ︸︸ ︷

I A A2 · · · Aj−1
︸ ︷︷ ︸

N̄k

]n×N̄kn
, (54)

The closed loop system dynamics depends on the matrix gain K that is applied at input
updating instants (t = tk), and must be designed to assure: the system stability, robustness to
the irregular data availability and a proper attenuation of the state estimation error and the
disturbances.
The difference on the controller design with respect to the predictor design is that the controller

does not know in advance when the control inputs will be again updated, or, in other words, how
many periods an updated control input will be applied until the next input update is possible.
For this reason, the design of a controller gain that depends on each input updating period Nk

is not possible, and then a constant gain K is proposed1. Taking this into account, matrices Ak

1The dependence on Nk would have been possible if a Markov chain were considered, as in the recent works Yu et al. (2009),
Shi and Yu (2011), Wang et al. (2011). This idea will be developed in future work.
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and Bk can be written as a function of the input update period as

Ak = A(Nk) = ANk +
Nk−1∑

i=0

AiBK, (55)

Bk = B(Nk) =
[

Λ′(Nk) −
∑Nk−1

i=0 AiBK
]
. (56)

In the controller design, a stochastic strategy that assures the convergence of the control system
in an average sense, depending on the actual value of βu, is proposed.

Theorem 6.2 Stochastic H∞ controller design: Consider the control algorithm (8) applied to
system (2). Assume that the probability of accessing the input buffer in each control period is βu,
but the resulting input updating period is bounded by Nk ≤ N̄k, i.e., the priorities of the network
are assumed to be changed to guarantee the control input successful transmission in the case that
N̄k − 1 periods have elapsed since the last update. For a given γw, γξ ∈ R

+, assume that there
exist symmetric positive definite matrices P ,Q ∈ R

n×n and matrices X ∈ R
nu×n such that










MA(1) MB(1)
⊕N̄k

N=1 Q
...

...
MA(N̄k) MB(N̄k)
P − I 0

⋆ Γ










≻ 0, (57)

P Q = I, (58)

where pN is the probability of having an input updating period of N , given by pN = (1−βu)
N−1βu,

N = 1, . . . , N̄k − 1, and pN̄k
= 1−∑N̄k−1

i=1 pN . The matrices are defined as follows

MA(N) =
√
pN

(

AN +

N−1∑

i=0

AiBK

)

, MB(N) =
√
pN [Λ′(N) −

N−1∑

i=0

AiBK] (59)

with

Γ = diag{ 1

N̄k

γwI, γξI}. (60)

Then, the system is mean square stable in the absence of disturbances or estimation error,
and, under zero initial conditions, the state is bounded by

E{‖x[t]‖2RMS} < γw‖w[t]‖2RMS + γξ‖ξ[t]‖2RMS . (61)

Proof : Applying Schur complements to matrix inequality (57) and multiplying by
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[
x[tk + 1]⊤, W⊤

k

]
on the left and by its transpose on the right it finally leads to

N̄k∑

N=1



pN (A(N)x[tk + 1] +B(N)Wk)
︸ ︷︷ ︸

⋆

⊤
P (⋆)





− x[tk + 1]⊤(P − I)x[tk + 1]

− γw

N̄k

N̄k∑

N=1

pNw[tk +N ]⊤w[tk +N ]− γξξ
⊤
k ξk < 0. (62)

If a Lyapunov function is defined as V[t] = x[t]⊤Px[t], the first addend of the previous
expression represents E{V[tk+1 + 1]}, that is the expected value of the Lyapunov function for
the next control period. Then, under zero disturbance and zero state estimation error condition,
the convergence in average is assured (E{V[tk+1 + 1]} < V[tk + 1]). Adding the expression (62)
from k = 0 to k = K > 0 it leads

K∑

k=0

E{V[tk+1 + 1]} − V[tk + 1] + x[tk + 1]⊤x[tk + 1]

<
γw

N̄k

K∑

k=0

N̄k∑

N=1

w[tk +N ]⊤w[tk +N ] + γξξ
⊤
k ξk.

Assuming null initial state (x[tk +1] = 0), dividing by K and taking the limit when K tends to
infinite, then (61) is obtained. �

The previous result needs the assumption that Nk can not take values above N̄k. This is
only true if the network can guarantee the control inputs transmission when N̄k − 1 periods
have elapsed without any input update. If the network can not assure this, but N̄k is selected
according equation (7), Nk can take larger values, but with a very low probability ε. Therefore,
the gain can be designed following the previous procedure, but a test for stability that takes into
account the unboundedness of Nk is needed. The next result expresses this stability test.

Theorem 6.3 : For a given controller matrix gain K, if the probability of successful transmis-
sion of the control input in each period is βu, a sufficient condition to assure that the closed loop
is stable in the average sense in the absence of disturbances and for all the possible sampling
scenarios (from Nk = 1 to ∞) is the existence of a symmetric positive definite matrix P ∈ R

n×n

such that the following LMI condition hold

βu(I−K̄)T vec−1
{
(I−β̄uA

T⊗AT )−1vec{ATPA}
}
(I−K̄)

+ K̄TPK̄+βuSym
{
K̄TP (I−β̄uA)−1A(I−K̄)

}
−P ≺0 (63)

being K̄ = (I −A)−1BK, β̄u = 1− βu.

Proof : Let us define the Lyapunov function at the instant in which a new control action is
updated as Vk = xTk Pxk. In the absence of disturbances, the expected value of the Lyapunov
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function in the next instant when a new control action is updated is given by

E{Vk+1}=
∞∑

N=1

βu(1−βu)
N−1xT

k



AN+

N−1∑

j=0

AjBK





︸ ︷︷ ︸

⋆

T

P (⋆)xk

Taking into account that
∑N−1

j=0 Aj = (I−A)−1(I−AN ) it follows

E{Vk+1} = xT
k

∞∑

N=1

βuβ̄
N−1
u

(
AN

(
I−K̄

)
+K̄

)

︸ ︷︷ ︸

⋆

T
P (⋆)xk.

If the infinite summation is developed, using the encapsulating sum formula, the following com-
pact form can be obtained

E{Vk+1} = xT
k

(
βu(I − K̄)Tvec−1

{
(I − (1− βu)A

T ⊗AT )−1vec{ATPA}
}
(I − K̄)

+K̄TPK̄ + βuSym{K̄TP (I − (1− βu)A)−1A(I − K̄)}
)
xk. (64)

From this expression it is straightforward to show that (63) is equivalent to condition E{Vk+1} <

Vk. �

In the case that LMI (63) is not feasible, then a lower value of ε, i.e. a larger value of N̄k,
should be selected to recalculate the controller gain.

Remark 2 : If the norms of the disturbance and the estimation error effect of the two-step
prediction ξk are known, then, minimizing the sum γw‖w[t]‖2RMS + γξ‖ξ[t]‖2RMS subject to
LMI (57) and (58) will minimize ‖x[t]‖2RMS .
The norm of ‖ξk‖2RMS is not previously known but it can be bounded by

‖ξ[t]‖2RMS < ‖I +A‖22‖w[t]‖2RMS + ‖A2‖22‖x̃[t]‖2RMS , (65)

where the norm of w[t] is assumed to be known, and where the norm of x̃[t] is the resulting
bound on the predictor design.

The optimization problem presented in Remark 2 is not an strict LMI problem due to bilinear
equality constraint (58). As stated in El Ghaoui et al. (1997), this kind of nonconvex feasibility
can be solved using the complementarity linearization algorithm following the next procedure.
First, the optimization problem presented in Remark 2 is rewritten as

min trace(PQ)

subject to (57),

γw‖w[t]‖2RMS + γξ‖ξ[t]‖2RMS < γ̄ (66)
[
P I

I Q

]

� 0 (67)

where γ̄ is a real positive value. The above nonlinear minimization problem, where γ̄ must be
minimized, can be solved using the following bisection algorithm over a cone complementarity
iterative algorithm.
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Step 1 Choose a large enough initial γ̄u such that there exists a feasible solution to LMI condi-
tions (57), (66) and (67) with γ̄ = γ̄u. Set γ̄l = 0, and set initially γ̄ = 1

2(γ̄l + γ̄u).

Step 2 Set k = 0 and find a feasible solution set [P k,Qk,Kk, γkw, γ
k
ξ ], satisfying (57), (66) and (67).

Step 3 Solve the following LMI problem for the decision variables P , Q, K, γw and γξ:

min trace(P k Q+ P Qk)

subject to (57), (66), (67)

set k = k + 1, P k = P , Qk = Q.

Step 4 If k < kmax, for a given prescribed maximum number of iterations kmax, and (57) is not
satisfied after replacing Q by P−1, then return to Step 3. If k < kmax and (57) are satisfied,
update the upper bound on γ̄ as γ̄u = γ̄, store the actual controller gain K, and go to Step
5. If k = kmax, update the lower bound on γ̄ as γ̄l = γ̄ and go to step 5.

Step 5 If γ̄u − γ̄l > δ, for a given small δ, update γ̄ with γ̄ = 1
2(γ̄l + γ̄u) and go to Step 2. If

γ̄u − γ̄l ≤ δ exit with the last stored solution K in Step 4.

7. Example

Consider the 3-input, 3-output, 6th order unstable LTI plant from Hristu-Varsakelis and Zhang
(2008) defined by matrices

A =











1.1 0 0 0 0 0
−1.5 0 −0.75 −1.5 −0.75 −0.75
−1.1 0 0 −1.1 0 0
0 0 0 1.1 0 0
1.1 0.75 0 1.1 0 −0.75

−0.75 0 −0.75 −0.75 0 −0.75











,B =











1 0 1
1 −1 0
−1 1 0
0 0 −1
1 0 1
0 −1 0











,

C =





1 0 1 0 0 0
0 1 0 0 1 −1
0 0 0 −1 0 0



 .

Assume that there is a network where the probabilities of successful transmission of packets
containing either all data measurements from sensors or all control actions from the controller
are βy = βu = β = 0.6. Assume a disturbance bounded by the norm ‖w‖RMS = 0.01, and
two different measurement noise levels bounded by ‖vl‖RMS = 0.01 (low) and ‖vh‖RMS = 0.1
(high), affecting the three measurements. The maximum number of periods between samples,
with a probability of 1 − ε = 0.999 results to be N̄s = N̄k = 9. Two strategies are compared
for both noise levels, a constant predictor gain L and a varying one depending on the sampling
period Ls = L(Ns) (Ns = 1, . . . , 9). Following the results in section V and VI, the bounds
on the prediction error ‖x̃‖RMS , on the two-step prediction error ‖ξ‖RMS and on the state
tracking error ‖x‖RMS are obtained, as well as the predictor and controller gains. Both the
LMI (41) and (63) are feasible with the computed gains and, therefore, stability is guaranteed.
Table 1 shows the errors RMS norm. It can be appreciated how the use of a varying predictor
gain depending on the sampling period, allows to decrease the state tracking error ‖x‖RMS in
approximately 15% for both low measurement noise and high measurement noise. Figure 2 shows
the norms of the predictor gains as a function of the number of periods between samples, Ns for
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Table 1. Comparative results of the four situations

Strategy ‖x̃‖RMS ‖ξ‖RMS ‖x‖RMS

L(Ns), ‖vl‖RMS 0.4581 1.3514 2.5374
L, ‖vl‖RMS 0.5497 1.6204 2.9430

L(Ns), ‖vh‖RMS 0.7722 2.2745 3.9284
L, ‖vh‖RMS 0.9054 2.6662 4.5183

Ns

‖L
(N

s
)‖

2

1 2 3 4 5 6 7 8 9
2

3

4
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10

11

Figure 2. Norm of the predictor gain as a function of Ns. ’-’:varying L(Ns), high noise. ’−’: varying L(Ns), low noise.
’.−’:constant L, high noise. ’−−’: constant L, low noise.

‖x
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Figure 3. State stabilization transient. States (x), control input (u) and prediction error (x̃) vector norms for ‖vl‖RMS =
0.01 an ‖vh‖RMS = 0.1 . ’−’ varying L(Ns), ’−−’ constant L

each of the different proposed scenarios (low and high noise measurement level, and constant vs.
varying gain).
In figures 3 and 4 a simulation of the proposed controller and the sampling and input updating

instants are shown. It can be appreciated that the proposed approach with a varying predictor
gain has a lower prediction error, and, therefore, the performance improves the one obtained
with a constant gain observer.
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Figure 4. Measurement and control input updating periods Ns, Nk respectively

8. Conclusions

In this work, an inferential control scheme for networked control systems has been proposed.
The plant has a unitary input buffer where the inputs updates are written by the controller
through the network, and a zero order hold that reads every T seconds the value stored in
the buffer to apply it to the process. There is also an output unitary buffer where the sensor
measurements are written every T seconds synchronously with the inputs update. This buffer
sends the outputs sampled measurements to the controller through the network. The network is
assumed to have restricted accessibility and to induce delays. An observer-controller algorithm
has been proposed where the network access and transmission related problems (modeled by
the probability of successful transmission at every period) are transformed into a problem of
random missing measurements and sporadic input updates (or time-varying sampling and control
periods).
A model based predictor that attenuates disturbances and measurement noise, and takes into

account the variability on the sampling period has been designed assuring H∞ performance.
It predicts the state in future periods to calculate the control action as a state feedback. The
controller is designed to attenuate the effect of the disturbances and the state prediction error,
taking into account the variability on the input update period, and assuring an H∞ performance.
The predictor is designed first, and the bound on the estimation error obtained from the predictor
design is used in the controller design.
The presented results could be extended to adapt the controller and observer gains to a slowly

time varying network accessibility constrains. The idea would be to estimate the probability of
successful transmission and to define the gains as a function of that probability. This idea will
be developed in a future work.
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