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Abstract

The last few years have witnessed a rapid evolution in the literature evaluating mutual fund
performance using frontier techniques. The instruments applied, mostly DEA (Data Envelopment
Analysis) and, to a lesser extent, FDH (Free Disposal Hull), are able to encompass several dimensions
of performance, but they also have some disadvantages that might be preventing a wider acceptance.
The recently developed order-m and order-α partial frontiers overcome some of the disadvantages (they
are robust with respect to extreme values and noise, and do not suffer from the well-known curse of
dimensionality) while keeping the main virtues of DEA and FDH (they are fully-nonparametric). In
this article we apply not only the non-convex counterpart of DEA (FDH) but also order-m and order-α
partial frontiers to a sample of US mutual funds. The results obtained for both order-m and order-α
are useful, since a full ranking of the mutual funds’ performance can be obtained. We merge these
methods with the literature on mutual fund performance persistence. By combining the two literatures
we derive an algorithm which establishes how the choice of m and α parameters intrinsic to order-m
and order-α (respectively) relate to the existence of performance persistence and the contrarian effect.
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1. Introduction

Investors are increasingly interested in sound performance evaluation of available investment funds and,

in this regard, they rely on risk-adjusted measures to make their choices. The development of mutual

fund industries has given rise to a large body of literature. In this specific field, one issue of particular

interest to investors, managers, and academics, and which has been extensively analyzed is, precisely, the

performance of funds. From a methodological point of view, the existing literature dates back to Treynor

(1965), Jensen (1968) and Sharpe (1966). Since these pioneering contributions, the literature has evolved

to propose newer approaches to performance measurement. Some of them have been surveyed by Ippolito

(1993), Grinblatt and Titman (1995), Cesari and Panetta (2002) or, in the particular field of hedge funds,

Eling and Schuhmacher (2007).

In contrast to what we might call traditional approaches to mutual fund evaluation, since the late 1990s

interest has been growing in applying the so-called frontier techniques, both parametric and nonparametric

(see Murillo-Zamorano, 2004, for a survey) to evaluate the performance of mutual funds. The number

of proposals, both from theoretical and empirical points of view, is now substantial, including Murthi

et al. (1997), McMullen and Strong (1998), Morey and Morey (1999), Wilkens and Zhu (2001), Basso and

Funari (2001), or Choi and Murthi (2001), among others. Indeed, due to the now remarkable number of

proposals, some initiatives have been taken to review early contributions, such as Eling (2006), Glawischnig

and Sommersguter-Reichmann (2010), or the monograph by Gregoriou and Zhu (2005) in the specific fields

of hedge fund and commodity trading advisor (CTAs) performance evaluation.

These studies examine the advantages and disadvantages of applying nonparametric frontier

techniques—mostly Data Envelopment Analysis (DEA)—to evaluate the performance of mutual funds.1

The main advantage of these approaches is one of the features which has led to the popularity of DEA,

i.e. the ability to deal simultaneously with several inputs and outputs, and to combine them in a single

performance indicator—namely, the so-called efficiency score. This ability fits conveniently into the con-

text of mutual fund performance evaluation, where one may be interested in extending the approach to

include other dimensions apart from mean and variance, thus allowing the inclusion not only of skewness,

but also of other relevant dimensions. DEA also has the ability to weight easily, by selecting the optimal

weight for each dimension.

However, one a disadvantage may have prevented some academics and practitioners from using DEA

and related techniques such as Free Disposable Hull (FDH), namely, the so-called “curse of dimensionality”,

which is related to problems associated with a low number of DMUs (Decision Making Units) relative to

the number of input-output variables. This phenomenon not only affects both FDH and DEA estimators,

but is also shared by other nonparametric approaches in statistics and econometrics. Although the issue

was reported a while ago, few empirical applications have actually acknowledged its severity. However,

some authors have taken the problem very seriously, claiming that “a number of applied papers using

1Some recent contributions to the DEA literature include, Dulá and López (2013), Samoilenko and Osei-Bryson (2013),
Lamb and Tee (2012), or Olesen and Petersen (2013), among others. In the particular case of applications of DEA to the
mutual funds literature see, for instance, Pérez Gladish et al. (2007).
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relatively small numbers of observations with many dimensions have appeared in the literature, but we

hope that no more will appear” (Simar and Wilson, 2008, p.441). The curse of dimensionality severely

affects those cases in which the number of inputs and outputs might vary, as well as the number of units

under analysis.

From a theoretical point of view, the literature has evolved to provide solutions to the curse of di-

mensionality. The order-m (Cazals et al., 2002) and order-α (Daouia and Simar, 2007) estimators are

robust indicators not only to the curse of dimensionality itself, but also to the presence of outliers and

noise in the data, to which both DEA and FDH are particularly sensitive. Neither order-m nor order-α

require convexity assumptions and, in addition, they both have several desirable properties that are use-

ful for drawing inferences about efficiency. As Wheelock and Wilson (2009) indicate, while keeping the

fundamental advantages of DEA and FDH (i.e., being fully-nonparametric), they overcome some of their

shortcomings, since they are
√
n consistent, do not suffer from the curse of dimensionality, and are robust

to outliers and noise.

However, empirical applications are still scarce. In the particular context of mutual fund performance

evaluation, only Daraio and Simar (2005, 2006, 2007b) have considered not only FDH but also these

robust methods. Although their theoretical contributions are highly valuable, they confine their analysis

almost entirely to order-m estimators. In our paper, we update the contributions by Daraio and Simar

(2005, 2006, 2007b) in several directions. First, we stretch the data to more recent dates, i.e., we focus

on the period 2001–2011 whereas Daraio and Simar (2005, 2006, 2007b) consider sample periods for the

early 2000s only; in addition, we have a much tighter focus on the application than on the specific details

of the techniques. Second, our analysis is not confined to order-m techniques only. Taking into account

the recent developments in the theoretical literature on efficiency and productivity analysis, we perform

a comparison of classical approaches (FDH) with the new contributions, considering both Cazals et al.’s

order-m estimators and Daouia and Simar’s (2007) order-α estimators. This robustness analysis has

relevant implications, since the analyst (especially from a practitioner’s point of view) might be puzzled

if different methodologies yield different results.

Related to this, one of the main contributions of the paper is to analyze the robustness, in terms of

persistence, of results when applying partial frontiers. Should the applied methodologies be robust, it

would be possible to forecast mutual fund efficiencies where they persist over time. Given that the partial

frontiers methodologies provide us with funds’ rankings, the practitioner, or an individual investor, could

use this information to buy the best (winner) and sell the worst (loser) funds. It would therefore be possible

to evaluate which method is best able to discriminate between best and worst funds. This approach stands

along with the large body of literature devoted to measuring whether certain fund managers consistently

achieve higher (or lower) returns than their competitors. As one key component of the fund selection

process, most individual investors and their advisors spend a significant amount of time studying historical

performance of mutual funds, since it contains useful information about future performance, i.e. studying

their persistence. As indicated by Droms (2006), “winners in one year tend to remain winners in the

following year and losers have an even stronger tendency to remain losers” (Droms, 2006, p.60). This
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particular topic has gained importance in the mutual fund performance evaluation literature, and several

significant studies have been published since the early 1990s acknowledging this reality (see, for instance

Grinblatt and Titman, 1992; Brown and Goetzmann, 1995; Carhart, 1997; Hendricks et al., 1993; Elton

et al., 1996; Hendricks et al., 1993, among others). More recently, Pätäri (2009) has provided an extensive

literature review of mutual fund performance persistence, and Cremers and Petajisto (2009) and Loon

(2011) have proposed new methods to report evidence of persistence, and also on how investors respond

to previous performance rankings.

As Pätäri (2009) points out, analysis of persistence is often sensitive to methodological choices, espe-

cially in the case of equity funds. These choices are either parametric or nonparametric methods that

focus on the analysis of persistence as a static association between the performance of different time

periods. To avoid this sensitivity to the method and provide enhanced robustness, our paper focuses

on the economic relevance of mutual fund persistence rather than adopting a static approach. Related

to this, Carhart (1997) proposed a framework in which the most relevant result is the economic value

added of persistence. Following this approach, we will construct equally weighted portfolios that follow a

buy-and-hold strategy based on the past efficiencies of mutual funds obtained using partial frontiers. This

strategy will help guide investors’ choices, based on the assumption that a good methodology to measure

mutual fund efficiency is one that provides investment recommendations which, when followed, yield good

results; in other words, a methodology that captures the persistence of managers’ skills over time.

The paper is structured as follows. In section 2 we discuss the advantages and disadvantages of the

most popular nonparametric techniques for efficiency measurement, namely, DEA and FDH, along with

the new partial frontiers. Section 3 presents the underpinnings of the persistence analysis. Section 4 and

5 report the data and results, respectively. Section 6 concludes.

2. Mutual fund evaluation using frontier techniques

As noted above, the literature on the evaluation of mutual fund performance using frontier techniques

has grown considerably. Apart from the nonparametric approaches referred to in the previous section,

contributions have also come from the parametric field, where the most popular method is Stochastic

Frontier Analysis, SFA (Lovell and Kumbhakar, 2000). These approaches have to specify a functional

form for the frontier, and choose a distribution for the inefficiency. None of these requirements have

to be met in the case of nonparametric frontier methods. Studies applying parametric frontier analysis

methods to mutual funds include, for instance, Annaert et al. (2003), who considered stochastic Bayesian

techniques. Although these approaches have several advantages, their drawbacks (not only having to

specify a functional form for the frontier and distributions for the inefficiency, but also the assumption of

independence for the inefficiency term) have led many authors to lean towards nonparametric methods.

Within the nonparametric field, we can distinguish between a theoretical view (Sengupta, 1991; Sen-

gupta and Park, 1993; Briec and Kerstens, 2010) or a more applied perspective (apart from the references

provided in the introduction, see also Sengupta, 2000). From a theoretical point of view, Sengupta (1991)
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and Sengupta and Park (1993) provide links between the Capital Asset Pricing Model (CAPM) and

nonparametric estimation of frontiers, whereas Briec and Kerstens (2010) analyze the relation between

the hypothesis of the basic Markowitz (1952) model and efficiency analysis theory, by developing a dual

framework for assessing the degree to which investors’ preferences are satisfied. From a more applied per-

spective, the first specific application of DEA for evaluating the performance of mutual funds was Murthi

et al. (1997), whose main motivation was to overcome the shortcomings of the classical two dimensional

(mean-variance) performance measures.

A careful review of the literature assessing performance of traditional and alternative investment

funds using DEA is provided by Glawischnig and Sommersguter-Reichmann (2010). Their survey implic-

itly suggests that the amount of studies applying nonparametric frontier methods such as DEA greatly

outnumbers others using parametric methods. They conclude that DEA applications in the investment

fund industry can be classified into two categories, namely, traditional and alternative fund performance

evaluation studies. Their survey also implicitly recognizes that the studies applying FDH to mutual fund

evaluation are virtually non-existent. The paper by Daraio and Simar (2006) is also mentioned in their

survey, but only to briefly indicate that their approach was “computationally demanding” (Glawischnig

and Sommersguter-Reichmann, 2010, p.297).2

2.1. Data Envelopment Analysis and Free Disposable Hull

Several measures of efficiency can be used comprehensively to carry out rigorous comparative efficiency

analysis. The DEA efficiency score is a performance indicator obtained by comparing each mutual fund

with the best performers of its objective group. The same underpinnings of DEA are shared by the FDH

estimator. In his early proposals, Tulkens (1993) stressed the relevance of the main difference between

DEA and FDH, namely, DEA rests on the hypothesis of convexity of the attainable set, whereas FDH

does not. If the convexity hypothesis is questionable, DEA might be a wrong measure (i.e. statistically

inconsistent). Both DEA and FDH allow definition of mutual fund performance indexes that can take

into account different risk measures and the costs of investment (e.g., fees). Following Banker et al.

(1984) few assumptions are required for DEA, among which we may highlight the convexity of the efficient

frontier (convexity implies that any convex combination of inputs and outputs is feasible in the production

function), and strong input and output disposability. The efficiency of a fund can be determined by the

relative distance between the observed output and the efficient frontier. Thus, a fund is classified as

inefficient if its output (e.g. return) and input (e.g., risk) are below the best practice frontier.

Banker and Maindiratta (1986) compared the advantages of DEA over parametric methods. In the

context of mutual fund performance evaluation, DEA has the advantage of being a nonparametric analysis

and, as such, does not require any theoretical model as a benchmark, such as the Capital Asset Pricing

Model (CAPM) or the Arbitrage Pricing Theory (APT). Instead, DEA measures how well a fund performs

relative to the best funds. Furthermore, it can address the problem of endogeneity of transaction costs in

2Thanks to the FEAR package for R by Paul W. Wilson this claim is no longer valid (Wilson, 2008). See also
URL:http://http://www.clemson.edu/economics/faculty/wilson/, accessed October 2012.
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the analysis by simultaneously considering expense ratios, turnover, and loads, as well as returns. Basso

and Funari (2001) measured the efficiency of a sample of mutual funds between 1997 and 1999. Their

contribution was to develop a generalized DEA-based performance measure that can integrate both classic

performance measures (such as Sharpe, Treynor, and Jensen) and the approach of Murthi et al. (1997).

Another positive characteristic is that DEA evaluates the performance of a fund in reference to the

best set of funds within the declared objective category. In Banker and Morey (1986) and Kamakura

(1988) controllable categorical variables in the form of outputs are only treated as hierarchically ordered,

e.g. outputs are classified in categories or similar orderings, according to attributes. Basso and Funari

(2003) proposed a DEA categorical variable model in order to find an appropriate model to obtain an

indicator of ethical fund performance. Fund performance is a combination of multiple fund attributes

such as mean returns (outputs), risk (total or systematic) and expenses, and sometimes even fund size,

turnover speed and minimum initial investment (inputs). Employing essentially basic DEA models like

CCR (Charnes et al., 1978) or BCC (Banker et al., 1984), they sought to compare the efficiency of funds

within a category or among several different categories of funds.

This nonparametric approach allows one to estimate an efficient frontier combining mean-variance and

cost efficiency and to further estimate returns to scale for each mutual fund, implying that with DEA the

effect of returns to scale on performance is controlled for (Choi and Murthi, 2001). The next advantage is

that DEA measures efficiency with respect to the efficient frontier, which evaluates the best performance

that can be achieved in practical terms. Another important point is the consideration that DEA provides

an efficient index (the so-called efficiency scores) for each mutual fund, which enables calculation of

the optimal weights for each attribute. And finally, DEA not only measures inefficiency, but also the

magnitude of the inefficiency in the different dimensions. This is considered the greatest advantage of

the DEA method over other approaches for measuring fund performance: namely that DEA reveals the

reason why a fund is inefficient and shows how to restore the fund to its optimum level of efficiency. Choi

and Murthi (2001) and Kuosmanen et al. (2006) argue that economic insights are provided by the slack

variables in the optimization, as they indicate the extent to which each input can be reduced to achieve

an efficiency score of one. Therefore DEA not only measures efficiency, but can also provide guidance as

to how to improve the efficiency of inefficient funds.

In the first stage of the estimation process of this paper we evaluate the performance of the mutual funds

in our sample considering the common non-convex FDH frontier. Although the preceding paragraphs have

focused more closely on DEA, we have chosen its non-convex counterpart, i.e. the FDH frontier because of

its higher flexibility and its asymptotic properties (Park et al., 2000). The set of attainable combinations

of inputs and outputs, which delimits the frontier of the set of possibilities, must first be defined. To

define the efficiency of a given fund we will then measure the distance between the observed value of the

fund variables and the frontier. The Ψ set of possibilities is the set of attainable points (x,y), defined as:

Ψ = {(x,y) ∈ R
p+q
+ |(x,y) are attainable} (1)
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where x ∈ R
p
+ is the vector of inputs and y ∈ R

q
+ is the vector of outputs. In the particular case of

output efficiency scores on which we focus, we will characterize the production set Ψ considering output

feasibility sets that we define for all x ∈ R
p
+. Hence, for all possible input values the set of possible values

of y is

Y (x) = {y ∈ R
q
+|(x,y) ∈ Ψ} (2)

In this particular setting, the Farrell (1957) measure of output-oriented efficiency in this output-

oriented setting for a given mutual fund (x,y) is defined as

θ̃(x,y) = sup{θ : (x, θy) ∈ Ψ} = max{θ : θy ∈ Y (x)}, (3)

where θ(x,y) ≥ 1 is the proportionate expansion of outputs required for a mutual fund with the input-

output mix (x,y) to become efficient, i.e. to achieve the value of 1, since the efficient frontier corresponds

to those funds whose θ(x,y) = 1. The Farrell (1957) input-oriented efficiency score would be defined

analogously.

If we were considering either DEA or FDH, the efficiency scores would be obtained by comparing to

the full frontier of all funds, defining the maximum output that is technically feasible for a given level

of inputs—recall we are adopting an output orientation. Therefore, in expression (3), θ(x,y) ≥ 1 is

the proportionate expansion of outputs required for a mutual fund with the input-output mix (x,y) to

become efficient, i.e. to achieve the value of 1, since the efficient frontier corresponds to those funds whose

θ(x,y) = 1. The Farrell (1957) input-oriented efficiency score would be defined analogously. The FDH

estimator of Ψ, based on a sample of n observations (xi,yi) is the free disposal closure of the reference

set {(xi,yi)|i = 1, . . . , n}, and it can be defined as:

Ψ̂FDH = {(x,y)|x ≥ xi,y ≤ yi, i = 1, . . . , n}. (4)

2.2. Order-m and order-α estimators

The sensitivity of the deterministic DEA and FDH to measurement errors, outliers, sampling errors, and

missing variables is an ongoing concern. In this regard, it is worth noting that the return data from

financial markets are typically much more reliable and accurate than empirical production data usually

studied with DEA. Therefore the problem of measurement error could seem a priori a less serious concern

in the present context. However, the problem of outliers can actually occur in this setting if the return

possibilities set includes assets that, for whatever reason, are infeasible investment alternatives for the

fund manager. By careful modeling of the investment alternatives as well as the investment criteria and

constraints facing the fund managers, the problem of outliers can be alleviated. For instance, Kuosmanen

(2007) constructs benchmark portfolios directly from stocks and other assets, and his results indicate that

heterogeneity of the evaluated funds was not obscuring the efficiency measures—although it could affect

their ranking. Neither does sampling error seem to be a major problem: return data for stocks, bonds, and
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other investment alternatives are available, and modeling the fund manager’s entire investment universe

is technically feasible. Moreover, the sampling theory of the DEA and FDH estimators is nowadays well

understood and those insights can also be directly applied in the present context.

The sensitivity of both DEA and FDH to the presence of outliers is caused by the fact that both

methods envelop all observation points quite closely. All the nonparametric envelopment estimators of

frontiers are particularly sensitive to extreme observations, or outliers, which may disproportionately

influence the evaluation of mutual fund performance. In addition, both DEA and FDH estimators, like

other nonparametric measures, are affected by the curse of dimensionality due to their slow convergence

rate (Simar and Wilson, 2008, p.441). As indicated in the introduction, the problem is especially severe

when the number of inputs and outputs is high with respect to the sample size, or when the number

of inputs and outputs is unclear. On this particular point, Tulkens (1993) also argues that, although

sensitivity to outliers increased with the strength of the postulates made in constructing the production

reference set, it is lower with FDH.

Taken together, the aforementioned problems may be serious enough to jeopardize the FDH estimates.

To solve these problems, some additional procedures are required in order to make FDH estimates more

robust. Several approaches have already been proposed in the literature. For instance, Wilson (1993, 1995)

introduced descriptive methods to detect influential observations in nonparametric efficiency calculations.

More recently, Cazals et al. (2002), Daraio and Simar (2005), Aragon et al. (2005) and Daouia and

Simar (2007) have developed robust alternatives to the DEA and FDH estimators. Specifically, the

nonparametric estimation order-m method developed by Cazals et al. (2002) is much more robust to both

outliers and the curse of dimensionality. These authors introduced the concept of expected maximum

output (or minimum input) frontier. It reflects a more realistic benchmark because it is constructed by

comparing the performance of each fund (in terms of its use of inputs) not with the best performing funds

of the group, but considering the expected value of the minimum level of inputs of m funds drawn from

the distribution of funds with a level of output equal to or higher than that of the analyzed fund. The

order-m also allows for statistical inference while keeping its nonparametric nature. We briefly describe

this approach below.

Let us consider the conditional distribution function Fy|x(y0|x0) = Pr(y ≤ y0|x ≥ x0). For a given

level of inputs x0 in the interior of the support of x, consider the m i.i.d. random variables {νj}mj=1, drawn

from the conditional distribution Fy|x(·|x0).
3

Formally, the proposed algorithm (algorithm I) to compute the order-m estimator has the following

steps:

1. For a given level of x0, draw a random sample of size m with replacement among those yi, such

that xi ≤ x0.

2. Obtain the efficiency measures, θ̃i.

3Full technical details can be found in, for instance, Daraio and Simar (2007a).
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3. Repeat steps 1 and 2 B times and obtain B efficiency coefficients θ̃bi (b = 1, 2, . . . , B). The quality

of the approximation can be tuned by increasing B, but in most applications B = 200 seems to be

a reasonable choice.

4. Compute the empirical mean of B samples as:

θ̄mi =
1

B

B∑

b=1

θ̃bi (5)

As m increases, the number of observations considered in the estimation approaches the observed

units that meet the condition xi ≥ x0 and the expected order-m estimator in each one of the b iterations

(θ̃bi ) tends toward the FDH estimator. Thus, m is an arbitrary positive integer value, but it is always

convenient to observe the fluctuations of the θ̃bi coefficients depending on the level of m. For acceptable

values of m, θmi will normally present values higher than unity. When θmi < 1, the i unit can be labeled

as superefficient (Andersen and Petersen, 1993). In addition, from an economic perspective, the order-m

efficiency score has its own interest, since it does not provide the output-efficient frontier, but rather

another reasonable benchmark value of the output for a fund with an x0 level of input: it is the expected

value of the maximum level of output among a fixed number of m funds drawn from the population of

funds with at most the same x0 level of input (Simar, 2003). Please note that these interpretations would

correspond to an output orientation.

As indicated above, three aspects of the FDH methodology deserve special attention, namely, efficiency

by default,4 the presence of outliers and the curse of dimensionality. In the absence of a sufficient number

of similar mutual funds for a comparison, a particular fund is labeled as efficient by default. This efficiency

ranking does not result from any effective superiority, but rather is due to the lack of information that

would allow pertinent comparisons. In addition to this, both the DEA and FDH concepts of efficiency, by

construction, apply both to the fund that presents the lowest level of inputs and to those with the highest

values for at least one output indicator. This extreme form of the sparsity bias that characterizes the

FDH technique ultimately leads to a lack of discrimination (i.e., an inability to rank) among production

units, and constitutes a shortcoming of the FDH approach.

Regarding outliers, nonparametric frontiers are defined by the extreme values of the dimensional space

of inputs and outputs. Therefore, the existence of outliers (atypical observations that differ significantly

from the rest of the data) may considerably influence the estimation of efficiency, so it is important to

verify that the divergences do not result from evaluation errors. Due to the trimming nature of the

order-m frontier, this estimator does not envelop all the observed data points (even for large values of m)

and, therefore, it is more robust to outliers and/or extreme values. Finally, order-m estimators are much

less affected by the curse of dimensionality than either DEA or FDH because of some of their statistical

properties—they are
√
n-consistent and asymptotically normal.

Apart from the order-m estimators, another family of partial frontiers has been proposed to overcome

4The reader interested in the details of this concept can consult, for instance, Tulkens (1993).
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both the influence of outliers and the curse of dimensionality, namely, the order-α quantile frontiers

(Daouia and Simar, 2007). The idea behind the order-α quantile-type frontier is to go the other way

round, i.e., to determine the frontier by first fixing the probability (1− α) of observing points below this

order-α frontier. Therefore, the order-α quantile frontiers reverse the causation of order-m and choose the

proportion of the data lying directly below the frontier.

Order-α estimators also have better properties than the usual nonparametric frontier estimators (either

DEA or FDH). They are consistent estimators of the full frontier, since the “order” (in this case the α

order) of the frontier is allowed to grow with sample size. They have also the advantage, shared with

order-m, that the asymptotic properties are the same as those of FDH. But perhaps the main advantage,

also shared with order-m, is that in finite samples, the new estimators do not envelop all the data, and

they are therefore more robust to outliers than FDH or DEA. As indicated by Simar and Wilson (2008),

they have the side benefit of detecting outliers (Simar and Wilson, 2008, p.480). The order-m ideas can

easily be adapted to order-α quantile type-frontiers. The underpinnings of order-α were initially developed

for the univariate case by Aragon et al. (2005) and extended to the multivariate setting by Daouia and

Simar (2007), and are similar to those of quantile regression (Koenker, 2001).

Recall that in the context of order-m partial frontiers, a mutual fund operating at (x0,y0) is bench-

marked against the expected maximum output among m peers drawn randomly from the population

of funds with input levels of at least x0. In contrast, order-α quantile frontiers benchmark the mutual

fund considered at (x0,y0) against the output level not exceeded by (1 − α)× 100% of funds among the

population of funds using less input than x0.

Following Simar and Wilson (2008), for α ∈ (0, 1], the α-quantile output efficiency score for the mutual

fund operating at (x0,y0) ∈ Ψ can be defined as

θα(x0,y0) = sup{θ|Fy|x(θy0|x0) > 1− α} (6)

Clearly, θα(x0,y0) converges to the usual Farrell-Debreu output efficiency score θ(x,y) (i.e. to the

FDH estimator) when α → 1. As Daraio and Simar (2007a) point out, the order-α efficiency score has

an interesting interpretation. In cases where θα(x0,y0) = 1, the fund is “efficient” at the level α× 100%,

since it is dominated by mutual funds using less input than x0 with probability 1 − α. In those cases

where θα(x,y) > 1, the unit (x0,y0) has to increase its output to achieve the output efficient frontier of

level α × 100%. Analogously to the case of the partial order-m frontiers, the case where θα(x,y) < 1 is

feasible, indicating that a particular fund (x,y) can decrease its output by a factor θα(x,y) to reach the

same frontier—a case in which this fund would be labeled as super-efficient with respect to the order-α

frontier level. Finally, we can apply the plug-in principle to obtain an intuitive nonparametric estimator

of θα(x,y) = 1 by replacing Fy|x(·|·) with its empirical counterpart to obtain:

θ̂α,n(x,y) = sup{θ|F̂y|x,n(θy|x) > 1− α} (7)
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Again, it is clear that when α → 1, then θ̂α,n(x,y) converges to the FDH input efficiency score.

As Daouia and Simar (2007) indicate, in practice the choice of the “tuning” parameters, both m and α,

may be governed by their economic interpretation. Whereas in the case of order-m the benchmark could

be the best of m virtual competitors, in the case of order-α it would be against a level of output with a

probability (1− α)× 100% of being dominated.

Regarding the choice of partial frontier estimator, Daouia and Simar (2007) conclude that both ap-

proaches (order-m and order-α) provide nonparametric estimators of the efficient frontier which are more

robust than the usual envelopment estimators (like FDH/DEA estimators). It could be argued that the

α-quantile approach is easier to interpret, since the parameter α is just the selected level of the quantile.

The choice of the m parameter is more intricate, although in our particular setting it can be interpreted as

the number of potential funds against which the benchmark is set to determine the performance of a par-

ticular fund. As Daouia and Simar (2007) indicate, although the choice of m can also be indirectly piloted

by the percentage of observed funds staying above the frontier for a given m, the α-quantile approach

seems to be more direct.

3. Partial frontiers and persistence analysis of mutual fund performance

3.1. Measuring the performance persistence of partial frontiers

In the previous sections we have proposed and described the order-m and order-α estimators to evaluate

mutual fund efficiency. We now propose a method for testing the performance of these methods in

guiding the selection of funds, i.e. how appropriate these methods are to choose among several investment

alternatives. For this, we must evaluate the performance of each method itself (order-m and order-α)

along with the choice of the corresponding tuning parameters, i.e., we will also evaluate how choosing

different levels of m and α might influence the results. This would provide additional usefulness to these

parameters, i.e. not only determining the number and importance of outliers (which is always difficult

and, up to certain point, subjective), but also what its implications are when selecting among different

funds.

In this task, we must bear in mind that an important use of mutual fund performance measures is to

assess the possible value added by fund managers. Since the seminal contributions of Sharpe (1966) and

Jensen (1968), many publications have contributed to the literature analyzing the efficiency of mutual

funds. This literature has evolved hand in hand with the evolution of asset pricing models. Accordingly,

nowadays it is common practice to the use multifactor models including those factors proposed by Fama

and French (1993) and Carhart (1997). According to this literature, the return of the fund is compared with

what one could expect depending on the asset pricing model considered. The gap between the two returns

is usually attributed to the managers’ value added. Sharpe (1991, 1992) defines a general framework for

evaluating fund efficiency, according to which the efficiency will be the gap between the fund’s performance

and that yielded by a set of benchmarks or risk factors which reproduces the investment style of the same

fund. In this particular framework, the fund’s results are thought to be those one might expect from
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active management—i.e. by managers—whereas those obtained theoretically are only attributable to

passive management. If a given manager provides value added to the mutual fund, its results should be

better than those yielded by the simple and passive investment in some particular benchmarks.

However, even more important than the existence of value added today is the fact that we can expect

this value to hold in the future. Indeed, both individual and institutional investors will be interested

in a methodology for efficiency evaluation which helps them to choose those funds with the best result

prospects. Accordingly, a broad literature focused on the analysis of mutual fund performance persistence

has emerged over the last few years (see, for instance Carhart, 1997; Bollen and Busse, 2005). In other

words, the attempt is not only to measure managers’ (likely) value added, but also to analyze if it persists

over time. Only if this is the case can a method to measure mutual fund efficiency offer useful guidance

for investors.

Therefore, we will analyze the performance of FDH, order-m and order-α methods taking into account

their ability to select efficient funds in the future. In fact, an appropriate methodology for measuring

mutual funds’ efficiency is one offering investment recommendations that, when followed, provide better

performance; in other words, a methodology that captures the persistence of managers’ skills over time.

Following some relevant contributions in the performance persistence literature (see, for instance Carhart,

1997; Bollen and Busse, 2005) we will analyze whether order-m and order-α methods have the ability to

rank funds according to their performance. Specifically, we construct equally-weighted portfolios (Grin-

blatt and Titman, 1992) that follow investment strategies based on the past efficiency of mutual funds

using results yielded by FDH, order-m and order-α methods. Consecutively, at the end of each year port-

folios are rebalanced, investing (selling) the best (worst) mutual funds according to the efficiency ranking

obtained using either FDH, order-m or order-α methods.

Previous contributions have also considered isolating the performance persistence of best and worst past

mutual funds, with the aim of analyzing possible asymmetries in managers’ abilities to handle performance

persistence. For instance, Carhart (1997), Lynch and Musto (2003) and Bollen and Busse (2005) show

different levels of persistence for the best and worst mutual funds. The rebalancing of the portfolio and

the approach of different quantile levels is a useful procedure in finance for making the fund more robust.

For instance, Fama and French (1993), or Carhart’s (1997) momentum factor are constructed following

similar procedures.

In this line, in order to distinguish among the best and worst funds we consider different quantile

levels for the top and bottom of the mutual fund efficiency ranking. Specifically, we consider strategies for

the 5%, 10%, 20% and 40% of the mutual funds at the top and bottom of the ranking—according to the

previous year’s efficiency. We therefore build 96 portfolios for order-m and order-α methods (2 methods

× 8 quantiles × 6 parameters) and 8 portfolios for FDH (one for each quantile at the top and bottom).

The following step is to compute the daily return for each one of these 104 portfolios, and to measure

their efficiency according to the method proposed in the following subsection.
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3.2. Measuring strategy performance

Once the portfolios have been built according to the strategies described in the previous paragraphs,

the next step is to analyze the results. If the manager effect persists over time, a good methodology

for measuring mutual fund efficiency will be able to isolate that effect, thus leading to good results in

the future. We should bear in mind that each portfolio is linked to an investment strategy on selected

funds according to their past efficiency, which we estimate by selecting different parameters for the partial

frontiers—m, in the case of order-m, and α, in the case of order-α.

The objective is now to evaluate the efficiency of these portfolios, which we could do via partial frontiers.

However, this might entail an endogeneity problem, because this methodology involves evaluating the

results of portfolios constructed considering the information obtained with the same methodology. In

order to avoid this, we evaluate the portfolios with an “independent” method which has been intensely

used by the financial literature on portfolio management.5 The multifactor linear model considered would

be represented as:

rp,t = αp + βp,mrm,t + βp,smbrsmb,t + βp,hmlrhml,t + βp,wmlrwml,t + εp,t (8)

where rp,t is the excess return of the portfolio. The coefficients on the right-hand side correspond to the

Fama and French (1993) factors: excess market return (rm,t), the return of small stocks minus the return

of large stocks (rsmb,t), and the difference of returns between higher and lower book-to-market ratio stocks

(rhml,t). The remaining factor is the momentum factor, i.e. the return of past winners minus past losers

(rwml,t), proposed by Carhart (1997); εp,t is the error term.

According to this model, the efficiency or performance of the portfolio is measured by the αp parameter.

If the model is used for evaluating mutual funds, when αp is positive (negative) it implies that the

fund yields higher (lower) return than that expected by the model, which can be interpreted as positive

(negative) performance, i.e. the managers are (are not) able to add value. In our case, model (8) is used

to evaluate the efficiency of those portfolios using investment strategies based on past efficiency, estimated

using FDH, order-m and order-α methods. If these methods are able to reflect managers’ value added, and

this persists over time, the corresponding portfolios will have efficiencies (as measured by αp) significantly

different from zero. In other words, the method to measure efficiency (either FDH, order-m or order-α)

is a useful aid for the investor in selecting the mutual fund in which to invest.

In addition to measuring the efficiency of portfolios using αp, we should also measure whether this is

significant or not. The attempt is to distinguish whether the efficiency obtained is actually due to the

investment strategy based on past rankings of mutual funds or, on the contrary, it is simply due to a

spurious effect of a dynamic investment strategy. Therefore, for each quantile referred to in section 3.1

we generate 2,000 portfolios which follow a rebalanced and random strategy of investment in the mutual

funds of the sample. For any portfolio chosen randomly we run model (8) and estimate a value for αp.

5See, for instance, Kosowski et al. (2007), Kacperczyk and Seru (2007), Huij and Verbeek (2007), Fama and French
(2010), Busse et al. (2010), or Barras et al. (2010), among others.
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Then, the set of 2,000 αp’s for each of the 8 quantiles is the expected distribution of efficiencies for any

dynamic strategy that invests in the mutual funds of the sample. If there is persistence in managers’ value

added and it is captured by the FDH, order-m or order-α methods, then the efficiency (αp) obtained by

portfolios based on past efficiency will be outside the central 95% of this distribution. In other cases, the

results for the portfolios will not be very different from those one might obtain randomly.

4. Data

4.1. Mutual fund sample

The empirical analysis used a sample of 1,450 US mutual funds from Morningstar. The sample period

runs from March 1 2001, to May 31 2011. Mutual funds are grouped according to their investment

styles as defined by the Morningstar Style Box. Previous studies such as Teo and Woo (2004) have also

demonstrated the suitability of using the Style Box.

4.2. Inputs and outputs selection

As indicated in previous sections, one of the main benefits of using frontier techniques to evaluate the

performance of mutual funds is their ability to handle multiple inputs and outputs in the model. As

indicated by Basso and Funari (2001), the “DEA approach allows defining mutual fund performance

indexes that can take into account several inputs and thus consider different risk measures (standard

deviation, standard-semi deviation and beta) and redemption cost.”

DEA, FDH or the partial frontiers order-m and order-α approaches may include other outputs apart

from the traditional mean return measure. In computing their portfolio efficiency index Murthi et al.

(1997) considered the standard deviation of returns, expense ratio, loads and turnover as inputs, and

mean gross return as output. Choi and Murthi (2001) applied the same inputs and outputs as Murthi

et al. (1997) although they adopted a different DEA formulation. Wilkens and Zhu (2001) performed

their study with standard deviation and percentage of periods with negative returns as inputs, and mean

return, minimum return and skewness as outputs. Chang (2004) proposed a new non-standard DEA

formulation based on minimum convex input requirement set: the standard deviation, β, total assets and

loads, while the output was the traditional mean return.

The right selection of inputs and outputs is crucial when using frontier techniques. Some investors

might be more concerned with central tendencies (mean, standard deviation), while others may care

more about extreme values (skewness, kurtosis). Briec et al. (2004) developed a quadratic-constrained

(mean-variance) DEA model applying a mean-variance approach with variance as input and mean return

as output. And Lozano and Gutiérrez (2007) proposed a quadratic-constrained DEA model consistent

with Third-degree Stochastic Dominance (TSD) in order to obtain an optimal portfolio benchmark for

any rational risk-averse investor. Briec and Kerstens (2009) present a quadratic program that extends

the multi-horizon analysis by Morey and Morey (1999) in several ways. Joro and Na (2006) suggested

a cubic-constrained mean-variance-skewness framework similarly to Briec et al. (2007), who consider
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both skewness and mean return as outputs. In the particular case of higher moments, the literature is

not entirely conclusive on the role of kurtosis, although some authors such as Guo et al. (2012) argue

convincingly for its inclusion, based on the more effective performance evaluation for investors when

including not only skewness but also kurtosis (as an input).

To apply our methodological approach we must therefore define some input and output variables. We

consider the daily mean return (gross return, y1) over the sample period as the main output. The other

output, i.e. skewness (y2) has also been computed from the daily returns distribution. Mutual fund daily

net returns are computed by comparing the NAV (the net asset value of the fund) for daily dates and

considering any distributed gain. Gross returns are subsequently estimated by adding daily fund expenses.

As inputs, the risk of the fund (x1) is measured by the standard deviation of the daily returns, as well

as kurtosis (x2), also computed from the daily returns. In some of the proposed models the management

costs of the fund are also considered as input. In order to include these costs, we consider the fees the fund

pays to managers as well as the loads, including fees and other costs incurred for operational management,

e.g. for turnover. This variable is the expense ratio (x3), and it is measured as percentage (average of

the sample period) of costs over the managed portfolio size. Finally, each fund’s beta (x4) with respect

to the market return is also included as input. Descriptive statistics for inputs and outputs are reported

in Table 1.

4.3. Other financial data

To assess the performance of the partial frontier methods we apply model (8) to the portfolios that follow

investment strategies based on past efficiency and to the random portfolios that are used to measure their

significance. To apply this model a set of data on risk factors is needed. Specifically, we use the daily

data of the returns of the three Fama and French (1993) and the Carhart (1997) momentum factor. This

data—together with the data for the risk free asset, the one-month Treasury bill rate, to compute excess

returns for mutual funds—were obtained from French’s website (2011).6

5. Results

5.1. FDH, order-m and order-α efficiency measures

Table 2 reports summary statistics for FDH efficiency. Results are reported for all mutual funds evaluated

jointly and also for different style categories. The joint evaluation, for all 1,450 mutual funds (for each

one of the 11 years, totalling 15,950 observations), is reported in the last row of Table 2.

As one might expect, given the characteristics of FDH, the number of efficient funds is relatively high.

This is partly suggested by the overall mean efficiency value, which indicates that the average fund has

an efficiency value of 116.21%. This result indicates that the total amount of outputs could be expanded,

on average, by 16.21% to catch up with the best practice funds. This result holds for all style categories,

whose mean efficiencies range from 107.65%, for the index funds (which would be the most efficient),

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, accessed July 2011.
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to 130.61%, for those funds with no style (which would be the most inefficient). When dividing for the

different categories, the discrepancies are lower.

The relatively low discrepancies (which imply higher efficiencies) for the different style categories

could have been caused by multi-modal distributions, with many efficient funds (in the vicinity of 1)

and many inefficient funds, with a thinning in the middle. In order to control for this, Table 2 reports

additional summary statistics of the distributions of efficiency so as to provide a more comprehensive view

of the results. Although it could a priori seem remarkable that, for the first quartile backwards, several

style categories are efficient (index, mid blend, mid growth and small blend), this trend is actually not

surprising if one takes into account that FDH drops the convexity assumption of DEA which, in practical

terms, implies that when a given fund cannot be compared with others because of their input/ouptut

combinations, it is classified as efficient by default. Therefore, the useful property of FDH of being more

flexible than DEA comes at the cost of a lower ability to discriminate among efficient funds. All this

implies that, despite the attractive asymptotic properties of FDH referred to in previous sections, and

despite being more flexible than DEA, FDH has difficulties in both discriminating and, more importantly

(especially in the context of mutual fund performance evaluation) in ranking units. As indicated earlier,

it is very well suited to those contexts in which the analyst wants to ascertain the most obvious cases of

inefficiency.

These patterns are more apparent in through the violin plots depicted in Figure 1.7 The first three

sub-figures correspond to the large (Figure 1a), mid (Figure 1b) and small (Figure 1c) funds, whereas

the last one corresponds to all funds, as well as the index and no style funds (Figure 1d). In this last

case, it is patent that the funds in the index category are the most efficient, since the probability mass

concentrates very close to unity. In contrast, for the funds in the “no style” category, probability mass

stretches along the vertical axis, indicating not only lower efficiencies but also a great deal of heterogeneity.

The sub-figures in Figure 1 also reveal more distinctly some features partly hidden in Table 2, such as the

relatively fine performance of mid value funds, whose average efficiency is not among the best; however,

the tight concentration of probability mass in the vicinity of one suggests homogeneous behavior within

this sub-category of funds.

The order-m estimators overcome the difficulties of both FDH and DEA for ranking efficient funds—

i.e. those with a value of 1. We have computed the order-m estimates for different values of m, from

m = 25 to m = 150. These frontiers are nested and, therefore, for m′ > m, the order-m frontier is below

the order-m′ frontier. Although the choice of the m parameter might seem somewhat arbitrary, it can

be shown that the impact of the decision might not be so relevant when plotting the order-m efficiencies

for different values of m, which usually show they are highly correlated. Indeed, the choice should not be

complex if one follows Cazals et al. (2002), who suggest that “a few values of m could be used to guide the

manager of the production unit to evaluate its own performance”. In addition, as Simar (2003) indicate,

it is also important to notice the difference between m and n. Whereas m is a “trimming” parameter fixed

7Violin plots are a combination of a box plot and a kernel density plot, where the box plot is depicted in the center of
the violin, and then a rotated kernel density plot is added to each side of the box plot—i.e. unfolded. The central point
inside the box corresponds to the median.
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at any desired level defining the level of the benchmark, n is the sample size and accordingly, there are

no a priori links between m and n. This idea of trimming is not new in statistics, although its use in

boundary estimation is.

Tables 3 and 4 report summary statistics for efficiencies estimated using order-m, for m = 25 and

m = 150, respectively. Although computations were performed for more values of m, only results for

m = 25 and m = 150 are reported, for reasons of space. Regardless of this m value, i.e. the trimming

parameter which allows one to tune the percentage of points that lie above the order-m (partial) frontier

(i.e. points whose efficiencies will be lower than 1), the mean is always higher than for the FDH case—

here 99.51% and 110.18% for m = 25 and m = 150, respectively. This could suggest a superior ability of

order-m to rank observations. For instance, for m = 25 (Table 3), the efficiencies corresponding to the

first quartile are always different from 1—as opposed to the FDH case (Table 2).

One of the results reported in Tables 3 and 4 which may surprise the reader unfamiliar with partial

frontiers is the presence of efficiency scores lower than 1. Although these cases of super-efficiency (An-

dersen and Petersen, 1993) are present regardless of the m parameter, most of the summary statistics

displaying such values correspond to m = 25 (Table 3). This occurs because as m increases, the order-m

estimator converges to the FDH estimator and, therefore, order-m efficiencies become more similar to

FDH efficiencies and those cases below unity tend to disappear, as indicated by the results corresponding

to m = 150 (Table 4). As explained in Simar (2003), for large values of m the two frontiers—FDH and

order-m—coincide.

The discrepancies between results yielded by FDH and order-m are quite apparent when comparing

the violin plots for the former method (Figure 1) with those for the latter (Figures 2 and 3). The ability

to yield a full ranking using order-m methods, regardless of the trimming parameter considered, is shown

through the different “violins” (density traces), whose probability mass is not as concentrated in the

vicinity of 1 as in the FDH case (Figure 1). In addition, some interesting findings are corroborated, such

as the homogeneous performance of the funds in the mid value style category (see Figures 2b and 3b),

most of which are quite efficient—as shown by the high concentration of probability mass in the vicinity

of 1.

In light of these results, although some readers might be tempted to reject these methods because an

m parameter has to be selected somewhat arbitrarily, the order-mtechnique has the remarkable virtue of

ranking the mutual funds with the best performance—i.e. to discriminate among efficient funds. Although

results are not entirely coincidental for all values of m considered, the correlation is very high. In these

circumstances, a suitable criterion for selecting funds could consist of selecting only those that are classified

in a given percentile according to different values of m, which in practical terms implies making these

robust methods even more robust. We will consider a different way to do this based on an analysis of

persistence.

Results for the order-αpartial frontier are reported in Tables 5 and 6 for α = .90 and α = .99,

respectively, as well as Figures 4 and 5, for the violin plots.8 These tables and figures report analogous

8As in the order-m case, although results were also obtained for more values of the trimming parameter (α), we only
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information to that reported in Tables 3 and 4, and Figures 2 and 3 in the case of order-m frontiers.

In this case of order-α frontiers, the impact of the α parameter could seem a priori stronger, but this

only occurs because the range of variation is not exactly equivalent to that chosen for m (Daouia and

Gijbels, 2011). Therefore, as indicated in both Tables 5 and 6, the average efficiency for α = .90 is quite

high (actually, much lower than unity, 87.61%), which implies the presence of super-efficient funds whose

efficiencies are remarkably low (recall that the output orientation implies that the most inefficient funds

are those with the highest values). In addition, some of the results obtained for order-m, such as the

homogeneous performance of mid value funds, is corroborated under order-α as shown by Figures 4b and

5b.

One of the main differences one may perceive between results for order-m and order-α is the great

impact of α, which makes the order-α converge to FDH efficiencies much faster. But the same bottom

line should apply for order-α results: those funds which perform better regardless of the α parameter

considered should be the best candidates for selection by the investor. The analysis in the next section

provides further insights on this point.

5.2. On the links between partial frontiers and persistence analysis for mutual fund effi-

ciency

The preceding sections have estimated both FDH and partial frontiers (order-m and order-α) to evaluate

mutual fund efficiency. In accordance with the description in Section 3, we will now analyze the informa-

tiveness of combining these methods with an analysis of persistence for fund efficiency. Specifically, we

build portfolios that follow an investment strategy based on past efficiency, estimated by FDH, order-m

and order-α methods. Subsequently, model (8) is used to assess the efficiency of these portfolios. If these

methods are able to capture the value added by the mutual fund managers, and it persists over time,

the corresponding portfolios will achieve a value for efficiency, as measured by model (8), significantly

different from zero. Thus, we evaluate the performance of each method, focusing on how the choice of the

tuning parameters—m in the case of order-m and α in the case of order-α—might influence the results

on persistence.

Following our approach, we first split the sample period into 11 sub-periods. The first one runs from

March 1 2001 to December 31 2001, the next nine sub-periods correspond to the following calendar years,

and the last sub-period runs from January 1 2011 to May 31 2011. For each of the 11 periods the

efficiencies were measured following the three methods considered, namely, FDH, order-m and order-α;

different tuning parameters (m and α) were also selected for the two partial frontier methods. Specifically,

for both order-m and order-α we considered six possible parameters. Therefore, for each mutual fund and

in each sub-period the efficiency is estimated 13 times—i.e. 2×6 parameters and methods, plus 1 for FDH,

resulting into a total number of estimates for each fund of 13× 11. For each efficiency score estimated in

each sub-period, and for each method-parameter combination, we form a ranking of the funds. Then, for

each of these 13 method-parameter combination we build equally-weighted portfolios that invest in the

report two of the choices for space reasons.
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mutual funds in the sample following an investment strategy based on past efficiency.

Specifically, there are 8 portfolios for each method-parameter combination, which invest in different

quantiles from the ranking of the mutual funds—i.e. four in the selected top quantiles, and four in the

selected bottom quantiles. The selected top and bottom quantiles correspond to the 5%, 10%, 20% and

40% of the upper and lower tails of the distribution of efficiencies, respectively. Therefore, we estimate

104 portfolios (13 method-parameter combinations× 8 quantiles). These portfolios are rebalanced at the

end of each sub-period according to the mutual fund efficiency ranking obtained from the past sub-period.

Then we obtain 104 series of daily returns for the last ten sub-periods, i.e. from January 1 2001 to May

31 2011. Next we apply the financial model in (8) to these series in order to estimate the efficiency, αp,

for each portfolio, i.e. for each strategy and method-parameter combination.

In order to measure the significance of the efficiency of previous portfolios it is necessary to distinguish

between the efficiency effectively obtained by an investment strategy based on past efficiency and that

obtained simply due to a dynamic investment in the sample of mutual funds. To do this, we first form

2,000 equally-weighted portfolios for each of the eight quantiles listed above. These portfolios also invest

in the mutual funds of the sample. The portfolios are built following the same procedure as that for the

104 portfolios, but now considering a random ranking for all the sub-periods. Second, we estimate the

efficiency of these random portfolios by means of model (8). Then, for each of the analyzed quantiles,

the 2,000 values obtained define a distribution of efficiency useful to test the significance of the efficiency

of the portfolios that follow an investment strategy based on past efficiency. It will be significant if the

efficiency of the portfolio lies outside the central 95% of this distribution.

Figure 6 shows the results for the portfolios built following an investment strategy based on past

efficiency when it was estimated using FDH. The vertical axis measures the annualized efficiency estimated

by model (8), whereas the horizontal axis represents the quantile analyzed. The two dashed-lines connect

the efficiency values for those portfolios investing respectively in the top (triangles) or bottom (inverted

triangles) funds of the 5%, 10%, 20% and 40% quantiles based on past FDH efficiency. The three solid

lines connect the 95% percentile (crosses), the mean (circles), and the 5% percentile (inverted triangles)

of the distribution efficiency of the random portfolios. It can be seen that, for most quantiles, following a

strategy based on past efficiency does not yield very different results from those obtained from a random

investment. However, for the 40% quantile, results are significant. In this case in which the random

portfolios invest in 40% of the sample mutual funds, the efficiency distribution is more centered around

the mean and, therefore, the results of the portfolios based on past efficiency lie in the regions of significance

(outside the central 95% of the distribution). In other cases, for instance, investing randomly in 5% of

the mutual funds, the results achieved are more disperse around the mean. Consequently, the results of

the portfolios based on past FDH-efficiency lie inside the limits of the central 95% of the distribution of

these random values, i.e. they could most likely have been achieved using a random investment strategy.

It is also interesting to note that the strategy of investing in the past top mutual funds yields worse

results than investing in the bottom past mutual funds. This result is contrary to what one might expected

if there were persistence. In other words, if past top (bottom) mutual funds lie at the top (bottom) in the
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next periods, it would be expected that a portfolio that follows an investment strategy according to past

efficiency will achieve best (worst) efficiency. Then, the results show how an opposite strategy may lead to

improved results. There is a large body of literature on contrarian investment strategies (see, for instance,

De Bondt and Thaler, 2012; Chan, 1988; De Haan and Kakes, 2011; Yao, 2012, among others), showing

the performance of contrarian investors, defined as those that buy past losers and sell past winners. Our

results support the evidence of a contrarian effect in the mutual funds for the sample period analyzed.

Therefore, when the FDH method is used to measure the efficiency of mutual funds, it is a good predictor

of this contrarian behavior, but it is only significant when the investment is in 40% of the worst or best

mutual funds.

In this vein, Figures 7 and 8 show the results when the portfolios are built according to past efficiency

measured by order-m and order-α, respectively. The interpretation of these figures is similar to Figure 6,

but now the horizontal axis represents the selected trimming parameters, either for order-m or order-α,

i.e. m and α. Each sub-figure in Figures 7 and 8 show the results for the portfolios built according to

past efficiency that are investing in 5%, 10%, 20% and 40% quantiles of the best and worst mutual funds

of the sample, respectively, for both methods.

The panels in Figure 7 show the results for efficiency as measured by model (8) of portfolios built

according to past efficiency estimated using order-m. We find evidence of the contrarian effect. However,

it is only significant for panels 7a and 7b, corresponding to the 5% and 10% quantiles, and for low values

of order-m. In general, when the value of the m parameter increases, the significance is lower, except for

panel 7d, corresponding to the 40% quantile where for m = 150 the efficiency achieved by the portfolios

based on past efficiency is significant, following a similar pattern to that in Figure 6—where FDH is used

to estimate past efficiency. This result could be partly expected, since efficiencies yielded by order-m

converge to FDH as m → ∞.

The panels in Figure 8 show the results for the order-α case. Interestingly, in all panels, as in Figures

6 and 7, the contrarian effect on the efficiency persistence of mutual funds emerges again. Furthermore,

a comparison of the different panels shows how investing in smaller quantities provides more significant

results. Indeed, panels 8a and 8b show how there are larger values outside the solid lines marking the

border of significance, while in Figure 8d, corresponding to 40%, values lie inside the band and are closer

to the mean line. Consequently, unlike the FDH case (Figure 6), the order-α method is more suited to

capture the extreme behavior of investment funds. This indicates that persistence in mutual fund efficiency

generally focuses in the extreme mutual funds, and not in the middle of the distribution of past efficiency.

This evidence is similar to findings in the financial literature such as Carhart (1997), Lynch and Musto

(2003), or Loon (2011), among others. Therefore, an interesting point to highlight is that the results

yielded by partial frontiers, which maintain the advantages of both DEA and FDH (i.e. higher flexibility

to handle several inputs and outputs) are consistent with the evidence found in the financial literature,

even when we focus on studies that used other fund samples, periods and, especially, applied very different

methodologies to measure mutual fund efficiency. In contrast, the panels in Figure 8 also show that the

results based on past efficiency according to order-α are sensitive to the α parameter selected. In fact,
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the efficiency on the vertical axis is improved for the higher values of α.

In brief, Figures 6, 7 and 8 show the efficiency, measured by the annualized intercept of the model (8),

achieved by portfolios following an investment strategy based on past efficiency when it was estimated

respectively by FDH, order-α and order-m methods. For all three figures, the values of the efficiencies

yielded by these portfolios range approximately between −0.4% and +0.7% of excess annual return. This

range does not imply a relevant economic impact. Furthermore, in some cases these results are not very

different from those achieved by portfolios that follow a random investment strategy. In short, we do

not find any clear evidence of persistence in the efficiencies of mutual funds that we might use to obtain

abnormal significant returns. But, for the case of some of the selected parameters in the efficiency methods,

we are able to capture a contrarian effect on the persistence of mutual fund efficiency.

6. Conclusions

The mutual fund industry is immersed in a process of continuous expansion and changes and, therefore, its

analysis is gaining importance over time. A financial investor has to consider not only the actual number

of competitors (i.e. the number of funds in the same objective category) but also the fact that it could

vary up and down. Like other financial industries it is subject to expansion, acceleration and contraction

cycles that greatly affect the performance of firms managing the assets. Interest comes from academics and

investment industry participants alike. Since the traditional methodologies were initially proposed, many

studies have been developed around the evaluation of mutual funds. In more recent years the importance

of using nonparametric approaches for mutual fund performance evaluation has been stressed because of

the key benefits they offer. These tools provide a single value of efficiency and have the great advantage

of allowing one to include a high number of inputs and outputs in the model specified. Although these

techniques, basically DEA and its non-convex sibling, FDH, are not free from disadvantages, the literature

applying them to evaluate the performance of mutual funds is growing rapidly.

Some of the disadvantages of both DEA and FDH are the sensitivity to both outliers and the curse of

dimensionality. This has been recognized by the literature (Dyson et al., 2001). In recent times, however,

some methods have been proposed to overcome these pitfalls. The order-m (Cazals et al., 2002) and

order-α (Daouia and Simar, 2007) partial frontiers are more robust both to the presence of outliers and

the curse of dimensionality. Although they require selecting some parameters, which may be difficult, their

advantages outweigh their disadvantages. In the specific case of mutual fund performance evaluation, they

have notable ability to rank all mutual funds.

Yet applications of these techniques are still scarce. Only Daraio and Simar (2005, 2006, 2007b) have

considered order-m techniques, although their contributions are theoretical. We extend their applications

by considering not only order-m but also order-α partial frontiers. We also have a much tighter focus

on the application. Specifically, we measure the performance of a sample of US mutual funds for the

2001–2011 period. Applying both order-m and order-α methods to our sample enables us to provide a

full ranking. We can corroborate this through the violin plots. In contrast, FDH faces more difficulties
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for discriminating among efficient funds. Although some readers might be puzzled by the fact that results

vary for different m and α values, most funds rank very well regardless of the value of m or α considered.

The results for the different types of funds indicate there are remarkable performance differences among

them depending on the type of fund considered, which would beg for a more involved analysis exploring

whether the differences among types of funds are actually significant or not.

We combine these methods and results with the literature on mutual fund performance persistence.

Specifically, we propose a method for testing the performance of these methods in guiding the selection

of funds, i.e. how appropriate order-m and order-α methods are to choose among several investment

alternatives. This provides additional usefulness to these parameters (m and α), i.e. not only determining

the number and importance of outliers, but also to ascertain which the implications might be for selecting

different funds in terms of their results’ prospects—i.e. in terms of the fund’s persistence.

In other words, we analyze how FDH, order-m and order-α methods perform in terms of their ability

for selecting efficient funds in the future. This is, precisely, what determines if a given methodology is

appropriate or not, i.e. its power for offering investment recommendations that, when followed, provide

better performance. Although similar attempts had been pursued by the literature on mutual fund

performance persistence, there had been no initiatives to derive a guiding algorithm which combines

this literature with that on partial frontier methods. In addition, this algorithm is strongly rooted in the

literature on mutual fund performance persistene—specifically, its construction is based on the multifactor

linear model.

Although the algorithm is useful, our results are relatively modest. Results range approximately in the

(−0.4%, 0.7%) of annualized excess return which, in addition, do not differ a great deal from those that

could be obtained following a random investment strategy. This would imply that there is no conclusive

evidence which could be used for obtaining abnormal significant returns. This modest result could be

partly the result of conducting the analysis for all types of funds simultaneously. However, for some of the

selected parameters, we do find evidence of a contrarian effect on mutual fund performance persistence.
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Table 1: Descriptive statistics for inputs and outputs, mutual funds
(2001–2011)

Mean Std.dev.

Index funds

Std.dev. daily return (x1) 0.012800 0.005800
Kurtosis daily returns (x2) 1.150800 1.903690
Expense ratio (x3) 0.005016 0.002853
Beta (x4) 1.044612 0.138546

Gross return (y1) 0.000296 0.000787
Skewness daily returns (y2) –0.046711 0.263136

Large blend

Std.dev. daily return (x1) 0.011762 0.005735
Kurtosis daily returns (x2) 1.522866 3.340281
Expense ratio (x3) 0.011362 0.004842
Beta (x4) 0.944727 0.179112

Gross return (y1) 0.000277 0.000796
Skewness daily returns (y2) –0.059292 0.390656

Large growth

Std.dev. daily return (x1) 0.012621 0.005798
Kurtosis daily returns (x2) 1.319098 2.906607
Expense ratio (x3) 0.012407 0.004875
Beta (x4) 1.021110 0.207333

Gross return (y1) 0.000253 0.000903
Skewness daily returns (y2) –0.004013 0.404106

Large value

Std.dev. daily return (x1) 0.011626 0.005918
Kurtosis daily returns (x2) 1.504187 3.319983
Expense ratio (x3) 0.011292 0.003933
Beta (x4) 0.921112 0.153864

Gross return (y1) 0.000311 0.000745
Skewness daily returns (y2) –0.102307 0.370758

Mid blend

Std.dev. daily return (x1) 0.013072 0.006377
Kurtosis daily returns (x2) 1.613086 5.528361
Expense ratio (x3) 0.012994 0.005265
Beta (x4) 1.023785 0.270429

Gross return (y1) 0.000422 0.000945
Skewness daily returns (y2) –0.095342 0.573141

Mid growth

Std.dev. daily return (x1) 0.013402 0.005666
Kurtosis daily returns (x2) 1.228198 3.704283
Expense ratio (x3) 0.013501 0.004080
Beta (x4) 1.065699 0.230991

Gross return (y1) 0.000385 0.000981
Skewness daily returns (y2) –0.058791 0.391875

Mid value

Std.dev. daily return (x1) 0.012492 0.006058
Kurtosis daily returns (x2) 1.171120 1.267680
Expense ratio (x3) 0.013122 0.003198
Beta (x4) 0.984405 0.162196

Gross return (y1) 0.000476 0.000905
Skewness daily returns (y2) –0.155976 0.298815

No style

Std.dev. daily return (x1) 0.017118 0.012227
Kurtosis daily returns (x2) 0.999274 1.291682
Expense ratio (x3) 0.015279 0.006317
Beta (x4) 1.368721 0.736967

Gross return (y1) 0.000352 0.001188
Skewness daily returns (y2) –0.114423 0.270223

Small blend

Std.dev. daily return (x1) 0.013374 0.005651
Kurtosis daily returns (x2) 1.098105 4.193503
Expense ratio (x3) 0.013491 0.004881
Beta (x4) 1.058855 0.266314

Gross return (y1) 0.000496 0.000806
Skewness daily returns (y2) –0.101677 0.402850

Small growth

Std.dev. daily return (x1) 0.014150 0.005041
Kurtosis daily returns (x2) 0.686445 1.956662
Expense ratio (x3) 0.014357 0.006789
Beta (x4) 1.128632 0.217808

Gross return (y1) 0.000430 0.000993
Skewness daily returns (y2) –0.087289 0.241455

Small value

Std.dev. daily return (x1) 0.013548 0.006004
Kurtosis daily returns (x2) 0.875483 1.202491
Expense ratio (x3) 0.013454 0.003412
Beta (x4) 1.065292 0.247812

Gross return (y1) 0.000503 0.000844
Skewness daily returns (y2) –0.138225 0.238704
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Table 2: Descriptive statistics for FDH efficiencies, mutual funds (2001–2011)

Fund style # of fundsa Mean 1st quartile Median 3rd quartile Std.dev.

Index 1,111 1.0765 1.0000 1.0268 1.1202 0.1076

Large blend 2,739 1.1619 1.0235 1.1225 1.2462 0.1690
Large growth 3,993 1.1636 1.0084 1.1062 1.2514 0.1872
Large value 1,881 1.1590 1.0441 1.1290 1.2500 0.1387

Mid blend 704 1.1616 1.0000 1.1109 1.2534 0.1866
Mid growth 1,782 1.1680 1.0000 1.1027 1.2552 0.1998
Mid value 352 1.1718 1.0204 1.1470 1.2592 0.1657

No style 77 1.3061 1.0425 1.2302 1.3966 0.3550

Small blend 935 1.1604 1.0000 1.1222 1.2541 0.1693
Small growth 1,804 1.1956 1.0209 1.1463 1.2949 0.2058
Small value 572 1.1838 1.0266 1.1521 1.2938 0.1716

All funds 15,950 1.1621 1.0073 1.1142 1.2513 0.1795

a The number of funds corresponds to the entire period 2001–2011. For each single year the numbers in
this column have to be divided by 11.
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Table 3: Descriptive statistics for order-m (m = 25) efficiencies, mutual funds (2001–
2011)

Fund style # of fundsa Mean 1st quartile Median 3rd quartile Std.dev.

Index 1,111 0.8672 0.7851 0.9078 0.9876 0.1649

Large blend 2,739 0.9891 0.9250 0.9998 1.0793 0.1667
Large growth 3,993 1.0083 0.9453 1.0061 1.0817 0.1550
Large value 1,881 0.9963 0.9359 1.0039 1.0746 0.1294

Mid blend 704 0.9975 0.9308 0.9993 1.0894 0.1865
Mid growth 1,782 1.0088 0.9280 0.9989 1.0951 0.1742
Mid value 352 1.0285 0.9554 1.0226 1.0934 0.1198

No style 77 1.0506 0.9656 1.0196 1.1329 0.2343

Small blend 935 1.0049 0.9269 0.9981 1.0993 0.1650
Small growth 1,804 1.0122 0.9214 1.0027 1.1173 0.1925
Small value 572 1.0334 0.9476 1.0371 1.1302 0.1550

All funds 15,950 0.9951 0.9251 0.9992 1.0819 0.1677

a The number of funds corresponds to the entire period 2001–2011. For each single year the numbers in
this column have to be divided by 11.
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Table 4: Descriptive statistics for order-m (m = 150) efficiencies, mutual funds (2001–
2011)

Fund style # of fundsa Mean 1st quartile Median 3rd quartile Std.dev.

Index 1,111 1.0161 0.9772 1.0018 1.0578 0.1001

Large blend 2,739 1.0969 1.0000 1.0738 1.1799 0.1517
Large growth 3,993 1.1050 1.0000 1.0746 1.1809 0.1570
Large value 1,881 1.0974 1.0083 1.0862 1.1776 0.1206

Mid blend 704 1.0998 1.0000 1.0712 1.1860 0.1829
Mid growth 1,782 1.1095 0.9997 1.0685 1.1918 0.1781
Mid value 352 1.1186 1.0038 1.1018 1.1934 0.1335

No style 77 1.1980 1.0196 1.1392 1.2727 0.2819

Small blend 935 1.1096 1.0000 1.0819 1.1997 0.1549
Small growth 1,804 1.1294 1.0000 1.0900 1.2233 0.1854
Small value 572 1.1383 1.0009 1.1195 1.2375 0.1515

All funds 15,950 1.1018 1.0000 1.0726 1.1826 0.1586

a The number of funds corresponds to the entire period 2001–2011. For each single year the numbers in
this column have to be divided by 11.
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Table 5: Descriptive statistics for order-α (α = .90) efficiencies, mutual funds (2001–
2011)

Fund style # of fundsa Mean 1st quartile Median 3rd quartile Std.dev.

Index 1,111 0.6753 0.5038 0.7044 0.9033 0.2541

Large blend 2,739 0.8733 0.8132 0.9224 0.9969 0.2083
Large growth 3,993 0.9049 0.8383 0.9328 1.0000 0.1676
Large value 1,881 0.8894 0.8354 0.9208 0.9916 0.1588

Mid blend 704 0.8926 0.8110 0.9254 1.0000 0.1840
Mid growth 1,782 0.8966 0.8095 0.9134 1.0000 0.1827
Mid value 352 0.9271 0.8527 0.9427 1.0000 0.1318

No style 77 0.9017 0.7990 0.9476 1.0000 0.2540

Small blend 935 0.8820 0.7961 0.9081 1.0000 0.1874
Small growth 1,804 0.8772 0.7679 0.9079 1.0000 0.2179
Small value 572 0.9056 0.8177 0.9467 1.0226 0.1881

All funds 15,950 0.8761 0.8027 0.9180 1.0000 0.1994

a The number of funds corresponds to the entire period 2001–2011. For each single year the numbers in
this column have to be divided by 11.
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Table 6: Descriptive statistics for order-α (α = .99) efficiencies, mutual funds (2001–
2011)

Fund style # of fundsa Mean 1st quartile Median 3rd quartile Std.dev.

Index 1,111 0.9719 0.9634 1.0000 1.0206 0.1243

Large blend 2,739 1.0543 1.0000 1.0404 1.1315 0.1563
Large growth 3,993 1.0720 1.0000 1.0487 1.1367 0.1445
Large value 1,881 1.0565 1.0000 1.0511 1.1268 0.1236

Mid blend 704 1.0699 1.0000 1.0440 1.1441 0.1759
Mid growth 1,782 1.0771 1.0000 1.0432 1.1574 0.1775
Mid value 352 1.0842 1.0000 1.0714 1.1503 0.1239

No style 77 1.1293 1.0000 1.0829 1.1868 0.2600

Small blend 935 1.0776 1.0000 1.0455 1.1667 0.1583
Small growth 1,804 1.0904 1.0000 1.0551 1.1894 0.1884
Small value 572 1.1078 1.0000 1.0946 1.1946 0.1538

All funds 15,950 1.0649 1.0000 1.0402 1.1392 0.1581

a The number of funds corresponds to the entire period 2001–2011. For each single year the numbers in
this column have to be divided by 11.
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Figure 1: Violin plots, FDH efficiencies of mutual funds (2001–2011)

Blend Growth Value

1.
0

1.
5

2.
0

2.
5

3.
0

Pe
rfo

rm
an

ce

(a) Large

Blend Growth Value

1.
0

1.
5

2.
0

2.
5

3.
0

Pe
rfo

rm
an

ce

(b) Mid

Blend Growth Value

1.
0

1.
5

2.
0

2.
5

3.
0

Pe
rfo

rm
an

ce

(c) Small

Index No style All

1.
0

1.
5

2.
0

2.
5

3.
0

Pe
rfo

rm
an

ce

(d) Index, no style, all

34



Figure 2: Violin plots, order-m (m = 25) efficiencies of mutual funds (2001–2011)
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Figure 3: Violin plots, order-m (m = 150) efficiencies of mutual funds (2001–2011)
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Figure 4: Violin plots, order-α (α = .90) efficiencies of mutual funds (2001–2011)
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Figure 5: Violin plots, order-α (α = .99) efficiencies of mutual funds (2001–2011)
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Figure 7: Results of performance persistence, order-m
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Figure 8: Results of performance persistence, order-α
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