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In this paper we propose a geometrization of the non-relativistic quantum mechanics
for mixed states. Our geometric approach makes use of the Uhlmann’s principal
fibre bundle to describe the space of mixed states and as a novelty tool, to define a
dynamic-dependent metric tensor on the principal manifold, such that the projection
of the geodesic flow to the base manifold gives the temporal evolution predicted by
the von Neumann equation. Using that approach we can describe every conserved
quantum observable as a Killing vector field, and provide a geometric proof for
the Poincaré quantum recurrence in a physical system with finite energy levels.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807096]

I. INTRODUCTION

The geometrization of physical theories is a successful and challenging area in theoretical
physics. The most well known examples are Hamiltonian mechanics based on symplectic geometry,
General Relativity based on semi-Riemannian geometry and classical Yang-Mills theory which uses
fibre bundles.11

Geometric ideas have also found a clear utility in non-relativistic quantum mechanics problems
because quantum theory can be formulated in the language of Hamiltonian phase-space dynamics.12

Hence, the quantum theory has an intrinsic mathematical structure equivalent to Hamiltonian phase-
space dynamics. However, the underlying phase-space is not the same space of classical mechanics,
but the space of quantum mechanics itself, i.e., the space of pure states or the space of mixed states.

Unlike general relativity or gauge theory where the metric tensor or the connection is related with
the physical interaction, the most usual geometric formulation of the geometry of non-relativistic
quantum mechanics is not dynamic, in the sense that is insensitive to changes in the Hamiltonian of
the system. Under these assumptions, that approach only makes use of the differential structure of
the Hilbert space for quantum states and the Fubini-Study metric. See, for example, the geometric
interpretation of Berry’s phase.3

From a more dynamical point of view, Kryukov16 has stated that the Schrödinger equation19 for
a pure state |αt 〉 (Planck’s constant is set equal to 1)

d
dt

|αt 〉 = −i H |αt 〉 , (1)

can be considered as a geodesic flow in a certain Riemannian manifold with an accurate metric
which depends on the Hamiltonian of the system.

The goal of this paper is to generalize the work of Kryukov for mixed states. To this end,
we provide an underlying differential manifold to describe mixed states and a dynamic-dependent
Riemannian metric tensor to analyze their temporal evolution.
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FIG. 1. Since the Hamiltonian vector field is a Killing vector field, its flow ϕ preserves the volume (Liouville theorem) in
the sphere S, where each point can be projected into the space of density matrices P+.

The mixed states are characterized by density matrices and the equation which plays the role of
the Schrödinger one is the von Neumann equation23

dρt

dt
= −i [H, ρt ] . (2)

To obtain the underlying differential manifold following the Uhlmann’s geometrization for
non-relativistic quantum mechanics,26–29 we make use of a principal fibre bundle such that its base
manifold is the space of mixed states. Finally, to provide the Riemannian metric we choose an
appropriate metric in the principal bundle, in such a way that the projection of the geodesic flow in
the principal manifold to the base manifold is just the temporal evolution given by the von Neumann
equation.

Among the geometric properties that are observed due to the movement of this geodesic flow,
in this paper we analyze the phase volume conservation according to the Liouville theorem (see
Fig. 1). That allows us to show a geometric proof of the Poincaré recurrence theorem relating it
with the recurrence principle for physical systems with discrete energy levels. Let us emphasize that
our geometric proof for the quantum Poincaré recurrence is closer to the classical mechanics proof1

(that also uses the conservation of the volume in the phase-space evolution) than the previous given
in the quantum setting.5, 22, 24
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II. DENSITY MATRICES SPACE AS A BASE OF A PRINCIPAL FIBRE BUNDLE

The most general state, the so-called mixed state, is represented by a density operator in the
Hilbert space H. In this paper we always assume that dim(H) = n < ∞, being H a vector space on
the complex field (H = Cn). The density operator ρ is in fact a density matrix. Recall that a density
matrix is a complex matrix ρ that satisfies the following properties:

1. ρ is a Hermitian matrix, i.e., the matrix coincides with its conjugate transpose matrix: ρ = ρ†.
2. ρ is positive ρ ≥ 0. It means that any eigenvalue of A is non-negative.
3. ρ is normalized by the trace tr(ρ) = 1.

Let us denote by P the space of mixed quantum states. Note that the space of pure states P(H)
is just

P(H) =
{
ρ ∈ P | ρ2 = ρ

}
.

Recall that the space of quantum pure states has an elegant interpretation as a U(1)-fibre bundle
S(H) → P(H). Following Uhlmann26–29 and Bengtsson and Chruściński books,3, 9 we can use a
similar argument to the case of quantum pure states. The key idea of Uhlmann’s approach is to lift
the system density operator ρ, acting on the Hilbert space H, to an extended Hilbert space

Hext := H ⊗ H.

In quantum information theory,18 the procedure of extension, H → Hext is known as attaching
an ancilla living in H. Obviously, the space of squared matrices Mn,n(C) (n rows, n columns) over
C (that is a 2n2 real dimensional manifold) can be identified with Hext

Mn,n(C) ∼= Hext.

Since tr(W W †) is a smooth function in the space of squared matrices, by the regular level set
theorem,17 the set

S0 :=
{
W ∈ Mn,n(C) : tr(W W †) = 1

}
, (3)

is a smooth manifold of Mn,n(C). Actually, it is not hard to see that S0 is diffeomorphic to the
sphere S2n2−1. If ρ is a mixed state in P , we shall denote an element W ∈ S0 a purification of ρ if

ρ = W W †, (4)

therefore, we get the space of density matricesP by the projection π : S0 → P , where the projection
is given by

π (W ) = W W †. (5)

Observe that, if u is a unitary matrix (i.e., uu† = u†u = In) then

π (W u) = π (W ). (6)

Moreover, to fix notation recall that the Lie group U(n) is a Lie transformation group13 acting
on S0 on the right. In general, a principal fibre bundle13 will be denoted by P(M, G, π ), being P the
total space, M the base space, G the structure group, and π the projection. For each x ∈ M, π − 1(x)
is a closed submanifold of P, called the fibre over x. If p is a point of π − 1(x), then π − 1(x) is the set
of points {pa, a ∈ G}, and it is called fibre through p.

At this point, an important question to answer, is if S0(P, U (n),π ) is a principal fibre bundle
over the base manifold P of density matrices. Unfortunately, the answer is no, because U(n) does
not act freely on S0. In general, W u = W for W ∈ S0 and u ∈ U(n) do not imply that u = In , but
observe that if det(W ) )= 0 (i.e., W is an invertible matrix ) U(n) would act freely on our space. This
should be the way to describe the space of density matrices. Instead of starting with Mn,n(C), we
start with the subset of invertible matrices. That subset has the differentiable structure of the Lie
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group GL(n, C). Then, we build a submanifold S of GL(n, C) given by

S :=
{
W ∈ GL(n, C) ; tr(W W †) = 1

}
. (7)

Finally, we obtain the base manifold P+ using the projection π : S → P+ given by

π (W ) = W W † (8)

and therefore, S(P+, U (n),π ) becomes a principal fibre bundle. Observe that

P+ = {ρ ∈ P | ρ > 0} ,

contains only strictly positive (or faithful) density operators. But P can be recovered from P+ by
continuity arguments.3

In short, we describe the geometry of density matrices as a base manifold of a principal fibre
bundle consisting of a submanifold S of the Lie group GL(n, C) diffeomorphic to the sphere S2n2−1

as a total space and the Lie group U(n) as structure group.
Since S(P+, U (n),π ) admits a global section20 τ : P+ → S

τ (ρ) := √
ρ, (9)

therefore S(P+, U (n),π ) is a trivial bundle from a topological point of view, that means that3, 13

S = P+ × U (n). (10)

III. HAMILTONIAN VECTOR FIELD, DYNAMIC RIEMANNIAN METRIC, SHG-QUANTUM
FIBRE BUNDLE AND MAIN THEOREM

In this section, we define a Riemannian metric for dynamics systems and we study how this
metric acts within the tangent vector space of S. We also discuss its relationship with other metrics
such as the Bures metric or the metric proposed by Kryukov.16

A. Hamiltonian vector field, dynamic metric, and its relation with other metrics

In order to provide explicit expressions for tangent vectors to S and the metric tensor, we
identify the tangent space TWMn,n(C) with Mn,n(C) itself. Since our total space S is a submanifold
of the manifold Mn,n(C), where each point W ∈ S is a matrix, and the tangent space TWS to S in
the point W is a subspace of the tangent space TWMn,n(C). We can use a matrix to describe a point
W ∈ S and a matrix to describe a tangent vector X ∈ TWS too.

First of all, note that the Hamiltonian operator H induces a vector field h : S → TS on S given
by

hW := −i H W, (11)

where hW denotes the vector field in the point W ∈ S, i.e., hW = h(W ). That vector field h will be
denoted as the Hamiltonian vector field.

For any point W ∈ S, and any two tangent vectors X, Y ∈ TWS, we define the dynamic Rie-
mannian metric gH(X, Y) as

gH (X, Y ) := 1
2

tr(X† H−2Y + Y † H−2 X ). (12)

It will be denoted by ∇H the Levi-Civita connexion (the sole metric torsion free connexion)
given by gH. In definition (12) we use H− 2 assuming that H is an invertible matrix, but that in fact
makes no restriction on the Hamiltonian of the system because we can set H → H + In without
changing the underlying physics. It is not hard to see that gH defines a positive definite inner product
in each tangent space TWS, being therefore gH a Riemannian metric.
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With that metric tensor gH the (sub)manifold (S, gH ) becomes a Riemannian manifold. In
order to fix the notation we denote

{
S(P+, U (n),π ), h, gH

}
the SHg-quantum fibre bundle of

dimension n.
The rest of this section will examine the inherited metric in the base manifold (Theorem 1) from

the dynamic metric in the principal manifold and its relation with other metrics.
The tangent space TWS at the point W ∈ S can be decomposed in its horizontal HW and vertical

VW subspaces:

TWS = HW ⊕ VW .

Observe, moreover, that the vertical subspaces VW are the vectors tangent to the fibres. Therefore,
any vertical vector XV ∈ TWS can be written as

XV = W A,

where A ∈ u(n) (i.e., A is an anti-Hermitian matrix). Note that our metric gH defines a natural
connexion as follows: A tangent vector X at W is horizontal if it is orthogonal to the fibre passing
through W , i.e., if

gH (X, Y ) = 0,

for all vertical vector Y at W (Y ∈ VW ). Hence X ∈ TWS is horizontal if

X† H−2W − W † H−2 X = 0. (13)

Therefore, we can define a metric gP+

H in the base manifold for any point ρ ∈ P+, given by

gP+

H (Y, Z ) := gH (YHor, ZHor),

where Y, Z ∈ TρP+ and YHor (respectively, ZHor) are the horizontal lift of Y (respectively, Z).

Theorem 1. The metric gP+

H in the base manifold at any point ρ ∈ P+ can be obtained as

gP+

H (Y, Z ) := 1
2

tr(H−1GY H−1 Z ),

where GY is the unique Hermitian matrix satisfying

H−1Y H−1 = GY H−1ρH−1 + H−1ρH−1GY .

Note that matrix GY exists and is unique by the existence and uniqueness of the solution of the
Sylvester equation.2, 25 Observe, moreover, that when H is the identity matrix, then

gP+

H (Y, Z ) := 1
2

tr(GY Z ),

where GY is the (unique) solution of

Y = GY ρ + ρGY

and that is the Bures metric.10

Proof. Let W : R → S be a curve, such that Ẇ is a horizontal vector, then

(Ẇ )† H−2W = W † H−2Ẇ .

Let us define A = H−1W , thus

Ȧ† A = A† Ȧ.

It is easy to see that the latter condition is fulfilled if

Ȧ = G A, (14)

where G is a Hermitian matrix. Therefore

Ẇ = H G H−1W.
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Hence applying Eq. (4)

π∗(Ẇ ) = Ẇ W † + W Ẇ † = H G H−1ρ + ρH−1G H. (15)

Suppose that

π∗(Ẇ ) = Y π∗(V̇ ) = Z

W (0)W (0)† = V (0)V (0)† = ρ,

then

gP+

H (Y, Z ) =gH (Ẇ , V̇ ) = 1
2

tr(Ẇ † H−2V̇ + V̇ † H−2Ẇ )

=1
2

tr(H−1GY G Z H−1ρ + H−1G Z GY H−1ρ),
(16)

where

Ẇ = H GY H−1W V̇ = H G Z H−1V .

Applying Eq. (15) in π∗(V̇ )

Z = H G Z H−1ρ + ρH−1G Z H.

Using the above expression (16) the theorem follows. !

In the case of pure states, our Hilbert space is Cn and the tangent space will be Cn too. Following
Kryukov work,14–16 we can define a metric gK(X, Y) for any two tangent vectors X = (x, x*), Y = (y,
y*), by

gK (X, Y ) := Re
(
〈H−1 X, H−1Y 〉

)
,

where 〈X, Y 〉 =
∑n

i=1 xi y∗
i , therefore

gK (X, Y ) := 1
2

(
〈H−1 X, H−1Y 〉 + 〈H−1Y, H−1 X〉

)
= 1

2
tr(X† H−2Y + Y † H−2 X ).

When H is the identity, we recover the Fubini-Study metric.

B. Geometric structure of the SHg-quantum fibre bundle

As we have previously seen in the SHg-quantum fibre bundle
{
S(P+, U (n),π ), h, gH

}
of

dimension n, S(P+, U (n),π ) is a principal (and trivial) fibre bundle, S is diffeomophic to the
sphere of dimension 2n2 − 1, h is a vector field on S, and (S, gH ) is a Riemannian manifold. But
the SHg-quantum fibre bundle has more geometric properties:

Theorem 2 (Main theorem). Let
{
S(P+, U (n),π ), h, gH

}
be a SHg-quantum fibre bundle of

dimension n. Then:

1. h is a Killing vector field of (S, gH ).
2. The integral curves γ : I ⊂ R → S of h are geodesics of (S, gH ).
3. The projection on the base manifold P+ of the geodesic γ satisfies the von Neumann equation

d
dt

π ◦ γ = −i [H,π ◦ γ ] . (17)

Proof. Condition (1): In order to proof that h is a Killing vector field, we only have to show that
the flow ϕt : S → S given by

{
ϕ0(W ) = W, where W ∈ S
d
dt ϕt (W )|t=0 = hW ,

(18)
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is an isometry, i.e., for any X, Y ∈ TWS

gH (ϕt ∗(X ),ϕt ∗(Y )) = gH (X, Y ). (19)

Note that

ϕt ∗(X ) = e−i Ht X (20)

and

gH (ϕt ∗(X ),ϕt ∗(Y )) =gH (e−i Ht X, e−i Ht Y )

=1
2

tr
(
(e−i Ht X )† H−2e−i Ht Y + (e−i Ht Y )† H−2e−i Ht X

)

=1
2

tr
(
X†ei Ht H−2e−i Ht Y + Y †ei Ht H−2e−i Ht X

)

=1
2

tr
(
X† H−2Y + Y † H−2 X

)
= gH (X, Y ).

(21)

Conditions (2) and (3): First of all observe that if γ is the integral curve of the vector field h,
i.e.,

γ̇ = hγ = −i Hγ . (22)

The projection of γ satisfies

d
dt

π (γ (t)) = d
dt

(
γ (t)γ †(t)

)
= γ̇ (t)γ †(t) + γ (t)γ̇ †(t) = γ̇ (t)γ †(t) + γ (t)(γ̇ (t))†

= −i Hγ γ †(t) + γ (t)(−i Hγ )† = −i[H,π (γ (t))].
(23)

Hence, the projection of the integral curves of the vector field h satisfies the von Neumann
equation. So all we have to prove is that curves are actually geodesic curves

∇H
hγ

hγ = 0. (24)

Since h is a Killing vector field, we only have to proof that h is a unitary vector field (as any
unitary Killing vector field is a geodesic). Namely, the equality

gH (hγ , hγ ) =gH (−i Hγ ,−i Hγ ) = tr
(
(−i Hγ )† H−2(−i Hγ )

)

=tr
(
γ † H H−2 Hγ

)
= tr

(
γ †γ

)
= 1.

(25)

Finally, since H is a unitary Killing vector field and the integral curves of any Killing vector
field of constant length is a geodesic (see Theorem 8 in the Appendix), the integral curves of H are
geodesics. !

Remark. Let us emphasize that for any Hermitian matrix A = A†, we can build the vector field
A on S given by −i AW for any W ∈ S. It is easy to check as done in Eq. (21) that if [H, A] = 0, A
is a Killing vector field. Therefore, the set of operators compatible with the Hamiltonian is related
to the set of isometries of (S, gH ), and we can identify any conserved quantum observable with a
Killing vector field.

IV. GEOMETRIC APPROACH TO QUANTUM POINCARÉ RECURRENCE

As we know from the main theorem, h is a Killing vector field on the principal manifold (S, gH )
endowed with the dynamic metric gH. Then, the transformations given by the 1-parametric subgroup
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ϕt: S → S of integral curves of h are distance-preserving and volume-preserving (see Theorem 9 in
the Appendix). These two facts have the following consequences.

Theorem 3 (Insensitivity to initial conditions theorem). Let
{
S(P+, U (n),π ), h, gH

}
be a

SHg-quantum principal bundle of dimension n. Then, for any two points W, V ∈ S

dist(ϕt (W ),ϕt (V )) = dist(W, V ), (26)

being the ϕt the 1-parametric subgroup of transformations given by the integral curves of the Killing
field h.

The classical Liouville theorem1 states that the natural volume form on a symplectic mani-
fold is invariant under the Hamiltonian flows. In our case, we have the 1-parametric subgroup of
transformations ϕt : S → S given by the integral curves of the Killing vector field h and we can set

Theorem 4 (Liouville type theorem). Let
{
P+, U (n),π ), h, gH

}
be a SHg-quantum principal

bundle of dimension n. Then for any domain ' ⊂ S

Vol(ϕt (')) = Vol('), (27)

being the ϕt the 1-parametric subgroup of transformations given by the integral curves of the Killing
vector field h.

Using the above theorem, we can, therefore, state a similar theorem to the Poincaré recurrence
theorem.1

Theorem 5 (Poincaré type theorem). Let
{
S(P+, U (n),π ), h, gH

}
be a SHg-quantum princi-

pal bundle of dimension n. For any domain ' ⊂ S and any time period T ∈ R+ there exists a point
x ∈ ' and a positive integer k > 0 such that

ϕkT (x) ∈ ', (28)

being ϕt : S → S the 1-parametric subgroup of transformations given by the integral curves of the
Killing field h.

Proof. Consider the following sequence of domains

',ϕT ('),ϕ2T ('), · · · ,ϕkT ('), · · ·

All domain in the sequence belongs to the same volume Vol('). If the above domains never
intersect S, an infinite volume would obtain, but S is compact, so Vol(S) < ∞. Then, there exist l
≥ 0 and m > l such that

ϕlT (') ∩ ϕmT (') )= ∅, (29)

so

' ∩ ϕ(m−l)T (') )= ∅. (30)

Setting k = m − l the theorem is proven. !

Joining the above theorem with the insensitivity to the initial conditions we get
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Theorem 6 (Strong Poincaré type theorem). Let
{
S(P+, U (n),π ), h, gH

}
be a SHg-quantum

principal bundle of dimension n. Then, for any point W ∈ S, any ε > 0 and any T ∈ R+, there exists
a positive integer k > 0 such that

dist(W,ϕkT (W )) < ε, (31)

being ϕt : S → S the 1-parametric subgroup of transformations given by the integral curves of the
Killing vector field h.

Proof. Let us consider the domain

B ε
2
(W ) =

{
V ∈ S : dist (W, V ) <

ε

2

}
. (32)

Applying now the Poincaré type theorem there must exist W0 ∈ B ε
2
(W ) and k > 0 such that

ϕkT (W0) ∈ B ε
2
(W ). (33)

So,

dist (W,ϕkT (W0)) <
ε

2
. (34)

But, by the Insensitivity to initial conditions theorem

dist (ϕkT (W ),ϕkT (W0)) = dist (W, W0) <
ε

2
. (35)

Therefore, applying the triangular inequality

dist (W,ϕkT (W )) ≤ dist (W,ϕkT (W0)) + dist (ϕkT (W0),ϕkT (W )) < ε. (36)

!

A. Physical systems with discrete energy eigenvalues

Using previously stated theorems we can give an alternative proof and more geometric sense of
well-known5, 22, 24 principle of recurrence for physical systems with discrete energy eigenvalues.

Thus, defining the length ‖A‖ of a matrix A as follows22

‖A‖ =
√

tr(A† A).

Then

Theorem 7. Let ρ be a mixed state of a quantum system with discrete energy spectrum. Then,
ρ is almost periodic. Namely, for an arbitrarily small positive error ε the inequality

‖ρ(t + T ) − ρ(t)‖ < ε for all t (37)

is satisfied by infinitely many values of T, these values being spread over the whole range − ∞ to
∞ so as not to leave arbitrarily long empty intervals.

Proof. Let ρ(t) be the density matrix of a system with a discrete set of stationary states, labeled
n = 0, 1, 2, · · · , with energies En, some of which may be equal if there are degeneracies. In energy
representation the matrix elements are

ρnn′ (t) = 〈n|ρ(t)|n′〉. (38)

Let Tn = |n〉〈n| be the projection operator onto the nth stationary state, then

ρnn′
(t) = Tnρ(t)Tn′, (39)
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is the matrix which energy representation has only one nonzero element, equal to ρnn′ (t) and in the
location (n, n′). These matrices are orthogonal in density space

(
ρnn′

(t), ρn′′n′′′
(t)

)
= δnn′′δn′n′′′ |ρnn′ (t)|2 (40)

and

ρ(t) =
∞∑

n=0

∞∑

n′=0

ρnn′
(t)

=
∞∑

n=0

∞∑

n′=0

ρnn′
(0)eiωnn′ t ,

(41)

where ωnn′ = (En′ − En). Now, consider the finite sum

σ N N ′
(t) =

N∑

n=0

N ′∑

n′=0

ρnn′
(t), (42)

as an approximation to ρ(t). The square of the error is

‖ρ(t) − σ N N ′
(t)‖2 = ‖

∞∑

n=N+1

∞∑

n′=N ′+1

ρnn′
(t)‖2

=
∞∑

n=N+1

∞∑

n′=N ′+1

‖ρnn′
(t)‖2

=
∞∑

n=N+1

∞∑

n′=N ′+1

‖ρnn′
(0)‖2.

(43)

The second equality follows from the orthogonality of the ρnn′
. Since the error is independent of

the time, σ N N ′
(t) converges uniformly to ρ(t) (in the ‖ ‖-norm sense). So, ρ(t) can be approximated

by σ N N ′
(t). σ N N ′

(t) is a discrete density with finite energy levels, σ N N ′
(t) ∈ P+, and the set

BP+

ε (σ N N ′
) := {ρ ∈ P+ : ‖ρ − σ N N ′

(t)‖ < ε}, (44)

is an open precompact set in P+. Using the global section given in Eq. (9), τ (Bε) will be an open
precompact set of S. But applying the strong Poincaré type theorem for any time period T > 0 there
exists k > 0 such that

dist
(
τ (σ N N ′

(t)),ϕkT (τ (σ N N ′
(t)))

)
= dist

(
τ (σ N N ′

(t)), τ (σ N N ′
(t + kT ))

)
< ε, (45)

for any ε > 0. Namely,

τ (σ N N ′
(t + kT )) ∈ BS

ε (τ (σ N N ′
(t))), (46)

being BS
ε (τ (σ N N ′

(t))) the geodesic ball in S centered at τ (σ N N ′
(t)) of radius ε. Now choosing ε

small enough

BS
ε (τ (σ N N ′

(t))) ⊂ τ (BP+

ε (σ N N ′
(t))). (47)

Therefore by (46)

τ (σ N N ′
(t + kT )) ∈ τ (BP+

ε (σ N N ′
(t))). (48)

Projecting to the base manifold

σ N N ′
(t + kT ) ∈ BP+

ε (σ N N ′
(t)). (49)
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By definition of BP+

ε (σ N N ′
(t))

‖σ N N ′
(t + kT ) − σ N N ′

(t)‖ < ε. (50)

And the theorem is proven. !

APPENDIX: KILLING VECTOR FIELDS PROPERTIES

In this section we recall several well known results about Killing vector fields on Riemannian
manifolds(for a more detailed approximation see O’Neill21).

Theorem 8. (see also Ref. 4) Let (M, g) be Riemannian manifold, then any integral curve
γ : I ⊂ R → M of a Killing vector field X of constant length

√
g(X, X ) is a geodesic on M.

Proof. Here, we need

∇γ̇ γ̇ = ∇X X = 0, (A1)

but, since X is a Killing vector field, the Lie derivative of the metric is zero LXg = 0 and (see
O’Neill,21 Proposition 25) ∇X is skew-adjoint relative to g, then

g(∇X X, W ) + g(∇W X, X ) = 0, (A2)

for any X ∈ TS. Therefore

0 = g(∇X X, W ) + 1/2W (g(X, X )) = g(∇X X, W ), (A3)

then ∇XX = 0. !

Theorem 9. Let (M, g) be a Riemannian manifold, let X be a Killing vector field on M, and
denote by ϕt: M → M the 1-parametric subgroup of transformations given by X (i.e., ϕ0(p) = p,
d
dt ϕt (p)|t=0 = X p), then

1. Given any two points p, q ∈ M, dist(p, q) = dist(ϕt (p),ϕt (q)).
2. Given any domain '⊂M, Vol(ϕt (')) = Vol(').

Proof. Let ϕt(') be the flow of the domain '. Allow us denote

V (t) := V ol(ϕt (')). (A4)

Then, the divergence is just (see Chavel7, 8)

V ′(0) =
∫

'

div H dµgH , (A5)

where dµgH denotes the Riemannian density measure.
The divergence is defined as6

div H = tr(Y → ∇H
Y X ). (A6)

Given an orthonormal base {Ei }2n2−1
i=1 in TWS

∇H
Y H =

∑

i

Y i∇H
Ei
H =

∑

i, j

Y i gH (∇H
Ei
H, E j )E j , (A7)

where Yi := gH(Y, Ei). Therefore

div H =
∑

i

gH (∇H
Ei
H, E j ). (A8)
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But since H is a Killing vector field ∇HH is skew-adjoint relative to gH (see O’Neill,21

Proposition 25), then

div H = 0. (A9)

And the theorem follows. !
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