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Abstract. We study the behaviour as t → ∞ of solutions (cj(t)) to
the Redner–Ben-Avraham–Kahng coagulation system with positive and
compactly supported initial data, rigorously proving and slightly extend-
ing results originally established in [4] by means of formal arguments.
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1. Introduction

In a recent paper [2] we started the study of a coagulation model first consid-
ered in [3, 4] which we have called the Redner–Ben-Avraham–Kahng cluster
system (RBK for short). This is the infinite-dimensional ODE system

dcj
dt

=

∞∑

k=1

aj+k,kcj+kck −
∞∑

k=1

aj,kcjck, j = 1, 2, . . . . (1.1)

with symmetric positive coagulation coefficients aj,k. As with the discrete
Smoluchowski’s coagulation system [1] this is a mean-field model describing
the evolution of a system given at each instant by a sequence (cj), such that
cj is the density of j-clusters for each integer j, undergoing a binary reaction
described by a bilinear infinite-dimensional vector field. However, while in
the Smoluchowski’s coagulation model one k-cluster reacts with one j-cluster
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producing one (j + k)-cluster, in RBK the interaction between such clusters
produce one |k − j|-cluster.

If we assume that there is no destruction of mass, in the former model
it makes sense to think of j as the size, or mass, of each j-cluster. However in
RBK the situation is different since with the same interpretation there would
be a loss of mass in each reaction. Hence, it makes more sense to think of j as
the size of the cluster ‘active part’, being the difference between (j + k) and
|j − k| the size of the resulting cluster that becomes inactive for the reaction
process. A pictorial illustration of this is presented in Figure 1.

j-cluster k-cluster |j − k|-cluster

Figure 1. Schematic reaction in the RBK coagulation model

For more on the physical interpretation of (1.1) see [2, 3, 4].

The nonexistence of a mass conservation property in RBK model makes
for one of the major differences with respect to the Smoluchowski’s model.
Also, unlike in this one, in RBK a j and a k-cluster react to produce a
j′-cluster with j′ < max{j, k}, implying that to an initial condition with
an upper bound N for the subscript values j for which cj(0) > 0 there
corresponds a solution with the same property for all instants t > 0. This is
an invariance property rigorously stated on Proposition 7.1 in [2]. In this work
we will consider such solutions for a finite prescribed upper bound N > 3 and
j-independent coagulation coefficients aj,k = 1, for all j, k. Then, if cj(0) = 0,
for all j > N +1, then cj(t) = 0 for t > 0 and for the same values of j, while
(c1(t), c2(t), . . . , cN (t)) satisfy the following N -dimensional ODE

dcj
dt

=

N−j∑

k=1

cj+kck − cj

N∑

k=1

ck, j ∈ N ∩ [1, N ], (1.2)

where the first sum in the right-hand side is defined to be zero when j = N .

In this work we study system (1.2) for nonnegative initial conditions at
t = 0, from the point of view of the asymptotic behaviour of each component,
cj(t), j = 1, . . . , N , as t → ∞. This problem has already been addressed in
[4], where the authors have used a formal approach. In Theorem 2.1, we
obtain the result for the general case cj(0) > 0, for j = 1, 2, . . . , N , proving
rigorously that the result in [4] is correct for initial conditions such that
cN (0) > 0 and the greater common divisor of the subscript values j for which
cj(0) > 0 is 1.
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2. The main result

Consider N > 3. We are concerned with nonnegative solutions of (1.2). By
applying the results we have proved in [2] in the more general context refered
above, we can deduce that, for a solution c = (cj) to (1.2), if cj(0) > 0,
for j = 1, . . . , N , then it is defined for all t ∈ [0,∞) and cj(t) > 0, for
j = 1, . . . , N , and all positive t. Let P = {j ∈ N ∩ [1, N ] | cj(0) > 0} be the
set of subscript values for which the components of the initial condition c(0)
are positive, and let gcd(P ) be the greatest common divisor of the elements
of P . In this paper we prove the following:

Theorem 2.1. Let c = (cj) be a solution of (1.2) satisfying cj(0) > 0 for

all j = 1, . . . , N . If m := gcd(P ) and p := supP , then, for each j =
m, 2m, . . . , p, there exists ej : [0,∞) → R such that ej(t) → 0 as t → ∞,

and

cj(t) =
Ãj

t(log t)j/m−1
(1 + ej(t))

where

Ãj :=
(N − 1)!

(N − j/m)!
.

For all other j ∈ N ∩ [1, N ], cj(t) = 0, for all t > 0.

We begin the proof of this theorem by reducing it to the case m = 1,
p = N . Consider, for each t > 0, J (t) := {j ∈ N ∩ [1, N ] | cj(t) > 0},
the set of subscript values for which the components of the solution are
positive at instant t. Obviously, P = J (0). The case #P = 1 is an immediate
consequence of Proposition 7.3 in [2] and its proof. Consider now the case
#P > 1. Then, according to Proposition 7.2 in [2], J (t) = mN ∩ [1, p], for

all t > 0. Let Ñ := p/m and, for j = 1, 2, . . . , Ñ , let us write c̃j := cjm.
Then it is straightforward to check that (1.2) is again satisfied with N and

cj , for j = 1, 2, . . . , N , replaced by Ñ and c̃j , for j = 1, 2, . . . , Ñ , respectively.

From the definition of J (t), we also have that, for j = 1, . . . , Ñ and for all
t > 0, c̃j(t) > 0. For j = 1, . . . , N , if j /∈ mN ∩ [1, p], then cj(t) = 0, for
all t > 0. Hence, after having established the validity of Theorem 2.1 with
the restrictions m = 1 and p = N , if we consider a solution c(·) with initial
conditions for which m > 1, p < N or both, we can apply that restricted
version of the theorem to c̃ and then use the fact that, for j = 1, . . . , p,
cj(t) = c̃j/m(t). For the other subscript values, cj(t) identically vanishes.

In conclusion, it is sufficient to prove the above theorem for m = 1,
p = N , in which case, as we have seen, cj(t) > 0, for j = 1, 2, . . . , N , and all
t > 0. This is done in next section.

3. Long time behaviour of strictly positive solutions

Consider a solution c(·) = (cj(·)) to (1.2) such that cj(t) > 0 for all j =
1, . . . , N and all t > 0. By the above and the fact that the ODE is autonomous
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we will see that this does not imply a loss of generality. Let

ν(t) :=

N∑

j=1

cj(t),

so that (1.2) can be rewritten as

ċj(t) + cj(t)ν(t) =

N−j∑

k=1

cj+k(t)ck(t), (3.1)

and, in particular,

ċN(t) + cN (t)ν(t) = 0 . (3.2)

We start by following the procedure already used in [4] that consists in time
rescaling (1.2) so that the resulting equations only retain the production
terms. From (3.2)

cN (t)/cN (0) = exp

(
−

∫ t

0

ν(s) ds

)
.

Since e
∫

t
0
ν is an integrating factor of (3.1), we conclude that

d

dt

(
cj(t)

cN (t)

)
=

1

cN (t)

N−j∑

k=1

cj+k(t)ck(t) . (3.3)

Let y(t) :=
∫ t

0 cN (s) ds and define functions φj(y), such that

cj(t) = φj(y(t))cN (t), (3.4)

for each j = 1, . . . , N , and t > 0. Then, for j = 1, . . . , N − 1, φj(y) is defined

and is strictly positive for y ∈ [0, ω), where ω :=
∫
∞

0 cN ∈ (0,+∞]. Let us
denote by (·)′ the derivative with respect to y. Then, from (3.3) we obtain

φ′j(y) =

N−j∑

k=1

φj+k(y)φk(y) , j = 1, . . . , N − 1,

φN (y) = 1 ,

(3.5)

for 0 6 y < ω. Conversely, if (φj(y)) is a solution of (3.5) in its maximal
positive interval (0, ω∗) and if cN (·), and therefore y(·), is given, then cj(t) =
cN (t)φj(y(t)), for j = 1, . . . , N solves (1.2) for t ∈ [0,∞), so that ω∗ = ω.

In the next two lemmas we state some results about the asymptotic
behaviour of φ(y).

Lemma 3.1. Any solution of (3.5), say φ(y) = (φ1(y), . . . , φN−1(y), 1), sat-
isfying φj(0) > 0, for all j = 1, . . . , N , is defined for y ∈ [0, ω) where ω > 0
is finite and moreover,

(i) φj(y) → +∞ as y → ω, for all j = 1, 2, . . . , N − 1;
(ii) φj(y)/φj+1(y) → +∞ as y → ω, for all j = 1, 2, . . . , N − 1.
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Proof. Let (φj(y)) be a solution of (3.5) in its positive maximal interval of
existence [0, ω) satisfying the hypothesis of the lemma. Then, for all j =
1, . . . , N , φj(y) > 0, for all y ∈ [0, ω). Since,

φ′j(y) > φj+1(y)φ1(y) , (3.6)

for j = 1, . . . , N−1 (with equality for j = N−1), and φN (y) = 1, by defining
τ(y) :=

∫ y

0 φ1(s) ds, and ψj(τ), such that φj(y) = ψj(τ(y)), we obtain,

d

dτ
ψj(τ) > ψj+1(τ), (3.7)

for j = 1, . . . , N − 1 (with equality for j = N − 1), ψN (τ) = 1, for 0 6 τ <∫ ω

0
φ1. The N − 1 equation gives,

ψN−1(τ) = τ + c0.

Then by successively integrating (3.7) for j = N−2, N−3, . . . , 1, and taking
in account that ψj(0) > 0 for j = 1, . . . , N , we obtain

ψN−k(τ) >
τk

k!
, k = 1, . . . , N − 1 .

In particular,

ψ1(τ) >
τN−1

(N − 1)!
,

which is equivalent to

τ ′(y) >
τ(y)N−1

(N − 1)!
.

Since, by hypothesis, N − 1 > 1, the last inequality means that τ(·) blows
up at a finite value of y, which implies that ω < +∞. By fundamental
results in ODE theory, this in turn implies that, for our solution, we have
‖φ(y)‖ → ∞, as y → ω, where ‖ · ‖ is the euclidean norm in R

N . This,
together with the monotonicity property of each φj(y), implies that there is
a j∗ ∈ {1, . . . , N − 1} such that φj∗(y) → +∞ as y → ω. We now prove the
nontrivial fact that this is true for all j = 1, . . . , N − 1. In order to derive
such a conclusion we first prove that, for j = 1, . . . , N − 1, φj(y)/φj+1(y) is
bounded away from zero for y sufficiently close to ω. Specifically, we prove
that for n = N − 1, N − 2, . . . , 2, 1, there are η > 0, Y ∈ [0, ω) such that

φj(y)

φj+1(y)
> η, (3.8)

for j = n, n+ 1, . . . , N − 1, and for all y ∈ [Y, ω).

Consider n = N − 1. Then φ′N−1(y) = φ1(y), so that φN−1(y)/φN (y) =

φN−1(0) +
∫ y

0
φ1 and, by the positivity of φ1 the result is obvious with η =

φN−1(Y ) for any Y ∈ (0, ω).

Suppose now that we have proved our claim for n+1, with n ∈ {1, . . . , N−
1}, that is, there are η > 0, Y ∈ [0, ω) such that (3.8) is true, for j =
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n + 1, n + 2, . . . , N − 2 and for y ∈ [Y, ω). We prove the same holds for n.
Since, for y ∈ [Y, ω)

φ′n(y)

φ′n+1(y)
=

N−n∑

k=1

φk+n(y)φk(y)

N−n−1∑

k=1

φk+n+1(y)φk(y)

>

N−n−1∑

k=1

φk+n+1(y)φk(y) ·
φk+n(y)

φk+n+1(y)

N−n−1∑

k=1

φk+n+1(y)φk(y)

> η,

and therefore

φ′n(y) ≥ ηφ′n+1(y),

by integration we obtain

φn(y)− φn(Y ) > η(φn+1(y)− φn+1(Y ))

or
φn(y)

φn+1(y)
>

φn(Y )

φn+1(y)
+ η

(
1−

φn+1(Y )

φn+1(y)

)
.

Let Ỹ ∈ (Y, ω). Then, for y ∈ [Ỹ , ω),

φn+1(y) > φn+1(Ỹ ) > φn+1(Y ),

and defining

η̃ := η

(
1−

φn+1(Y )

φn+1(Ỹ )

)

we conclude that, for y ∈ [Ỹ , ω),

φn(y)

φn+1(y)
> η̃.

By redefining Y, η as Ỹ , η̃ we have proved (3.8) for n. This completes our
induction argument.

Now let K := {j = 1, . . . , N − 1 | φj(y) → ∞ as y → ω}. We already
know that K 6= ∅, so that we can define J := maxK. Then, from (3.8) we
get

φj(y) → ∞ as y → ω, for all j = 1, . . . , J .

It is then sufficient to prove that, in fact, J = N − 1. This is based on the
integral version of (3.5), namely

φj(y)− φj(Y ) =

∫ y

Y

φj+1φ1 +

∫ y

Y

φj+2φ2 + . . .

+

∫ y

Y

φN−j−1φN−1 +

∫ y

Y

φN−j , (3.9)

for j = 1, . . . , N − 1. Now, in order to derive a contradiction, suppose that
J < N − 1. Then, for j = J + 1, . . . , N − 1, φj(y) is bounded for y ∈ [Y, ω).
But then, since (3.9) implies that

φj(y)− φj(Y ) >

∫ y

Y

φN−j , (3.10)
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we conclude that
∫ y

Y
φj must be bounded for j = 1, 2, . . . , N − J − 1 and

y ∈ [Y, ω). Therefore, by the monotonicity of all the φj(·), we get, for all
y ∈ [Y, ω),

φJ (y)− φJ (Y ) 6 φJ+1(y)

∫ y

Y

φ1 + φJ+2(y)

∫ y

Y

φ2 + . . .

. . .+ φN−1(y)

∫ y

Y

φN−J−1 +

∫ y

Y

φN−J

6M +

∫ y

Y

φN−J ,

for some positive constantM . Since φJ (y) → ∞, as y → ω, this bound forces∫ y

Y φN−J → ∞ as y → ω. Now, again by (3.8), we have, for y ∈ [Y, ω),

φ1(y) > ηφ2(y) > η2φ3(y) > . . . > ηN−J−1φN−J (y) ,

implying that, for all j = 1, 2, . . . , N − J − 1,
∫ y

Y

φj > ηN−J−j

∫ y

Y

φN−J ,

contradicting the boundedness conclusion following inequality (3.10). This
proves that J = N − 1.

It remains to prove assertion (ii). For j = N − 1 it is trivial, since

φN−1(y)

φN (y)
= φN−1(y) → +∞ as y → ω,

as we have seen before. Suppose we have proved (ii) for j = N − 1, N −
2, . . . , n+1 for some n ∈ {1, 2, . . . , N − 2}. We prove that the same holds for
j = n. We consider again, for y close to ω, the quotient

φ′n(y)

φ′n+1(y)
=

N−n∑

k=1

φk+n(y)φk(y)

N−n−1∑

k=1

φk+n+1(y)φk(y)

=

N−n∑

k=1

φk+n(y)

φ2+n(y)
·
φk(y)

φ1(y)

1 +

N−n−1∑

k=2

φk+n+1(y)

φ2+n(y)
·
φk(y)

φ1(y)

>
φ1+n(y)

φ2+n(y)

(
1 +

N−n−1∑

k=2

η−k+1 φk+n+1(y)

φ2+n(y)

)−1

→ +∞,

as y → ω. Then, we know by Cauchy’s rule that

lim
y→ω

φn(y)

φn+1(y)
= lim

y→ω

φ′n(y)

φ′n+1(y)
= +∞,

and our induction argument is complete. �

Lemma 3.2. In the conditions of the previous lemma, for each j = 1, . . . , N−
1, there is ρj : [0, ω) → R such that ρj(y) → 0 as y → ω, and

φj(y) =
Aj

(ω − y)αj
(1 + ρj(y)) ,
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where

αj :=
N − j

N − 2
, Aj :=

1

(N − j)!

(
(N − 1)!

N − 2

)αj

.

Proof. By (ii) of the previous lemma, we know that, for j = 1, . . . , N − 1,

N−j∑

k=1

φj+k(y)φk(y)

φj+1(y)φ1(y)
= 1 +

N−j∑

k=2

φj+k(y)

φj+1(y)
·
φk(y)

φ1(y)
→ 1 as y → ω .

Hence, we can write, for j = 1, . . . , N − 1, and y ∈ (0, ω)

φ′j(y) = φ1+j(y)φ1(y)(1 + rj(y)) (3.11)

such that rj(y) → 0, as y → ω. We now perform the same change of variables
as in the beginning of the proof of the previous lemma, this time giving, for
τ > 0,

d

dτ
ψj(τ) = ψj+1(τ)(1 + r̂j(τ)), (3.12)

such that r̂j(τ) → 0, as τ → ∞. We now prove that, for j = 1, . . . , N − 1,

ψj(τ) =
τN−j

(N − j)!
(1 + ρ̂j(τ)) (3.13)

where ρ̂j(τ) → 0 as τ → ∞. For j = N − 1, taking into account that
r̂N−1(τ) ≡ 0, the result easily follows:

ψN−1(τ) = τ + c0 = τ(1 + c0τ
−1) .

Now suppose we have verified (3.13) for j = n+1, for some n = 1, . . . , N −2.
We prove the same holds for j = n. Defining δ(τ) by

δ(τ) = (1 + ρ̂n+1(τ))(1 + r̂n(τ)) − 1 ,

we have δ(τ) → 0 as τ → ∞, and by (3.12) and (3.13),

d

dτ
ψn(τ) =

τN−n−1

(N − n− 1)!
(1 + δ(τ)) ,

and therefore, upon integration,

ψn(τ) − ψn(0) =
τN−n

(N − n)!
+

1

(N − n− 1)!

∫ τ

0

sN−n−1δ(s) ds,

which can be written as

ψn(τ) =
τN−n

(N − n)!
(1 + ρ̂n(τ))

where

ρ̂n(τ) :=
(N − n)!ψn(0)

τN−n
+
N − n

τN−n

∫ τ

0

sN−n−1δ(s) ds .

If the integral in the right hand side stays bounded for τ > 0, then the last
term converges to 0 as τ → ∞. If it is unbounded, since its integrand is
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positive then the integral tends to +∞, as τ → ∞. In this case we can apply
Cauchy’s rule since

(∫ τ

0
sN−n−1δ(s) ds

)
′

(τN−n)′
=

δ(τ)

N − n
→ 0, as τ → ∞ ,

thus proving that also in this case, the last term converges to 0 as τ → ∞.
Either way we have ρ̂n(τ) → 0 as τ → ∞, thus proving assertion (3.13) for
j = n. Our induction argument is complete.

In particular,

ψ1(τ) =
τN−1

(N − 1)!
(1 + ρ̂1(τ))

which is equivalent to

τ ′(y) =
τ(y)N−1

(N − 1)!
(1 + ρ̂1(τ(y)))

for y ∈ (0, ω).
Let 0 < y < y1 < ω. Then, the integration of the previous equality in

[y, y1] yields

τ(y)2−N − τ(y1)
2−N =

N − 2

(N − 1)!

(
y1 − y +

∫ y1

y

ρ̂1(τ(s)) ds

)
.

Define R̂(y, y1) :=
1

y1−y

∫ y1

y
ρ̂1(τ(s)) ds. Then,

τ(y) =

[
τ(y1)

2−N +
N − 2

(N − 1)!
(y1 − y)(1 + R̂(y, y1))

]
−

1
N−2

. (3.14)

Now, observe that τ(y1)
2−N → 0, as y1 → ω. Also, by fixing y ∈ (0, ω), for

y1 ∈ [y + η, ω) with η > 0 small, y1 7→ R̂(y, y1) is bounded. Therefore we

can define R0(y) := limy1→ω R̂(y, y1). Then by making y1 → ω in (3.14) we
obtain

τ(y) =

[
N − 2

(N − 1)!
(ω − y)(1 +R0(y))

]
−

1
N−2

. (3.15)

with

R0(y) =
1

ω − y

∫ ω

y

ρ̂1(τ(s)) ds → 0 as y → ω,

by Cauchy rule and the fact that ρ̂1(τ(y)) → 0 as y → ω.
For j = 1, . . . , N − 1, define

ρj(y) := (1 +R0(y))
−

N−j
N−2 (1 + ρ̂j(τ(y))) − 1 .

so that ρj(y) → 0, as y → ω. By (3.13) and (3.15), for j = 1, . . . , N − 1 and
y ∈ (0, ω),

φj(y) = ψj(τ(y)) =
1

(N − j)!

(
(N − 1)!

N − 2

)N−j
N−2

(ω − y)−
N−j
N−2 (1 + ρj(y))

and the proof is complete. �
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The following lemma is a weaker version of Theorem 2.1 which will be
used to complete the proof of the full result:

Lemma 3.3. If cj(0) > 0, for j = 1, . . . , N , then, for each such j, there exists

ej : [0,∞) → R such that ej(t) → 0 as t→ ∞, and

cj(t) =
Ãj

t(log t)j−1
(1 + ej(t))

where

Ãj :=
(N − 1)!

(N − j)!
.

Proof. It was proved in [2] that

νodd(t) :=
N∑

j=1
j odd

cj(t)

satisfies the differential equation ν̇odd = −ν2odd, and thus

νodd(t) =
1

(νodd(0))−1 + t
.

It follows that

νodd(t) =
1

t
(1 + o(1)) as t→ ∞.

Defining νeven(t) =
∑N

j=2,j even cj(t) we have

νeven(t)

νodd(t)
=

c2
c1

+ c4
c1

+ · · ·+
c2⌊N/2⌋

c1

1 + c3
c1

+ · · ·+
c
2⌊(N−1)/2⌋+1

c1

= o(1), as t→ ∞,

since by Lemma 3.1(ii) we conclude c1(t)
ci(t)

→ ∞ as t → ∞, for all 1 < i 6 N .

It follows that, as t→ ∞,

ν(t) = νodd(t)

(
1 +

νeven(t)

νodd(t)

)
= νodd(t)(1 + o(1)) =

1

t
(1 + o(1)). (3.16)

On the other hand, again by Lemma 3.1(ii) and (3.4), we conclude that, as
t→ ∞,

ν(t) =

N∑

j=1

cj(t) = c1(t)


1 +

N∑

j=2

cj(t)

c1(t)


 = c1(t)(1 + o(1)). (3.17)

From (3.16) and (3.17) we conclude that

tc1(t) → 1, as t→ ∞.

By (3.4) with j = 1, we can write c1(t) = φ1(y(t))cN (t), and thus

tφ1(y(t))cN (t) → 1, as t→ ∞. (3.18)
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When j = 1, Lemma 3.2 reduces to

φ1(y) =
A1

(ω − y)
N−1
N−2

(1 + o(1)), as y → ω. (3.19)

From (3.15) we have ω− y = (N−1)!
N−2 τ(y)2−N (1+ o(1)), as y → ω, where τ(y)

was defined by τ(y) =
∫ y

0
φ1(ỹ)dỹ in the beginning of the proof of Lemma 3.1,

and hence

τ(y(t)) =

∫ y(t)

0

φ1(ỹ)dỹ =

∫ t

0

φ1(y(s))cN (s)ds =

∫ t

0

c1(s)ds.

Since
(τ(y(t)))′

(log t)′
=
c1(t)

1/t
= tc1(t) → 1, as t→ ∞,

using Cauchy’s rule we have τ(y(t)) = (log t)(1 + o(1)), as t → ∞, so that

ω − y(t) =
(N − 1)!

N − 2
(log t)2−N (1 + o(1)), as t→ ∞, (3.20)

and by (3.19)

φ1(y(t)) = A1

(
N − 2

(N − 1)!

)N−1
N−2

(log t)N−1(1 + o(1)), as t → ∞.

Multiplying by tcN (t) and recalling (3.18) we have

A1

(
N − 2

(N − 1)!

)N−1
N−2

(log t)N−1tcN(t)(1 + o(1)) → 1, as t→ ∞,

and since A1

(
N−2

(N−1)!

)N−1
N−2

= 1
(N−1)! , we obtain

t(log t)N−1

(N − 1)!
cN (t)(1 + o(1)) → 1, as t→ ∞,

and it follows that, as t→ ∞,

cN (t) = ((N − 1)!)
1

t(log t)N−1
(1 + o(1)). (3.21)

Now we can use (3.4), Lemma 3.2, and (3.21) to obtain

cj(t) =
Aj

(ω − y(t))αj
((N − 1)!)

1

t(log t)N−1
(1 + o(1)) as t→ ∞,

and from this, using (3.20) and the definitions of αj and Aj in the statement
of Lemma 3.2, it follows that

cj(t) =
(N − 1)!

(N − j)!

1

t(log t)j−1
(1 + o(1)) as t→ ∞, (3.22)

as we wanted to prove. �

Now, consider the case cj(0) > 0, for j = 1, . . . , N , withm = gcd(P ) = 1
and p = supP = N . By Proposition 7.2 in [2] this implies that J (t) =
N ∩ [1, N ] for all t > 0, which means that, for all t > 0 and j ∈ N ∩ [1, N ],
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all components cj(t) of c(t) are strictly positive. Hence, since (1.2) is an
autonomous ODE, given a small ε > 0, for t > ε, c(t) = cε(t− ε), where cε(·)
is the solution of (1.2) satisfying the initial condition cε(0) = c(ε). Therefore,
the conditions of Lemma 3.3 apply to cε(·). Then, it is easy to see that the
asymptotic results that we conclude with respect to cε(t) also apply to c(t),
allowing us to state the following:

Lemma 3.4. Let c = (cj) be a solution satisfying cj(0) > 0, with m = 1 and

p = N . Then the conclusions of Lemma 3.3 hold.

This is, in fact, the particular case of Theorem 2.1 from which the full
case follows as stated at the end of section 2.

4. Final remarks

A natural question to ask is: what is the asymptotic behaviour of the solutions
of (1.2) in the infinite dimensional case (N = ∞)? It is clear that Theorem
2.1 by itself is unsufficient to answer this question since the passage to the
limit, N → ∞, is not allowed without results on the uniformity of the various
limits involved, which seems to be a hard task. Also it is far from clear how to
rebuild the proofs of the lemmas in section 3 in this more general case since
they heavily rely on the fact that there is a ‘last equation’, the N -component
equation, that can be integrated by the reduction method we have used, being
the asymptotic behaviour of the other components deduced in a ‘backwards’
manner. Such procedure is obviously impossible in an infinite dimensional
setting. In fact, that the situation can be very different for N = ∞ from the
one displayed by Theorem 2.1 is shown by the existence of the self-similar
solutions given by,

cj(t) = (κ+ t)−1(1 − α2)αj−1, j = 1, 2, . . . , t > 0,

with constants κ > 0 and α ∈ (0, 1) (see [2]), in which case, tcj(t) → (1 −
α2)αj−1, as t → ∞, for j = 1, 2, . . . . Further work will be devoted to fully
understand this problem.
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