The Redner-Ben-Avraham-Kahng coagulation system with constant coefficients: the finite dimensional case

F.P. da Costa, J.T. Pinto and R. Sasportes

Abstract

We study the behaviour as $t \rightarrow \infty$ of solutions $\left(c_{j}(t)\right)$ to the Redner-Ben-Avraham-Kahng coagulation system with positive and compactly supported initial data, rigorously proving and slightly extending results originally established in [4] by means of formal arguments.

Mathematics Subject Classification (2010). Primary 34A12; Secondary 82C05.
Keywords. Dynamics of ODEs, Coagulation processes.

1. Introduction

In a recent paper [2] we started the study of a coagulation model first considered in [3, 4] which we have called the Redner-Ben-Avraham-Kahng cluster system (RBK for short). This is the infinite-dimensional ODE system

$$
\begin{equation*}
\frac{d c_{j}}{d t}=\sum_{k=1}^{\infty} a_{j+k, k} c_{j+k} c_{k}-\sum_{k=1}^{\infty} a_{j, k} c_{j} c_{k}, \quad j=1,2, \ldots \tag{1.1}
\end{equation*}
$$

with symmetric positive coagulation coefficients $a_{j, k}$. As with the discrete Smoluchowski's coagulation system [1] this is a mean-field model describing the evolution of a system given at each instant by a sequence $\left(c_{j}\right)$, such that c_{j} is the density of j-clusters for each integer j, undergoing a binary reaction described by a bilinear infinite-dimensional vector field. However, while in the Smoluchowski's coagulation model one k-cluster reacts with one j-cluster

[^0]producing one $(j+k)$-cluster, in RBK the interaction between such clusters produce one $|k-j|$-cluster.

If we assume that there is no destruction of mass, in the former model it makes sense to think of j as the size, or mass, of each j-cluster. However in RBK the situation is different since with the same interpretation there would be a loss of mass in each reaction. Hence, it makes more sense to think of j as the size of the cluster 'active part', being the difference between $(j+k)$ and $|j-k|$ the size of the resulting cluster that becomes inactive for the reaction process. A pictorial illustration of this is presented in Figure 1.

Figure 1. Schematic reaction in the RBK coagulation model

For more on the physical interpretation of (1.1) see $[2,3,4]$.
The nonexistence of a mass conservation property in RBK model makes for one of the major differences with respect to the Smoluchowski's model. Also, unlike in this one, in RBK a j and a k-cluster react to produce a j^{\prime}-cluster with $j^{\prime}<\max \{j, k\}$, implying that to an initial condition with an upper bound N for the subscript values j for which $c_{j}(0)>0$ there corresponds a solution with the same property for all instants $t \geqslant 0$. This is an invariance property rigorously stated on Proposition 7.1 in [2]. In this work we will consider such solutions for a finite prescribed upper bound $N \geqslant 3$ and j-independent coagulation coefficients $a_{j, k}=1$, for all j, k. Then, if $c_{j}(0)=0$, for all $j \geqslant N+1$, then $c_{j}(t)=0$ for $t \geqslant 0$ and for the same values of j, while $\left(c_{1}(t), c_{2}(t), \ldots, c_{N}(t)\right)$ satisfy the following N-dimensional ODE

$$
\begin{equation*}
\frac{d c_{j}}{d t}=\sum_{k=1}^{N-j} c_{j+k} c_{k}-c_{j} \sum_{k=1}^{N} c_{k}, \quad j \in \mathbb{N} \cap[1, N] \tag{1.2}
\end{equation*}
$$

where the first sum in the right-hand side is defined to be zero when $j=N$.
In this work we study system (1.2) for nonnegative initial conditions at $t=0$, from the point of view of the asymptotic behaviour of each component, $c_{j}(t), j=1, \ldots, N$, as $t \rightarrow \infty$. This problem has already been addressed in [4], where the authors have used a formal approach. In Theorem 2.1, we obtain the result for the general case $c_{j}(0) \geqslant 0$, for $j=1,2, \ldots, N$, proving rigorously that the result in [4] is correct for initial conditions such that $c_{N}(0)>0$ and the greater common divisor of the subscript values j for which $c_{j}(0)>0$ is 1.

2. The main result

Consider $N \geqslant 3$. We are concerned with nonnegative solutions of (1.2). By applying the results we have proved in [2] in the more general context refered above, we can deduce that, for a solution $c=\left(c_{j}\right)$ to (1.2), if $c_{j}(0) \geqslant 0$, for $j=1, \ldots, N$, then it is defined for all $t \in[0, \infty)$ and $c_{j}(t) \geqslant 0$, for $j=1, \ldots, N$, and all positive t. Let $P=\left\{j \in \mathbb{N} \cap[1, N] \mid c_{j}(0)>0\right\}$ be the set of subscript values for which the components of the initial condition $c(0)$ are positive, and let $\operatorname{gcd}(P)$ be the greatest common divisor of the elements of P. In this paper we prove the following:

Theorem 2.1. Let $c=\left(c_{j}\right)$ be a solution of (1.2) satisfying $c_{j}(0) \geqslant 0$ for all $j=1, \ldots, N$. If $m:=\operatorname{gcd}(P)$ and $p:=\sup P$, then, for each $j=$ $m, 2 m, \ldots, p$, there exists $e_{j}:[0, \infty) \rightarrow \mathbb{R}$ such that $e_{j}(t) \rightarrow 0$ as $t \rightarrow \infty$, and

$$
c_{j}(t)=\frac{\widetilde{A}_{j}}{t(\log t)^{j / m-1}}\left(1+e_{j}(t)\right)
$$

where

$$
\widetilde{A}_{j}:=\frac{(N-1)!}{(N-j / m)!}
$$

For all other $j \in \mathbb{N} \cap[1, N], c_{j}(t)=0$, for all $t \geqslant 0$.
We begin the proof of this theorem by reducing it to the case $m=1$, $p=N$. Consider, for each $t \geqslant 0, \mathcal{J}(t):=\left\{j \in \mathbb{N} \cap[1, N] \mid c_{j}(t)>0\right\}$, the set of subscript values for which the components of the solution are positive at instant t. Obviously, $P=\mathcal{J}(0)$. The case $\# P=1$ is an immediate consequence of Proposition 7.3 in [2] and its proof. Consider now the case $\# P>1$. Then, according to Proposition 7.2 in [2], $\mathcal{J}(t)=m \mathbb{N} \cap[1, p]$, for all $t>0$. Let $\tilde{N}:=p / m$ and, for $j=1,2, \ldots, \tilde{N}$, let us write $\tilde{c}_{j}:=c_{j m}$. Then it is straightforward to check that (1.2) is again satisfied with N and c_{j}, for $j=1,2, \ldots, N$, replaced by \tilde{N} and \tilde{c}_{j}, for $j=1,2, \ldots, \tilde{N}$, respectively. From the definition of $\mathcal{J}(t)$, we also have that, for $j=1, \ldots, \tilde{N}$ and for all $t>0, \tilde{c}_{j}(t)>0$. For $j=1, \ldots, N$, if $j \notin m \mathbb{N} \cap[1, p]$, then $c_{j}(t)=0$, for all $t \geqslant 0$. Hence, after having established the validity of Theorem 2.1 with the restrictions $m=1$ and $p=N$, if we consider a solution $c(\cdot)$ with initial conditions for which $m>1, p<N$ or both, we can apply that restricted version of the theorem to \tilde{c} and then use the fact that, for $j=1, \ldots, p$, $c_{j}(t)=\tilde{c}_{j / m}(t)$. For the other subscript values, $c_{j}(t)$ identically vanishes.

In conclusion, it is sufficient to prove the above theorem for $m=1$, $p=N$, in which case, as we have seen, $c_{j}(t)>0$, for $j=1,2, \ldots, N$, and all $t>0$. This is done in next section.

3. Long time behaviour of strictly positive solutions

Consider a solution $c(\cdot)=\left(c_{j}(\cdot)\right)$ to (1.2) such that $c_{j}(t)>0$ for all $j=$ $1, \ldots, N$ and all $t \geqslant 0$. By the above and the fact that the ODE is autonomous
we will see that this does not imply a loss of generality. Let

$$
\nu(t):=\sum_{j=1}^{N} c_{j}(t)
$$

so that (1.2) can be rewritten as

$$
\begin{equation*}
\dot{c}_{j}(t)+c_{j}(t) \nu(t)=\sum_{k=1}^{N-j} c_{j+k}(t) c_{k}(t) \tag{3.1}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\dot{c}_{N}(t)+c_{N}(t) \nu(t)=0 . \tag{3.2}
\end{equation*}
$$

We start by following the procedure already used in [4] that consists in time rescaling (1.2) so that the resulting equations only retain the production terms. From (3.2)

$$
c_{N}(t) / c_{N}(0)=\exp \left(-\int_{0}^{t} \nu(s) d s\right)
$$

Since $e^{\int_{0}^{t} \nu}$ is an integrating factor of (3.1), we conclude that

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{c_{j}(t)}{c_{N}(t)}\right)=\frac{1}{c_{N}(t)} \sum_{k=1}^{N-j} c_{j+k}(t) c_{k}(t) \tag{3.3}
\end{equation*}
$$

Let $y(t):=\int_{0}^{t} c_{N}(s) d s$ and define functions $\phi_{j}(y)$, such that

$$
\begin{equation*}
c_{j}(t)=\phi_{j}(y(t)) c_{N}(t) \tag{3.4}
\end{equation*}
$$

for each $j=1, \ldots, N$, and $t \geqslant 0$. Then, for $j=1, \ldots, N-1, \phi_{j}(y)$ is defined and is strictly positive for $y \in[0, \omega)$, where $\omega:=\int_{0}^{\infty} c_{N} \in(0,+\infty]$. Let us denote by $(\cdot)^{\prime}$ the derivative with respect to y. Then, from (3.3) we obtain

$$
\begin{align*}
\phi_{j}^{\prime}(y) & =\sum_{k=1}^{N-j} \phi_{j+k}(y) \phi_{k}(y), \quad j=1, \ldots, N-1 \tag{3.5}\\
\phi_{N}(y) & =1
\end{align*}
$$

for $0 \leqslant y<\omega$. Conversely, if $\left(\phi_{j}(y)\right)$ is a solution of (3.5) in its maximal positive interval $\left(0, \omega^{*}\right)$ and if $c_{N}(\cdot)$, and therefore $y(\cdot)$, is given, then $c_{j}(t)=$ $c_{N}(t) \phi_{j}(y(t))$, for $j=1, \ldots, N$ solves (1.2) for $t \in[0, \infty)$, so that $\omega^{*}=\omega$.

In the next two lemmas we state some results about the asymptotic behaviour of $\phi(y)$.

Lemma 3.1. Any solution of (3.5), say $\phi(y)=\left(\phi_{1}(y), \ldots, \phi_{N-1}(y), 1\right)$, satisfying $\phi_{j}(0)>0$, for all $j=1, \ldots, N$, is defined for $y \in[0, \omega)$ where $\omega>0$ is finite and moreover,
(i) $\phi_{j}(y) \rightarrow+\infty$ as $y \rightarrow \omega$, for all $j=1,2, \ldots, N-1$;
(ii) $\phi_{j}(y) / \phi_{j+1}(y) \rightarrow+\infty$ as $y \rightarrow \omega$, for all $j=1,2, \ldots, N-1$.

Proof. Let $\left(\phi_{j}(y)\right)$ be a solution of (3.5) in its positive maximal interval of existence $[0, \omega)$ satisfying the hypothesis of the lemma. Then, for all $j=$ $1, \ldots, N, \phi_{j}(y)>0$, for all $y \in[0, \omega)$. Since,

$$
\begin{equation*}
\phi_{j}^{\prime}(y) \geqslant \phi_{j+1}(y) \phi_{1}(y), \tag{3.6}
\end{equation*}
$$

for $j=1, \ldots, N-1$ (with equality for $j=N-1$), and $\phi_{N}(y)=1$, by defining $\tau(y):=\int_{0}^{y} \phi_{1}(s) d s$, and $\psi_{j}(\tau)$, such that $\phi_{j}(y)=\psi_{j}(\tau(y))$, we obtain,

$$
\begin{equation*}
\frac{d}{d \tau} \psi_{j}(\tau) \geqslant \psi_{j+1}(\tau) \tag{3.7}
\end{equation*}
$$

for $j=1, \ldots, N-1$ (with equality for $j=N-1$), $\psi_{N}(\tau)=1$, for $0 \leqslant \tau<$ $\int_{0}^{\omega} \phi_{1}$. The $N-1$ equation gives,

$$
\psi_{N-1}(\tau)=\tau+c_{0}
$$

Then by successively integrating (3.7) for $j=N-2, N-3, \ldots, 1$, and taking in account that $\psi_{j}(0) \geqslant 0$ for $j=1, \ldots, N$, we obtain

$$
\psi_{N-k}(\tau) \geqslant \frac{\tau^{k}}{k!}, \quad k=1, \ldots, N-1
$$

In particular,

$$
\psi_{1}(\tau) \geqslant \frac{\tau^{N-1}}{(N-1)!}
$$

which is equivalent to

$$
\tau^{\prime}(y) \geqslant \frac{\tau(y)^{N-1}}{(N-1)!}
$$

Since, by hypothesis, $N-1>1$, the last inequality means that $\tau(\cdot)$ blows up at a finite value of y, which implies that $\omega<+\infty$. By fundamental results in ODE theory, this in turn implies that, for our solution, we have $\|\phi(y)\| \rightarrow \infty$, as $y \rightarrow \omega$, where $\|\cdot\|$ is the euclidean norm in \mathbb{R}^{N}. This, together with the monotonicity property of each $\phi_{j}(y)$, implies that there is a $j^{*} \in\{1, \ldots, N-1\}$ such that $\phi_{j^{*}}(y) \rightarrow+\infty$ as $y \rightarrow \omega$. We now prove the nontrivial fact that this is true for all $j=1, \ldots, N-1$. In order to derive such a conclusion we first prove that, for $j=1, \ldots, N-1, \phi_{j}(y) / \phi_{j+1}(y)$ is bounded away from zero for y sufficiently close to ω. Specifically, we prove that for $n=N-1, N-2, \ldots, 2,1$, there are $\eta>0, Y \in[0, \omega)$ such that

$$
\begin{equation*}
\frac{\phi_{j}(y)}{\phi_{j+1}(y)}>\eta \tag{3.8}
\end{equation*}
$$

for $j=n, n+1, \ldots, N-1$, and for all $y \in[Y, \omega)$.
Consider $n=N-1$. Then $\phi_{N-1}^{\prime}(y)=\phi_{1}(y)$, so that $\phi_{N-1}(y) / \phi_{N}(y)=$ $\phi_{N-1}(0)+\int_{0}^{y} \phi_{1}$ and, by the positivity of ϕ_{1} the result is obvious with $\eta=$ $\phi_{N-1}(Y)$ for any $Y \in(0, \omega)$.

Suppose now that we have proved our claim for $n+1$, with $n \in\{1, \ldots, N-$ $1\}$, that is, there are $\eta>0, Y \in[0, \omega)$ such that (3.8) is true, for $j=$
$n+1, n+2, \ldots, N-2$ and for $y \in[Y, \omega)$. We prove the same holds for n. Since, for $y \in[Y, \omega)$
$\frac{\phi_{n}^{\prime}(y)}{\phi_{n+1}^{\prime}(y)}=\frac{\sum_{k=1}^{N-n} \phi_{k+n}(y) \phi_{k}(y)}{\sum_{k=1}^{N-n-1} \phi_{k+n+1}(y) \phi_{k}(y)} \geqslant \frac{\sum_{k=1}^{N-n-1} \phi_{k+n+1}(y) \phi_{k}(y) \cdot \frac{\phi_{k+n}(y)}{\phi_{k+n+1}(y)}}{\sum_{k=1}^{N-n-1} \phi_{k+n+1}(y) \phi_{k}(y)} \geqslant \eta$,
and therefore

$$
\phi_{n}^{\prime}(y) \geq \eta \phi_{n+1}^{\prime}(y)
$$

by integration we obtain

$$
\phi_{n}(y)-\phi_{n}(Y) \geqslant \eta\left(\phi_{n+1}(y)-\phi_{n+1}(Y)\right)
$$

or

$$
\frac{\phi_{n}(y)}{\phi_{n+1}(y)} \geqslant \frac{\phi_{n}(Y)}{\phi_{n+1}(y)}+\eta\left(1-\frac{\phi_{n+1}(Y)}{\phi_{n+1}(y)}\right) .
$$

Let $\tilde{Y} \in(Y, \omega)$. Then, for $y \in[\tilde{Y}, \omega)$,

$$
\phi_{n+1}(y) \geqslant \phi_{n+1}(\tilde{Y})>\phi_{n+1}(Y)
$$

and defining

$$
\tilde{\eta}:=\eta\left(1-\frac{\phi_{n+1}(Y)}{\phi_{n+1}(\tilde{Y})}\right)
$$

we conclude that, for $y \in[\tilde{Y}, \omega)$,

$$
\frac{\phi_{n}(y)}{\phi_{n+1}(y)} \geqslant \tilde{\eta}
$$

By redefining Y, η as $\tilde{Y}, \tilde{\eta}$ we have proved (3.8) for n. This completes our induction argument.

Now let $K:=\left\{j=1, \ldots, N-1 \mid \phi_{j}(y) \rightarrow \infty\right.$ as $\left.y \rightarrow \omega\right\}$. We already know that $K \neq \emptyset$, so that we can define $J:=\max K$. Then, from (3.8) we get

$$
\phi_{j}(y) \rightarrow \infty \text { as } y \rightarrow \omega, \quad \text { for all } j=1, \ldots, J
$$

It is then sufficient to prove that, in fact, $J=N-1$. This is based on the integral version of (3.5), namely

$$
\begin{align*}
\phi_{j}(y)-\phi_{j}(Y)=\int_{Y}^{y} \phi_{j+1} \phi_{1}+\int_{Y}^{y} & \phi_{j+2} \phi_{2}+\ldots \\
& +\int_{Y}^{y} \phi_{N-j-1} \phi_{N-1}+\int_{Y}^{y} \phi_{N-j} \tag{3.9}
\end{align*}
$$

for $j=1, \ldots, N-1$. Now, in order to derive a contradiction, suppose that $J<N-1$. Then, for $j=J+1, \ldots, N-1, \phi_{j}(y)$ is bounded for $y \in[Y, \omega)$. But then, since (3.9) implies that

$$
\begin{equation*}
\phi_{j}(y)-\phi_{j}(Y)>\int_{Y}^{y} \phi_{N-j}, \tag{3.10}
\end{equation*}
$$

we conclude that $\int_{Y}^{y} \phi_{j}$ must be bounded for $j=1,2, \ldots, N-J-1$ and $y \in[Y, \omega)$. Therefore, by the monotonicity of all the $\phi_{j}(\cdot)$, we get, for all $y \in[Y, \omega)$,

$$
\begin{aligned}
\phi_{J}(y)-\phi_{J}(Y) \leqslant & \phi_{J+1}(y) \int_{Y}^{y} \phi_{1} \\
& +\phi_{J+2}(y) \int_{Y}^{y} \phi_{2}+\ldots \\
& \ldots+\phi_{N-1}(y) \int_{Y}^{y} \phi_{N-J-1}+\int_{Y}^{y} \phi_{N-J} \\
\leqslant & M+\int_{Y}^{y} \phi_{N-J}
\end{aligned}
$$

for some positive constant M. Since $\phi_{J}(y) \rightarrow \infty$, as $y \rightarrow \omega$, this bound forces $\int_{Y}^{y} \phi_{N-J} \rightarrow \infty$ as $y \rightarrow \omega$. Now, again by (3.8), we have, for $y \in[Y, \omega)$,

$$
\phi_{1}(y) \geqslant \eta \phi_{2}(y) \geqslant \eta^{2} \phi_{3}(y) \geqslant \ldots \geqslant \eta^{N-J-1} \phi_{N-J}(y),
$$

implying that, for all $j=1,2, \ldots, N-J-1$,

$$
\int_{Y}^{y} \phi_{j} \geqslant \eta^{N-J-j} \int_{Y}^{y} \phi_{N-J}
$$

contradicting the boundedness conclusion following inequality (3.10). This proves that $J=N-1$.

It remains to prove assertion (ii). For $j=N-1$ it is trivial, since

$$
\frac{\phi_{N-1}(y)}{\phi_{N}(y)}=\phi_{N-1}(y) \rightarrow+\infty \quad \text { as } \quad y \rightarrow \omega
$$

as we have seen before. Suppose we have proved (ii) for $j=N-1, N-$ $2, \ldots, n+1$ for some $n \in\{1,2, \ldots, N-2\}$. We prove that the same holds for $j=n$. We consider again, for y close to ω, the quotient

$$
\begin{aligned}
\frac{\phi_{n}^{\prime}(y)}{\phi_{n+1}^{\prime}(y)} & =\frac{\sum_{k=1}^{N-n} \phi_{k+n}(y) \phi_{k}(y)}{\sum_{k=1}^{N-n-1} \phi_{k+n+1}(y) \phi_{k}(y)}=\frac{\sum_{k=1}^{N-n} \frac{\phi_{k+n}(y)}{\phi_{2+n}(y)} \cdot \frac{\phi_{k}(y)}{\phi_{1}(y)}}{1+\sum_{k=2}^{N-n-1} \frac{\phi_{k+n+1}(y)}{\phi_{2+n}(y)} \cdot \frac{\phi_{k}(y)}{\phi_{1}(y)}} \\
& >\frac{\phi_{1+n}(y)}{\phi_{2+n}(y)}\left(1+\sum_{k=2}^{N-n-1} \eta^{-k+1} \frac{\phi_{k+n+1}(y)}{\phi_{2+n}(y)}\right)^{-1} \rightarrow+\infty,
\end{aligned}
$$

as $y \rightarrow \omega$. Then, we know by Cauchy's rule that

$$
\lim _{y \rightarrow \omega} \frac{\phi_{n}(y)}{\phi_{n+1}(y)}=\lim _{y \rightarrow \omega} \frac{\phi_{n}^{\prime}(y)}{\phi_{n+1}^{\prime}(y)}=+\infty
$$

and our induction argument is complete.
Lemma 3.2. In the conditions of the previous lemma, for each $j=1, \ldots, N-$ 1 , there is $\rho_{j}:[0, \omega) \rightarrow \mathbb{R}$ such that $\rho_{j}(y) \rightarrow 0$ as $y \rightarrow \omega$, and

$$
\phi_{j}(y)=\frac{A_{j}}{(\omega-y)^{\alpha_{j}}}\left(1+\rho_{j}(y)\right),
$$

where

$$
\alpha_{j}:=\frac{N-j}{N-2}, \quad A_{j}:=\frac{1}{(N-j)!}\left(\frac{(N-1)!}{N-2}\right)^{\alpha_{j}}
$$

Proof. By (ii) of the previous lemma, we know that, for $j=1, \ldots, N-1$,

$$
\frac{\sum_{k=1}^{N-j} \phi_{j+k}(y) \phi_{k}(y)}{\phi_{j+1}(y) \phi_{1}(y)}=1+\sum_{k=2}^{N-j} \frac{\phi_{j+k}(y)}{\phi_{j+1}(y)} \cdot \frac{\phi_{k}(y)}{\phi_{1}(y)} \rightarrow 1 \quad \text { as } \quad y \rightarrow \omega
$$

Hence, we can write, for $j=1, \ldots, N-1$, and $y \in(0, \omega)$

$$
\begin{equation*}
\phi_{j}^{\prime}(y)=\phi_{1+j}(y) \phi_{1}(y)\left(1+r_{j}(y)\right) \tag{3.11}
\end{equation*}
$$

such that $r_{j}(y) \rightarrow 0$, as $y \rightarrow \omega$. We now perform the same change of variables as in the beginning of the proof of the previous lemma, this time giving, for $\tau \geqslant 0$,

$$
\begin{equation*}
\frac{d}{d \tau} \psi_{j}(\tau)=\psi_{j+1}(\tau)\left(1+\hat{r}_{j}(\tau)\right) \tag{3.12}
\end{equation*}
$$

such that $\hat{r}_{j}(\tau) \rightarrow 0$, as $\tau \rightarrow \infty$. We now prove that, for $j=1, \ldots, N-1$,

$$
\begin{equation*}
\psi_{j}(\tau)=\frac{\tau^{N-j}}{(N-j)!}\left(1+\hat{\rho}_{j}(\tau)\right) \tag{3.13}
\end{equation*}
$$

where $\hat{\rho}_{j}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$. For $j=N-1$, taking into account that $\hat{r}_{N-1}(\tau) \equiv 0$, the result easily follows:

$$
\psi_{N-1}(\tau)=\tau+c_{0}=\tau\left(1+c_{0} \tau^{-1}\right)
$$

Now suppose we have verified (3.13) for $j=n+1$, for some $n=1, \ldots, N-2$. We prove the same holds for $j=n$. Defining $\delta(\tau)$ by

$$
\delta(\tau)=\left(1+\hat{\rho}_{n+1}(\tau)\right)\left(1+\hat{r}_{n}(\tau)\right)-1
$$

we have $\delta(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$, and by (3.12) and (3.13),

$$
\frac{d}{d \tau} \psi_{n}(\tau)=\frac{\tau^{N-n-1}}{(N-n-1)!}(1+\delta(\tau))
$$

and therefore, upon integration,

$$
\psi_{n}(\tau)-\psi_{n}(0)=\frac{\tau^{N-n}}{(N-n)!}+\frac{1}{(N-n-1)!} \int_{0}^{\tau} s^{N-n-1} \delta(s) d s
$$

which can be written as

$$
\psi_{n}(\tau)=\frac{\tau^{N-n}}{(N-n)!}\left(1+\hat{\rho}_{n}(\tau)\right)
$$

where

$$
\hat{\rho}_{n}(\tau):=\frac{(N-n)!\psi_{n}(0)}{\tau^{N-n}}+\frac{N-n}{\tau^{N-n}} \int_{0}^{\tau} s^{N-n-1} \delta(s) d s
$$

If the integral in the right hand side stays bounded for $\tau \geqslant 0$, then the last term converges to 0 as $\tau \rightarrow \infty$. If it is unbounded, since its integrand is
positive then the integral tends to $+\infty$, as $\tau \rightarrow \infty$. In this case we can apply Cauchy's rule since

$$
\frac{\left(\int_{0}^{\tau} s^{N-n-1} \delta(s) d s\right)^{\prime}}{\left(\tau^{N-n}\right)^{\prime}}=\frac{\delta(\tau)}{N-n} \rightarrow 0, \quad \text { as } \quad \tau \rightarrow \infty
$$

thus proving that also in this case, the last term converges to 0 as $\tau \rightarrow \infty$. Either way we have $\hat{\rho}_{n}(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$, thus proving assertion (3.13) for $j=n$. Our induction argument is complete.

In particular,

$$
\psi_{1}(\tau)=\frac{\tau^{N-1}}{(N-1)!}\left(1+\hat{\rho}_{1}(\tau)\right)
$$

which is equivalent to

$$
\tau^{\prime}(y)=\frac{\tau(y)^{N-1}}{(N-1)!}\left(1+\hat{\rho}_{1}(\tau(y))\right)
$$

for $y \in(0, \omega)$.
Let $0<y<y_{1}<\omega$. Then, the integration of the previous equality in [$\left.y, y_{1}\right]$ yields

$$
\tau(y)^{2-N}-\tau\left(y_{1}\right)^{2-N}=\frac{N-2}{(N-1)!}\left(y_{1}-y+\int_{y}^{y_{1}} \hat{\rho}_{1}(\tau(s)) d s\right)
$$

Define $\hat{R}\left(y, y_{1}\right):=\frac{1}{y_{1}-y} \int_{y}^{y_{1}} \hat{\rho}_{1}(\tau(s)) d s$. Then,

$$
\begin{equation*}
\tau(y)=\left[\tau\left(y_{1}\right)^{2-N}+\frac{N-2}{(N-1)!}\left(y_{1}-y\right)\left(1+\hat{R}\left(y, y_{1}\right)\right)\right]^{-\frac{1}{N-2}} \tag{3.14}
\end{equation*}
$$

Now, observe that $\tau\left(y_{1}\right)^{2-N} \rightarrow 0$, as $y_{1} \rightarrow \omega$. Also, by fixing $y \in(0, \omega)$, for $y_{1} \in[y+\eta, \omega)$ with $\eta>0$ small, $y_{1} \mapsto \hat{R}\left(y, y_{1}\right)$ is bounded. Therefore we can define $R_{0}(y):=\lim _{y_{1} \rightarrow \omega} \hat{R}\left(y, y_{1}\right)$. Then by making $y_{1} \rightarrow \omega$ in (3.14) we obtain

$$
\begin{equation*}
\tau(y)=\left[\frac{N-2}{(N-1)!}(\omega-y)\left(1+R_{0}(y)\right)\right]^{-\frac{1}{N-2}} \tag{3.15}
\end{equation*}
$$

with

$$
R_{0}(y)=\frac{1}{\omega-y} \int_{y}^{\omega} \hat{\rho}_{1}(\tau(s)) d s \rightarrow 0 \quad \text { as } \quad y \rightarrow \omega
$$

by Cauchy rule and the fact that $\hat{\rho}_{1}(\tau(y)) \rightarrow 0$ as $y \rightarrow \omega$.
For $j=1, \ldots, N-1$, define

$$
\rho_{j}(y):=\left(1+R_{0}(y)\right)^{-\frac{N-j}{N-2}}\left(1+\hat{\rho}_{j}(\tau(y))\right)-1 .
$$

so that $\rho_{j}(y) \rightarrow 0$, as $y \rightarrow \omega$. By (3.13) and (3.15), for $j=1, \ldots, N-1$ and $y \in(0, \omega)$,

$$
\phi_{j}(y)=\psi_{j}(\tau(y))=\frac{1}{(N-j)!}\left(\frac{(N-1)!}{N-2}\right)^{\frac{N-j}{N-2}}(\omega-y)^{-\frac{N-j}{N-2}}\left(1+\rho_{j}(y)\right)
$$

and the proof is complete.

The following lemma is a weaker version of Theorem 2.1 which will be used to complete the proof of the full result:

Lemma 3.3. If $c_{j}(0)>0$, for $j=1, \ldots, N$, then, for each such j, there exists $e_{j}:[0, \infty) \rightarrow \mathbb{R}$ such that $e_{j}(t) \rightarrow 0$ as $t \rightarrow \infty$, and

$$
c_{j}(t)=\frac{\widetilde{A}_{j}}{t(\log t)^{j-1}}\left(1+e_{j}(t)\right)
$$

where

$$
\widetilde{A}_{j}:=\frac{(N-1)!}{(N-j)!}
$$

Proof. It was proved in [2] that

$$
\nu_{\mathrm{odd}}(t):=\sum_{\substack{j=1 \\ j \text { odd }}}^{N} c_{j}(t)
$$

satisfies the differential equation $\dot{\nu}_{\text {odd }}=-\nu_{\text {odd }}^{2}$, and thus

$$
\nu_{\text {odd }}(t)=\frac{1}{\left(\nu_{\text {odd }}(0)\right)^{-1}+t} .
$$

It follows that

$$
\nu_{\text {odd }}(t)=\frac{1}{t}(1+o(1)) \quad \text { as } t \rightarrow \infty
$$

Defining $\nu_{\text {even }}(t)=\sum_{j=2, j \text { even }}^{N} c_{j}(t)$ we have

$$
\frac{\nu_{\mathrm{even}}(t)}{\nu_{\mathrm{odd}}(t)}=\frac{\frac{c_{2}}{c_{1}}+\frac{c_{4}}{c_{1}}+\cdots+\frac{c_{2\lfloor N / 2\rfloor}}{c_{1}}}{1+\frac{c_{3}}{c_{1}}+\cdots+\frac{c_{2\lfloor(N-1) / 2\rfloor+1}}{c_{1}}}=o(1), \quad \text { as } t \rightarrow \infty
$$

since by Lemma 3.1(ii) we conclude $\frac{c_{1}(t)}{c_{i}(t)} \rightarrow \infty$ as $t \rightarrow \infty$, for all $1<i \leqslant N$. It follows that, as $t \rightarrow \infty$,

$$
\begin{equation*}
\nu(t)=\nu_{\mathrm{odd}}(t)\left(1+\frac{\nu_{\mathrm{even}}(t)}{\nu_{\mathrm{odd}}(t)}\right)=\nu_{\mathrm{odd}}(t)(1+o(1))=\frac{1}{t}(1+o(1)) \tag{3.16}
\end{equation*}
$$

On the other hand, again by Lemma 3.1(ii) and (3.4), we conclude that, as $t \rightarrow \infty$,

$$
\begin{equation*}
\nu(t)=\sum_{j=1}^{N} c_{j}(t)=c_{1}(t)\left(1+\sum_{j=2}^{N} \frac{c_{j}(t)}{c_{1}(t)}\right)=c_{1}(t)(1+o(1)) \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17) we conclude that

$$
t c_{1}(t) \rightarrow 1, \quad \text { as } t \rightarrow \infty
$$

By (3.4) with $j=1$, we can write $c_{1}(t)=\phi_{1}(y(t)) c_{N}(t)$, and thus

$$
\begin{equation*}
t \phi_{1}(y(t)) c_{N}(t) \rightarrow 1, \quad \text { as } t \rightarrow \infty . \tag{3.18}
\end{equation*}
$$

When $j=1$, Lemma 3.2 reduces to

$$
\begin{equation*}
\phi_{1}(y)=\frac{A_{1}}{(\omega-y)^{\frac{N-1}{N-2}}}(1+o(1)), \quad \text { as } y \rightarrow \omega . \tag{3.19}
\end{equation*}
$$

From (3.15) we have $\omega-y=\frac{(N-1)!}{N-2} \tau(y)^{2-N}(1+o(1))$, as $y \rightarrow \omega$, where $\tau(y)$ was defined by $\tau(y)=\int_{0}^{y} \phi_{1}(\tilde{y}) d \tilde{y}$ in the beginning of the proof of Lemma 3.1, and hence

$$
\tau(y(t))=\int_{0}^{y(t)} \phi_{1}(\tilde{y}) d \tilde{y}=\int_{0}^{t} \phi_{1}(y(s)) c_{N}(s) d s=\int_{0}^{t} c_{1}(s) d s
$$

Since

$$
\frac{(\tau(y(t)))^{\prime}}{(\log t)^{\prime}}=\frac{c_{1}(t)}{1 / t}=t c_{1}(t) \rightarrow 1, \quad \text { as } t \rightarrow \infty
$$

using Cauchy's rule we have $\tau(y(t))=(\log t)(1+o(1))$, as $t \rightarrow \infty$, so that

$$
\begin{equation*}
\omega-y(t)=\frac{(N-1)!}{N-2}(\log t)^{2-N}(1+o(1)), \quad \text { as } t \rightarrow \infty \tag{3.20}
\end{equation*}
$$

and by (3.19)

$$
\phi_{1}(y(t))=A_{1}\left(\frac{N-2}{(N-1)!}\right)^{\frac{N-1}{N-2}}(\log t)^{N-1}(1+o(1)), \quad \text { as } t \rightarrow \infty
$$

Multiplying by $t c_{N}(t)$ and recalling (3.18) we have

$$
A_{1}\left(\frac{N-2}{(N-1)!}\right)^{\frac{N-1}{N-2}}(\log t)^{N-1} t c_{N}(t)(1+o(1)) \rightarrow 1, \quad \text { as } t \rightarrow \infty
$$

and since $A_{1}\left(\frac{N-2}{(N-1)!}\right)^{\frac{N-1}{N-2}}=\frac{1}{(N-1)!}$, we obtain

$$
\frac{t(\log t)^{N-1}}{(N-1)!} c_{N}(t)(1+o(1)) \rightarrow 1, \quad \text { as } t \rightarrow \infty
$$

and it follows that, as $t \rightarrow \infty$,

$$
\begin{equation*}
c_{N}(t)=((N-1)!) \frac{1}{t(\log t)^{N-1}}(1+o(1)) . \tag{3.21}
\end{equation*}
$$

Now we can use (3.4), Lemma 3.2, and (3.21) to obtain

$$
c_{j}(t)=\frac{A_{j}}{(\omega-y(t))^{\alpha_{j}}}((N-1)!) \frac{1}{t(\log t)^{N-1}}(1+o(1)) \quad \text { as } t \rightarrow \infty
$$

and from this, using (3.20) and the definitions of α_{j} and A_{j} in the statement of Lemma 3.2, it follows that

$$
\begin{equation*}
c_{j}(t)=\frac{(N-1)!}{(N-j)!} \frac{1}{t(\log t)^{j-1}}(1+o(1)) \quad \text { as } t \rightarrow \infty \tag{3.22}
\end{equation*}
$$

as we wanted to prove.
Now, consider the case $c_{j}(0) \geqslant 0$, for $j=1, \ldots, N$, with $m=\operatorname{gcd}(P)=1$ and $p=\sup P=N$. By Proposition 7.2 in [2] this implies that $\mathcal{J}(t)=$ $\mathbb{N} \cap[1, N]$ for all $t>0$, which means that, for all $t>0$ and $j \in \mathbb{N} \cap[1, N]$,
all components $c_{j}(t)$ of $c(t)$ are strictly positive. Hence, since (1.2) is an autonomous ODE, given a small $\varepsilon>0$, for $t \geqslant \varepsilon, c(t)=c_{\varepsilon}(t-\varepsilon)$, where $c_{\varepsilon}(\cdot)$ is the solution of (1.2) satisfying the initial condition $c_{\varepsilon}(0)=c(\varepsilon)$. Therefore, the conditions of Lemma 3.3 apply to $c_{\varepsilon}(\cdot)$. Then, it is easy to see that the asymptotic results that we conclude with respect to $c_{\varepsilon}(t)$ also apply to $c(t)$, allowing us to state the following:

Lemma 3.4. Let $c=\left(c_{j}\right)$ be a solution satisfying $c_{j}(0) \geqslant 0$, with $m=1$ and $p=N$. Then the conclusions of Lemma 3.3 hold.

This is, in fact, the particular case of Theorem 2.1 from which the full case follows as stated at the end of section 2 .

4. Final remarks

A natural question to ask is: what is the asymptotic behaviour of the solutions of (1.2) in the infinite dimensional case $(N=\infty)$? It is clear that Theorem 2.1 by itself is unsufficient to answer this question since the passage to the limit, $N \rightarrow \infty$, is not allowed without results on the uniformity of the various limits involved, which seems to be a hard task. Also it is far from clear how to rebuild the proofs of the lemmas in section 3 in this more general case since they heavily rely on the fact that there is a 'last equation', the N-component equation, that can be integrated by the reduction method we have used, being the asymptotic behaviour of the other components deduced in a 'backwards' manner. Such procedure is obviously impossible in an infinite dimensional setting. In fact, that the situation can be very different for $N=\infty$ from the one displayed by Theorem 2.1 is shown by the existence of the self-similar solutions given by,

$$
c_{j}(t)=(\kappa+t)^{-1}\left(1-\alpha^{2}\right) \alpha^{j-1}, \quad j=1,2, \ldots, \quad t \geqslant 0
$$

with constants $\kappa>0$ and $\alpha \in(0,1)$ (see [2]), in which case, $t c_{j}(t) \rightarrow(1-$ $\left.\alpha^{2}\right) \alpha^{j-1}$, as $t \rightarrow \infty$, for $j=1,2, \ldots$ Further work will be devoted to fully understand this problem.

References

1. J.M. Ball, J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Stat. Phys. 61, 1/2 (1990) 203-234.
2. F.P. da Costa, J.T. Pinto, R. Sasportes, The Redner-Ben-Avraham-Kahng cluster system, São Paulo J. Math. Sci. 6, 2 (2012) 171-201.
3. I. Ispolatov, P.L. Krapivsky, S. Redner, War: The dynamics of vicious civilizations, Phys. Rev. E 54 (1996) 1274-1289.
4. S. Redner, D. Ben-Avraham, B. Kahng, Kinetics of 'cluster eating', J. Phys. A: Math. Gen. 20 (1987), 1231-1238.

F.P. da Costa
Departamento de Ciências e Tecnologia, Universidade Aberta, Lisboa, Portugal, and Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal e-mail: fcosta@uab.pt
J.T. Pinto
Departamento de Matemática and Centro de Análise Matemática Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
e-mail: jpinto@math.tecnico.ulisboa.pt
R. Sasportes
Departamento de Ciências e Tecnologia, Universidade Aberta, Lisboa, Portugal, and Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
e-mail: rafael@uab.pt

[^0]: We thank an anonymous referee for the careful reading of the manuscript and for calling our attention to a sloppy argument in the original proof of Lemma 3.3. This work was partially supported by FCT under Strategic Project - LA 9-2013-2014. Published in: Z. Angew. Math. Phys. 66 (2015), 1375-1385. (http://link.springer.com/article/10.1007/s00033-014-0485-7).

