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Abstract 
In social networks two types of measures can be identified, the structural 

measures and community structure based on diameter and centrality. The 

community structure usually deals with network partition into communities. 

The key idea of this work is to explore the concept of strong and weak ties 

by finding brokers within communities.  The strict partition problem is 

relaxed into a bi-objective set covering problem with k-cliques which allows 

over-covered and uncovered nodes. The information extracted from social 

networking goes beyond cohesive groups, allowing the finding of brokers 

that interact between groups. 
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1. Introduction 

In social networks the set of vertices (or nodes) corresponds to the ‘actors’ (i.e. people, 

companies or social actors) and the set of edges corresponds to the ‘ties’ (i.e. 

relationships, associations or links), quite similar to the representation in graph theory.  

 

In the late 1960s, while working on his Ph.D., Mark Granovetter interviewed people 

who had recently changed jobs, in order to come to a conclusion as to how they had 

discovered their new jobs. Surprisingly, he realized that the information about the new 

jobs had come from distant acquaintances instead of close friends. The concept of 

strong and weak ties (Granovetter 1973) introduced a novel principle in social networks. 

Weak ties are valuable because they are more likely the source of novel information, 

surprise and openness to new worlds. On the other hand, strong ties intensify group 

cohesion and the persistence of group identity. This resulted in the Triadic Closure 

property, which establishes that if the node has strong ties to two neighbors, these 

neighbors must have at least a weak tie between them. 

 

Following this problematic, Burt (1992) developed a complementary approach coined 

Structural Holes, referring to the lack of links in a connected organization.  He also 

introduced the concept of brokerage, signifying nodes that connect two dense groups. 

 

Although there are different methods to find network partitions, the specific discovery 

of brokers between partitions is scarce or inexistent. In this work we are interested in 

finding, not only the communities, but also the elements that are among communities, 

the brokers, given their importance for the whole network. 

 

In section 2 we present some related work about social networks and partition 

approaches. In section 3 we present the algorithm to discover brokerage in social 

networks.  In section 4 the computational results are presented. Finally, in section 5 we 

draw some conclusions. 
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2. Related work 

In this section some related work about social networks and networks partition concepts 

is presented.   

 

2.1. Social Network Concepts 

For many years, the centrality of the authors in networks has been an important issue in 

social network analysis. The central node (or hub) can be found using different 

measures: degree centrality, betweenness centrality, closeness centrality or eigenvector 

centrality. 

 

A diverse subject is related to the bounds of each network component. The bridge and 

broker definitions can be stated as follows:   

 bridge: is an edge whose removal increases the number of components in the 

network; 

 broker or cut-vertex: is a vertex whose deletion increases the number of 

components in the network; 

 local-bridge: is an edge whose removal increases significantly the distance 

between the components; 

 local-broker: is a vertex whose deletion increases significantly the distance 

between components. 

 

The brokers have some similarities with actors who score high in terms of centrality, the 

hubs. However, the “centrality” of the brokers lies between different communities 

instead of actors of the same group. 

 

Given Figure 1, a graph with edges A-B and B-C, the Triadic Closure Property 

(Granovetter 1973) comes from the fact that the A-C edge has the effect of closing the 

third side of the triangle. The property is based on the fact that if the two people have a 

friend in common, it is probable that they will become friends in the future (Easley, 

Kleinberg 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Triadic Closure 

 

In graph theory, the k
th

 power of graph G returns a new graph G
k
 where each pair of 

vertices is adjacent when their distance in G is at most k.  Graph G
2
 is equivalent to the 

Triadic Closure, where a new A-C edge is inserted because the distance between A and 
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C is equal to 2. In this approach strong ties correspond to friends (solid lines), and weak 

ties correspond to acquaintances (broken line). 

 

Another way to interpret the absence of relationship A-C is named Structural Hole (Burt 

1992). This approach replaces the concept of closure by brokerage, and the broker 

interactions between different groups are highlighted. 

 

2.2. Partition Problem 

For large networks the visualization is still an ongoing project, so the quantitative 

measures are very useful. Roughly, we can differentiate two types of measures, the 

structural measures and the community structure. The structural measures include the 

centrality measures, the measures based on the vertex degree and the measures based on 

the diameter, that is, the maximum distance between two vertices. The community 

structure usually deals with the network partition into communities or similarity groups.  

 

Community or group can be defined as a set of nodes with similarity. A partition is a 

sub-division of a graph into groups of vertices such that each vertex is assigned to one 

group. The mathematic formulation of the Partition problem can be stated as follows, 

where matrix [ai,j] keeps the information about different communities and for each 

variable x, a cost can be associated by using a vector cj: 

 

minimize f= ∑ cj.xj 

subject to ∑ ai,j.xj=1 

and xj∈{0,1}       j=1,…,n 

 

As stated, the constraint with the equality is very restricted. So, this can lead to many 

problems, for instance when a node is shared by two or more communities.   

 

One of the first studies is given by the Kernighan, Lin  (1970) algorithm, which finds a 

partition of the nodes by dividing into two disjoint subsets A and B of equal size, such 

that the sum of the weights of the edges between nodes in A and B is minimized.  

 

Recent studies, based on physics, introduced the concept of clique percolation (Derenyi, 

Palla, Vicsek 2005), where the network is viewed as a union of cliques. 

 

The Girvan-Newman (2002) method has been applied in recent years to social networks 

in particular (Easley, Kleinberg 2010). This method successively deletes edges of high 

betweenness, and then recalculates all betweenness, breaking each component into 

smaller components.  

  

A more relaxed problem that allows a node to share two components is the Set Covering 

problem. In the mathematic formulation the signal of the constraint is replaced for equal 

or greater instead of equal, allowing the existence of over-covered nodes. 

 

In the following section, the Set Covering problem will be developed rather than the 

Partition problem. 
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3. The Algorithm 

There are several partition algorithms but few studies about the linkage between them, 

especially issues related to the brokerage.  In this paper we present a new approach that 

takes into account the common elements between partitions (over-covered) and 

elements that do not belong to any partition (uncovered), formulated as a new bi-

objective set covering problem. Firstly, the set covering with k-cliques will be presented 

(Cavique, Mendes, Santos, 2009). Secondly, the problematic of the over-covered and 

uncovered nodes is highlighted (Cavique, Mendes, Santos, 2013) and finally a new bi-

objective set covering problem with k-cliques is shown. 

 

3.1. Set covering problem with k-clique  

Given an undirected graph G=(V, E), where V denotes the set of vertices (or nodes) and 

E, the set of edges (or arcs), graph G1= (V1, E1) is called a sub-graph of G, if V1V, 

E1E and for every edge (vi, vj) E1, the vertices  vi,vj V1. A sub-graph G1 is said to 

be complete, if there is an edge for each pair of vertices. Since the clique structure is 

very constrained to represent social networks, Luce (1950) introduced the distance base 

cohesion groups called a k-clique, where k is the maximum path length between each 

pair of vertices.  To find all the maximal k-cliques in the graph, we use the k
th

 power of 

graph G in such a way that we can reuse an already well-known algorithm, the 

maximum clique algorithm. The transformation process adds edges to reach length k 

between every pair of nodes. 

 

The Maximum Clique is a NP-hard problem that aims to find the largest complete sub-

graph in a given graph. In this approach, we intend to find a lower bound for the 

maximization problem, based on the heuristics proposed by Johnson (1974) and in the 

meta-heuristic that uses Tabu Search developed by Soriano and Gendreau (1996).  

 

Part of the work described in this section can also be found in Cavique, Rego and 

Themido (2002) and Cavique and Luz (2009). We define A(S) as the set of vertices that 

are adjacent to vertices of a current solution S. Let n=|S| be the cardinality of clique S 

and A
k
(S) the subset of vertices with k arcs incident in S. A(S) can be divided into 

subgroups A(S) = A
k
(S), k=1,..,n. The cardinality of the vertex set |V| is equal to the 

sum of the adjacent vertices A(S) and the non-adjacent ones A
0
(S), plus |S|, resulting in 

|V|= Σ|A
k
(S)|+n, k= 0,.., n. For a given solution S, we define a neighborhood N(S) if it 

generates a feasible solution S’. In this work we are going to use three neighbourhood 

structures. For the next flowchart consider the following notation: 

 

N
+
 (S) = {S´: S´= S {v

i
}, v

i
A

n
(S)} 

N
–
 (S) = {S´: S´= S \{v

i
}, v

i
S} 

N
0
 (S) = {S´: S´= S {v

i
}\{v

k
}, v

i
 A

n-1
(S), v

k
S} 

 

where S is the current solution, S*, the highest cardinality maximal clique found so far, 

T, the tabu list and N(S), the neighborhood structures. Finding a maximal clique in 

graph G
k
 is the same as finding a maximal k-clique in a graph G. To generate a large set 

of maximal k-cliques, a multi-start algorithm is used, which calls the Tabu Heuristic for 

Maximum Clique Problem. 
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Algorithm 1 - The Tabu Heuristic for the Maximum Clique Problem 

Input: graph G
k
, complete sub-graph S 

Output: clique S* 

1. T=;  S*=S;  

2. while not end condition 

2.1.       if (N
+
(S)\T  null) choose the maximum S’ 

2.2.       else if (N
0
(S)\T  null) choose the maximum S’; update T 

2.3.            else choose the maximum S’ in  N
–
(S); update T 

2.4.        update S=S’ 

2.5.        if  (|S|>|S*|)  S*=S; 

3. end while; 

4. return S*; 

 

Following the rule of three degrees of influence, i.e., our friends’ friends’ friends affect 

us, proposed by Christakis and Fowler (2013), we are going to use the 3-cliques, 

equivalent to a power graph G
3
. In Figure 2, a pair of 3-cliques partially covers the 

given graph.  

 

 
 

Fig 2. The pair of 3-cliques covers the graph partially  

 

 

Matrix [ai,j] represents the m nodes which must be covered and n columns, where each 

column is a k-clique. Also in Figure 2 on the left, [ai,j] shows that nodes 7 and 8 are 

over-covered and node 12 is uncovered by any column. The partial solution of the 

example is {1, 2}. 

 

The optimization problem that finds the minimum number of columns that covers all the 

rows is the Set Covering problem. For each attribute x, a cost can be associated by using 
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a vector cj, allowing a cost differentiation among attributes. The matrix and the cost 

vector are then used in the set covering problem, defined as: 

 

minimize f= ∑ cj.xj 

subject to ∑ ai,j.xj≥1 

and xj∈{0,1}       j=1,…,n 

 

The Set Covering problem is a very well-studied problem in Combinatorial 

Optimization, with many computational resources which implement quasi-exact 

algorithms and heuristic approaches. 

 

 

3.2.  Bi-objective Set Covering problem with k-cliques 

As the set covering problem is a relaxation of the partition problem, our goal is to create 

a more relaxed problem which also allows uncovered nodes in order to find solutions as 

shown in Figure 2. Table 1 shows some data extracted from figure 2:  

 

 the cost of the solution, for unitary cj, is equal to the number of columns, and is 

also equal to the number of communities in the social network; 

 in the solution 17 covered nodes can be found; 

 the over-covered nodes are 2 and they represent the brokers in the social 

network; 

 node 12 is not covered, and represents outliers in the social network; 

 the over-covered nodes and the uncovered nodes must be removed from the final 

solution and should  be seen as errors, so the variable error coverage is the result 

of the over-covered plus the uncovered nodes. 

 

 

Table 1. Information extracted from Figure 2 

 

 

In this paper, we propose a trade-off between the minimization of the columns and the 

minimization of the error coverage.  

 

Variable x represents the column set and has the same meaning as the previous Set 

Covering problem formulation. Variable x should be minimized in order to reduce the 

cost and to minimize the error coverage.  

 

Our approach can be formulated as a Bi-objective Set Covering problem with k-cliques, 

such that: 

 

 

solution cost |x| = 

number 

communities 

covered 

nodes 

over-covered 

= brokers 

uncovered error_coverage = 

over_covered + 

uncovered 

2 17 2 1 3 
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(1)  minimize f1= ∑ cj . xj

n

j=1

  

(2) minimize f2= ∑ ∑ |ai,j. xj − 1|

n

j=1

m

i=1

 

(3) subject to ∑ ai,j

n

j=1

.xj≥0 

(4) xj ∈ {0,1}      j = 1, … , n      

                

 

In a bi-objective formulation two objective functions must be stated, f1 and f2. The 

objective function f1 (1) has the same meaning of the objective function f in the original 

Set Covering problem, which is to minimize the cost of the chosen columns.  

 

In the formulation constraint (3) uses the sign “≥0” allowing uncovered nodes. To 

balance this relaxation the objective function f2 (2) minimizes the sum of the uncovered 

nodes and the over-covered ones. 

 

In multi-objective optimization the dominance concept is central. An objective vector 

u=(u1,…,un) dominates v=(v1, …, vn), denoted u > v, if and only if,  ui ≥ vi: i, and   at 

least one component v is smaller, ui > vi: i. A solution is non-dominated (or Pareto 

solution), if and only if, there is no solution that dominates it.   

 

Figure 3 shows a bi-objective minimization problem. The set of all Pareto solutions is 

also called the Pareto Solution frontier or the Efficient Solutions frontier. The black 

circles of the Pareto solution dominate the solutions represented by triangles.  The 

Efficient frontier is given by the line that includes all the Pareto solutions. In axis f1 

represents the sum of the costs of the chosen variables (objective 1) and f2 shows the 

minimization of the error coverage (objective 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Bi-objective minimization problem 
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Given a dataset with social network G, the Heuristic for the Bi-objective Covering with 

k-cliques reuses a columns generation technique and can be specified as follows: 

 

Algorithm 2 - The Heuristic for the Bi-objective Covering with k-cliques 

Input: graph G 

Output: the Pareto frontier P={p
1
,p

2
,…} 

1. P= 

2. While not end condition 

2.1. repeat column generation by adding k-cliques from ai,j 

2.2. find best (p) 

2.3. if (p) is non-dominated then P=Pp 

2.4. destructive phase by removing k-cliques from ai,j 

3. end while; 

4. return P 

 

In the constructive phase (Algorithm 2, 2.1) a large set of maximal k-cliques are 

generated, where a multi-start algorithm is used, which calls the Tabu Heuristic for 

Maximum Clique Problem. Then to find vector x a greedy heuristic is used to cover the 

nodes partially.  

 

Meanwhile, in step (Algorithm 2, 2.3) the non-dominated solutions are added to the 

Pareto frontier. After the addition of a new solution, if the new solution dominates any 

other solution, the dominated solutions are removed from the Pareto frontier.  

 

 Finally, in the destructive phase (Algorithm 2, 2.4) some k-cliques are removed in 

order to find new solutions in the Pareto frontier. 

 

3.3. The “best” solution 

Given the set of solutions of the Pareto frontier, to choose a subset is a decision 

problem. The decision maker, or in this particular case the social network analyst, 

should decide based on his/her tacit or explicit knowledge. 

 

Following the running example with the graph shown in this section, Table 2 presents 

three possible solutions. Figure 2 represents the second solution, of Table 2, with 2 

over-covered nodes and 1 uncovered one.  

 

Table 2. Solutions of the running example  

|x| covered over-covered uncovered error 

coverage 

ratio=  

errors / covered 

1 8 0 10 10 125% 

2 17 2 1 3 18% 

3 18 8 0 8 dominated sol. 
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In Figure 4, the graphical representation of the three solutions shows clearly that the 

third solution is dominated by the second one. So, the Pareto frontier only includes the 

first and the second solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Pareto frontier with two solutions 

 

 

A way to solve this decision problem, using Value Analysis concepts, is finding the 

ratio of the error coverage by covered nodes. By identifying the smaller ratio a balanced 

solution is achieved. For the given example in Figure 2, which corresponds to the 

second solution, a ratio of 18% is found.  

 

 

4. Computational Results  

To validate the proposed method, two groups of datasets were used, the Erdös graphs 

and some clique DIMACS (1995) benchmark instances. In the Erdös graphs, each node 

corresponds to a researcher, and two nodes are adjacent if the researchers published 

together. The graphs are named “erdos-x-y”, where “x” represents the last two digits of 

the year that the graphs were created, and “y”, the maximum distance from Erdös to 

each vertex in the graph. The second group of graphs contains some clique instances 

from the second DIMACS challenge. These include the “brock” graphs, which contain 

cliques “hidden” within much smaller cliques, making it hard to discover cliques in 

these graphs. The “c-fat” graphs are a result of fault diagnosis data. 

 

We select 4 brock datasets, 3 c-fat datasets and 3 erdos datasets. For each dataset we 

tested for k=1 to k=7, completing 70 runs. For large values of k only one community 

was found and there were no brokers. We extracted a sample of the runs to illustrate the 

computational results, in Table 3, where for each dataset, the number of communities, 

the total number of nodes, the nodes that only belong to one community (well-covered), 

the over-covered nodes, the uncovered nodes and other nodes with no links are 

presented. 
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Table 3. Sample of the most interesting results of the 70 runs 

Dataset Number 

Communities 

Total 

number 

nodes 

Well  

covered 

nodes 

Over 

covered 

nodes 

Un- 

covered 

nodes 

Others 

example Fig.2, k3 2 18 15 2 1 0 

brock22-k1 9 200 51 11 39 99 

c-fat22-k3 5 200 178 22 0 0 

erdos97-k1 4 472 63 19 35 355 

 

In Figure 5, the nodes represent the communities and the edges the number of brokers 

between each pair of communities. The partition of graph c-fat-22-k3 shows poor 

connections among the nodes, the brokers are very well identified in two pairs of 

communities with 11 brokers each. In Table 3 the over-covered nodes of 22 correspond 

to the 2x11 brokers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Communities and respective number of brokers of the partitions  

of c-fatt22-k3 (on the left) and erdos-97-k1 (on the right) 

 

 

Again in Figure 6, the partition of graph erdos-97-k1 shows a strong connectivity 

among communities, and an average of 4.5 brokers between each pair of communities. 

With this graph, the match with the values of Table 3 is more difficult to establish, 

because there are brokers that belong to three communities. 

 

To overcome this drawback the graph must be seen with more detail. In Figure 7 on the 

left, 15 brokers can be identified (by numbers) which are linked to 2 communities. On 

the right of the figure, 4 brokers (301, 354, 405 and 441) are linked with 3 communities, 

using a different representation, where the brokers are identified and contained in boxes. 

So we have 15+4 brokers or over-covered nodes as mentioned in Table 3.  

 

When the brokers link two communities the number of edges is equal to the number of 

brokers. On the other hand, when the brokers link three communities, the number of 

edges is times three in a graph representation. So, 15+4x3 is equal to the sum of the 

edges in Figure 6 on the right. 
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Fig. 6. Brokers of erdos-97-k1: brokers linked in 2 communities  

(on the left) and brokers linked with 3 communities (on the right) 

 

 

 

5. Conclusions 

The social networks analysts often referred the problematic of the strong and weak ties 

and the associated issue of the brokerage. There is a lack of automatic procedures to 

find, not only the communities but also the actors that play within communities.  

 

The community partition can be relaxed for the Set Covering problem allowing 

brokerage (over-covered nodes). However, the large number of intersections is not 

compatible with a good visualization. So we created a model that allows not only over-

covered nodes, but also uncovered nodes. With this purpose in mind we defined 

community as a k-clique and the community partition as a bi-objective Set Covering 

problem with k-cliques which allows over-covered and uncovered nodes. The 

uncovered nodes are called outliers and the over-covered nodes are called brokers.  

 

The data extracted from social networking goes beyond the structure of communities, 

allowing the finding of the brokers that interact between groups. In this paper we show 

how to find the communities and identify their related brokers. 
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