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Abstract. In social network analysis the identification of communities and the 
discovery of brokers is a very important issue. Community detection typically 
uses partition techniques. In this work the information extracted from social 
networking goes beyond cohesive groups, enabling the discovery of brokers 
that interact between communities. The partition is found using a set covering 
formulation, which allows the identification of actors that link two or more 
dense groups. Our algorithm returns the needed information to create a good 
visualization of large networks, using a condensed graph with the identification 
of the brokers.  

Keywords: Data mining · Graph mining · Social networks · Condensed network · 
Brokerage 

1 Introduction 

Social networks are usually represented with graph theory, where the set of vertices 
corresponds to the ‘actors’ (i.e. people, companies or social actors) and the set of 
edges corresponds to the ‘ties’ (i.e. relationships, associations or links).  

The visualization of a small number of vertices can be easily mapped. However, 
when the number of vertices and edges increases, the visualization of the whole graph 
becomes incomprehensible as the large amount of available data in corporations and 
governments becomes incompatible with the complete drawing. There is a pressing 
need for new metrics and pattern recognition tools to explore and visualize large so-
cial networks. 

Brokers can be defined as actors that work within communities. Although different 
methods are used to find network partitions [14], the specific discovery of brokers 
between partitions is scarce [21]. In this work we are interested in finding, not only 
the communities, but also the brokers. We also intend to show that the visualization of 
the brokers in a condensed graph undoubtedly simplifies the work of the social net-
work analyst when dealing with large networks. 
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In Figure 1, a small network is shown. A social network analyst should define the 
communities and the actors within them. The dense group {1,3,4,5} can be easily 
identified, but the rest of the network is more sparse. Three groups of nodes can also 
be recognized, although a formal definition of community is needed. In this work we 
define community as a k-clique [20]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Network for the running example 

 

A strategy to condense the graph associated with the identification of brokers is 
presented in this work. The partition strategy is found using a set covering formula-
tion with k-cliques [3], which allows over-covered nodes and isolated nodes. 

In this study the words “network” and “graph” are used as synonyms. The terms 
“community”, “dense group”, “connected component”, “clique” or “k-clique” are also 
equivalents. 

In Section 2, we present the concept of brokerage in social networks and the two 
combinatorial problems related to the k-clique covering. In sub-section 2.1 structural 
holes, bridges and brokers in social networks are presented. In sub-section 2.2 the 
generation of cliques and k-cliques is introduced. And finally, in sub-section 2.3 the 
set covering problem is defined. In Section 3, we present the two phase algorithm to 
condense the graph and discover brokers in social networks. In Section 4, the compu-
tational results are presented. Finally, in Section 5 we draw some conclusions. 

2 Related Work  

The graph theory related work in this paper combines the areas of graph visualization, 
graph mining, social network concepts, sub-graphs and graph partition. 

The aim of graph visualization techniques is to achieve the comprehension of the 
data by providing intuitive layouts associated with interactive functionalities. In 
Tarawneh et al.  [25] five main areas in graph layout algorithms are referred: node-
link layouts, tree layout, matrix visualization, 3D layout and nodes-and-edges  
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clustering. The goal of clustering techniques is to reduce visual disorder in the final 
layout. Reducing the number of elements, edges and/or nodes, will increase the clarity 
of the visualization. Clustering algorithms can be divided into two groups: edge  
compression and nodes compression. The edge clustering approach [13] replaces 
individual edges with edges connected to groups of nodes. Modular decomposition 
and power-graph decomposition [22], are the most well-known edge clustering tech-
niques. The second group, nodes clustering, based on a specified criteria divides the 
graph into different sets, and then reduces each set to a node. In Auber et al. [1] the 
clustering algorithms are applied to small-word networks. 

The area of Graph Mining has seen significant growth in the last decade [7]. The 
use of cliques is also referred to in Du et al. [12].  A similar concept of brokerage is 
the communities overlapping in networks, when nodes belong to multiple dense 
groups [26]. 

In our work we use clustering techniques in order to find partition, but with an ad-
ditional purpose – to find influential nodes that link two or more partition sets, the 
brokers. In order to condense the network and to discover brokers, three different 
concepts are combined: the brokerage in social networks and two combinatorial prob-
lems − the maximal k-clique generation and the set covering problem. 

2.1 Social Network Concepts 

In the late 1960s, while working on his Ph.D., Mark Granovetter interviewed people 
who had recently changed jobs, in order to come to a conclusion as to how they had 
found their new jobs. Surprisingly, he realized that the information about the new jobs 
had come from distant acquaintances instead of close friends. The concept of strong 
and weak ties [17] introduced a novel principle in social networks. Weak ties are val-
uable because they will more likely be the source of novel information, surprise and 
openness to new worlds. On the other hand, strong ties intensify group cohesion and 
the persistence of group identity. This resulted in the Triadic Closure property, which 
establishes that if the node has strong ties to two neighbors, these neighbors must 
have at least a weak tie between them. The property is based on the fact that if two 
people have a friend in common, it is probable that they will become friends in the 
future [14]. 

Following this issue, R.S. Burt [2] developed a complementary approach coined 
Structural Holes, referring to the absence of links in a connected organization.  He 
also introduced the concept of brokerage, signifying nodes that connect two dense 
groups. 

Figure 2 shows two ways of spanning structural holes, using a bridge or a broker.  
Structural hole, bridge and broker can be defined as follows:   

 
1. structural hole refers to the lack of edges between components, or communities;  
2. bridge is an edge whose removal increases the number of components in the net-

work; 
3. broker or cut-vertex is a vertex whose deletion increases the number of compo-

nents in the network. 
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2.3 Network Partition 

Community or dense group can be defined as a set of nodes with similarity. A parti-
tion is a sub-division of a graph into groups of vertices such that each vertex is as-
signed to one group.  

One of the first studies is given by the Kernighan, Lin  [19] algorithm, which finds 
a partition of the nodes by dividing the data into two disjoint subsets A and B of equal 
size, such that the sum of the weights of the edges between nodes in A and B is mini-
mized. 

Recent studies, based on physics, introduced the concept of clique percolation [11], 
where the network is viewed as a union of cliques. 

The Girvan-Newman [15] method has been applied in recent years to social net-
works. This method successively deletes edges of high betweenness, and then recalcu-
lates all betweenness, breaking each component into smaller components [14]. 

A more relaxed problem that allows a node to share two components is the Set 
Covering problem. In the mathematical formulation the sign of the constraint is re-
placed for equal or greater instead of just equal, allowing the existence of over-
covered nodes. 

The optimization problem that finds the minimum number of columns that covers 
all the rows is the Set Covering problem. The matrix [ai,j] stores the information about 
the different communities and for each attribute x, a cost can be associated by using a 
vector cj. The matrix and the cost vector are then used in the set covering problem, 
defined as: 

 
minimize f= ∑ cj.xj  
subject to ∑ ai,j.xj≥1  
and xj{0,1}א       j=1,…,n 

 
The Set Covering problem is a widely studied problem in Combinatorial Optimiza-

tion, with many computational resources which implement quasi-exact algorithms and 
heuristic approaches. 

The set covering heuristic, proposed by Chvatal [8], repeats the process by choos-
ing the line with fewer elements, followed by the choice of the column with the best 
ratio considering the cost of the column and the number of lines covered. This con-
structive heuristic is improved by using a Tabu Search heuristic that removes the most 
redundant columns and re-builds a new solution [5]. 

3 The Two-Phase Algorithm 

In order to simply the visualization of the network, a condensed network is a graph 
where some of the nodes represent communities. In this condensed network the nodes 
that correspond to k-cliques are shrunk. 

Although there are several partition algorithms, there are few studies about the 
linkage between them, namely concerning issues related to brokerage. In this paper 
we present a new approach that takes into account the common elements between 
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partitions (over-covered) and elements that do not belong to any partition (isolated 
nodes), formulated as the set covering problem with k-cliques. 

The Two-phase Algorithm, firstly, generates several k-cliques ([ai,j]columns) from 
the network and secondly, runs the set covering problem in order to find the minimum 
number of k-cliques which cover all the vertices. The algorithm can be specified as 
follows. 

 
Algorithm 1: The Two-phase Algorithm  
Input: network/graph G, distance k 
Output: condensed network/graph ܩ஼௞ 
1) Generate maximal k-cliques columns 
2) Run the set covering problem  

 
This work is an extension of the work presented by Cavique et al. [3]. The novelty 

of this work is the identification of brokers and the generation of condensed networks 
which allows a clear visualization in large networks. 

3.1 The Set Covering Problem with k-Cliques 

In this work, to generate a large set of maximal k-cliques a multi-start algorithm is 
used, which calls for the Tabu Heuristic for the Maximum Clique Problem. To each 
generated k-clique will correspond a column of the matrix [ai,j] referred in the parti-
tion and Set Covering problem formulations.  

To implement the first step of Algorithm 1, the generation of several k-cliques, we 
use some previous work. Finding a maximal clique in a k-graph is the same as finding 
a maximal k-clique in a graph. Part of the described work in this sub-section can also 
be found in Cavique et al. [6] and Cavique and Luz [4].  

We define A(S) as the set of vertices which are adjacent to vertices of a current so-
lution S. Let n=|S| be the cardinality of clique S and Ak(S) the subset of vertices with 
k arcs incident in S. A(S) can be divided into subgroups A(S) = ∪Ak(S), k=1,...,n. The 
cardinality of the vertex set |V| is equal to the sum of the adjacent vertices A(S) and 
the non-adjacent ones A0(S), plus |S|, resulting in |V|= Σ|Ak(S)|+n, k= 0,...,n. For a 
given solution S, we define a neighborhood N(S) if it generates a feasible solution S’. 
In this work we are going to use three neighborhood structures. We consider the fol-
lowing notation: 

 
N+ (S) = {S´: S´= S ∪{vi}, vi∈An(S)} 
N– (S) = {S´: S´= S \{vi}, vi∈S} 
N0 (S) = {S´: S´= S ∪{vi}\{vk}, vi∈ An-1(S), vk∈S} 
S – the current solution 
S*– the highest cardinality maximal clique found so far 
T– the tabu list 
N(S) – neighborhood structures 
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Algorithm 2: Tabu Heuristic for the Maximum Clique Problem  
Input: k-Graph; start sub-graph S; 
Output: maximal clique S*; 
1. T=∅;  S*=S;  
2. while not end condition 
2.1.       if (N+(S)\T ≠ null) choose the maximum S’; 
2.2.       else if (N0(S)\T ≠ null) choose the maximum S’; update T; 
2.2.1.            else choose the maximum S’ in  N–(S); update T; 
2.3.        update S=S’; 
2.4.        if  (|S|>|S*|)  S*=S; 
3. end while; 
4. return S*; 
 
     To implement the second step of Algorithm 1, the input for the k-clique cover is a 
matrix where the lines correspond to the vertices of the graph and each column is a k-
clique that covers a certain number of vertices. We consider the following notation: 

 
[ai,j] – input matrix with j columns 
[cj] – vector of the cost of each column 
T– the tabu list 
R – remaining columns 
S – the current solution 
S*– the best solution 

 
Algorithm 3: Tabu Heuristic for the k-Clique Covering 
Input: [a(i,j)], [c(j)] 
Output: the cover S* 
1. T=∅; S*=∅;  
2. while not end condition  
2.1.       R=[a(i,j)]\T; S=∅;   
2.2.       while R ≠ ∅  do 
2.2.1.               choose the best line i*∈R such as |a(i*,j)|=min |a(i,j)| ∀j; 
2.2.2.               choose the best column j* that covers line i*;  
2.2.3.               update R,S,T: R=R\a(i,j*) ∀i; S=S∪{j*}; update T; 
2.3.       end while; 
2.4.       sort the cover S by descending order of costs; 
2.5.       for each Si do if (S\Si is still a cover) then S=S\Si; 
2.6.       if  (cost(S)< cost(S*))  S*=S; 
3. end while; 
4. return S*; 

 
     Each iteration of the inner cycle of the heuristic chooses a line to be covered. The 
best column which covers the line, updates solution S and the remaining R columns. 
The chosen line is usually the line that is more difficult to cover, i.e. the line which 
corresponds to fewer columns. After reaching the cover set, the second step is to  
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Fig. 4. The problem solution and the respective condensed graph GC 

Table 1. Information Extracted from Figures 3 and 4 

|x| = number  
communities 

covered 
nodes 

over-covered = 
brokers 

isolated 
nodes 

3 
(A,B,C) 

22 4 1 

 
In this paper, the network is shrunk into a condensed network, where each commu-

nity is reduced to a single node and the over-covered nodes are called brokers, as 
shown in Figure 4. 

4 Computational Results  

To implement the computational results of this algorithm some choices such as the 
computational environment, the datasets and the performance measures must be 
made.  The computer programs were written in C language and the Dev-C++ com-
piler was used. The computational results were obtained from an AMD 1.90 GHz 
processor with 8.00 GB of main memory running under the Windows 7 Home Pre-
mium operating system. 

To validate the proposed method, two groups of datasets were used, the Erdös 
graphs and some cliques from the DIMACS [10] benchmark instances. In the Erdös 
graphs, each node corresponds to a researcher, and two nodes are adjacent if the re-
searchers published together. The graphs are named “erdos-x-y”, where “x” repre-
sents the last two digits of the year the graphs were created, and “y”, the maximum 
distance from Erdös to each vertex in the graph. The second group of graphs contains 
some clique instances from the second DIMACS challenge. These include the 
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“brock” graphs, which contain cliques “hidden” within much smaller cliques, increas-
ing the difficulty of discovering cliques in these graphs. The “c-fat” graphs are a re-
sult of fault diagnosis data. 

The performance measures taken into account are the computational time and the 
quality of the solution, namely the quality of the visualization of the condensed net-
work. 

4.1 Computational Time 

We selected 4 brock datasets, 3 c-fat datasets and 3 erdos datasets. For each dataset 
we tested from k=1 to k=7. For large k values, only one community was found and 
there were no brokers. In table 2, the chosen instances with the number of nodes, the 
diameter and the computational time are shown. 

Although both algorithms are NP-hard, the less than 120 seconds computational 
time seems acceptable. The polynomial time complexity of the heuristics and the 
reduction of the optimization parameters insure the presented results.  

Table 2. Datasets and Run Time for Kmax=7 

Graph nr nodes diameter time (seconds)
brock200-1 200 2 18 
brock200-2 200 2 19 
brock400-1 400 2 61 
brock400-2 400 2 60 
c-fat200-1 200 18 14 
c-fat200-2 200 9 15 
c-fat500-1 500 40 29 
erdos-97-1 472 6 71 
erdos-98-1 485 7 65 
erdos-99-1 492 7 70 

4.2 Quality of the Solutions 

To test the visualization of the dataset erdos-97-1dataset was chosen. In Table 3, the k 
variable, number of communities |x|, the total number of covered nodes and the isolat-
ed nodes can be found.  

Table 3. Solutions for erdos-97-1 

k |x| = number 
communities 

covered over-covered 
= brokers 

isolated nodes 

k1 
k2 

49 204 27 90 
12 170 26 137 

k3 4 164 20 143 
k4 3 277 0 30 
k5 1 305 0 2 
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Fig. 5. Condensed erdos-97-1-k2 graph 

Solution k2 was chosen with 12 communities allowing a good visualization of the 
network. In Figure 5, the condensed erdos-97-1-k2 graph is presented, where, the 
bridges were purposely omitted to simplify the visualization. Only 9 of the 12 com-
munities are shown, the other three communities are connected by bridges. 

The purpose of this experiment is not to highlight the exact solution, but rather to 
provide a good visualization of the network.  The shrinking of the communities al-
lows a general visualization of the network, the identification of the dense groups and 
the finding of the brokers. The analysis of the condensed networks also allows dis-
covering the structural holes between communities. 

5 Conclusions 

The social networks’ analysts have often referred the problematic of structural holes 
and brokerage. Automatic procedures are limited in finding, not only the communities 
but also the actors that play within them. The data extracted from social networking 
goes beyond the structure of communities, allowing the finding of the brokers that 
interact between groups. In this paper the finding of communities and the identifica-
tion of their related brokers is shown. 

The community partition can be relaxed for the set covering problem allowing bro-
kers, i.e. over-covered actors. With this purpose in mind we defined community as a 
k-clique and the community partition as a set covering problem with k-cliques allow-
ing over-covered and existence of isolated nodes.   

The algorithm returns a condensed graph, which allows a new visualization of 
large networks. The communities and brokers in a condensed graph undoubtedly sim-
plify the work of the social network analyst. The proposed visualization of the con-
densed network not only clearly shows the brokers, but also allows the social network 
analyst to detect structural holes, in order to enhance the hidden structures of the net-
work. 
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