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Abstract
Based on a criterion of mathematical simplicity and consistency

with empirical market data, a stochastic volatility model has been ob-
tained with the volatility process driven by fractional noise. Depend-
ing on whether the stochasticity generators of log-price and volatility
are independent or are the same, two versions of the model are ob-
tained with di¤erent leverage behavior. Here, the no-arbitrage and
completeness properties of the models are studied.
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1 Introduction

In liquid markets the autocorrelation of price changes decays to negligible
values in a few ticks, consistent with the absence of long term statistical ar-
bitrage. Because innovations of a martingale are uncorrelated, this strongly
suggests that it is a process of this type that should be used to model the sto-
chastic part of the returns process. As a consequence, classical Mathematical
Finance has, for a long time, been based on the assumption that the price
process of market securities may be approximated by geometric Brownian
motion

dSt = �Stdt+ �StdB (t) (1)
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Geometric Brownian motion (GBM) models the absence of linear correla-
tions, but otherwise has some serious shortcomings. It does not reproduce
the empirical leptokurtosis nor does it explain why nonlinear functions of
the returns exhibit signi�cant positive autocorrelation. For example, there is
volatility clustering, with large returns expected to be followed by large re-
turns and small returns by small returns (of either sign). This, together with
the fact that autocorrelations of volatility measures decline very slowly [1],
[2], [3] has the clear implication that long memory e¤ects should somehow
be represented in the process and this is not included in the GBM hypothe-
sis. The existence of an essential memory component is also clear from the
failure of reconstruction of a Gibbs measure and the need to use chains with
complete connections in the phenomenological reconstruction of the market
process [4].
As pointed out by Engle [5], when the future is uncertain investors are less

likely to invest. Therefore uncertainty (volatility) would have to be changing
over time. The conclusion is that a dynamical model for volatility is needed
and � in Eq.(1), rather than being a constant, becomes itself a process. This
idea led to many deterministic and stochastic models for the volatility ([6],
[7] and references therein).
The stochastic volatility models that were proposed describe some partial

features of the market data. For example leptokurtosis is easy to �t but the
long memory e¤ects are much harder. On the other hand, and in contrast
with GBM, some of the phenomenological �ttings of historical volatility lack
the kind of nice mathematical properties needed to develop the tools of math-
ematical �nance. In an attempt to obtain a model that is both consistent
with the data and mathematically sound, a new approach was developed in
[8]. Starting with some criteria of mathematical simplicity, the basic idea
was to let the data itself tell what the processes should be.
The basic hypothesis for the model construction were:
(H1) The log-price process logSt belongs to a probability product space

(
1�
2; P1�P2) of which the (
1; P1) is theWiener space and the second one,
(
2; P2), is a probability space to be reconstructed from the data. Denote by
!1 2 
1 and !2 2 
2 the elements (sample paths) in 
1 and 
2 and by F1;t
and F2;t the �-algebras in 
1 and 
2 generated by the processes up to time
t. Then, a particular realization of the log-price process is denoted

logSt (!1; !2)

This �rst hypothesis is really not limitative. Even if none of the non-trivial
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stochastic features of the log-price were to be captured by Brownian motion,
that would simply mean that St was a trivial function in 
1.
(H2) The second hypothesis is stronger, although natural. It is assumed

that for each �xed !2, logSt (�; !2) is a P1�square integrable random variable
in 
1.
These principles and a careful analysis of the market data led, in an

essentially unique way1, to the following model:

dSt = �tSt dt+ �tSt dB (t) (2)

log �t = � +
k

�
fBH (t)�BH (t� �)g (3)

BH being fractional Brownian motion with Hurst coe¢ cient H. The data
suggests [8] values of H in the range 0:8 � 0:9. In this coupled stochastic
system, in addition to a mean value, volatility is driven by fractional noise.
Notice that this empirically based model is di¤erent from the usual stochas-
tic volatility models which assume the volatility to follow an arithmetic or
geometric Brownian process. Also in Comte and Renault [9] and Hu [10],
it is fractional Brownian motion that drives the volatility, not its derivative
(fractional noise). � is the observation scale of the process. In the � ! 0
limit the driving process would be a distribution-valued process.
Equation (3) leads to

�t = �e
k
�
fBH(t)�BH(t��)g� 1

2(
k
� )

2
�2H (4)

with E [�t] = � > 0.
The model has been shown [8] to describe well the statistics of price re-

turns for a large �-range and a new option pricing formula, with "smile"
deviations from Black-Scholes, was also obtained. An agent-based interpre-
tation [11] also led to the conclusion that the statistics generated by the
model was consistent with the limit order book price setting mechanism.
In the past, several authors tried to describe the long memory e¤ect

by replacing in the price process Brownian motion by fractional Brownian
motion with H > 1=2. However it was soon realized [12], [13], [14], [15] that
this replacement implied the existence of arbitrage. These results might be
avoided either by restricting the class of trading strategies [16], introducing

1Essentially unique in the sense that the empiricaly reconstructed volatility process is
the simplest one, consistent with the scaling properties of the data.
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transaction costs [17] or replacing pathwise integration by a di¤erent type
of integration [18],[19]. However this is not free of problems because the
Skorohod integral approach requires the use of a Wick product either on the
portfolio or on the self-�nancing condition, leading to unreasonable situations
from the economic point of view (for example positive portfolio with negative
Wick value, etc.) [20].
The fractional volatility model in Eqs.(2-3) is not a¤ected by these con-

siderations, because it is the volatility process that is driven by fractional
noise, not the price process. In fact a no-arbitrage result may be proven.
This is no surprise because our requirement (H2) that, for each sample path
!2 2 
2, logSt (�; !2) is a square integrable random variable in 
1 already
implies that

R
�tdBt is a martingale. The square integrability is also essential

to guarantee the possibility of reconstruction of the � process from the data,
because it implies [21]

dSt
St
(�; !2) = �t (�; !2) dt+ �t (�; !2) dBt (5)

The empirical sucess of this fractional volatility model was already docu-
mented in Ref.[8]. The purpose of the present paper is to give a solid math-
ematical construction of the fractional volatility model, discussing existence
questions, arbitrage and market completeness.

2 No-arbitrage and incompleteness

Let (
1;F1; P1) be the complete �ltered Wiener probability space, carrying a
standard Brownian motion B = (Bt)0�t<1 and a �ltration F1 = (F1;t)0�t<1.
Let also (
2;F2; P2) be another probability space associated to a fractional
Brownian motion BH with Hurst parameter H 2 (0; 1) and a �ltration F2 =
(F2;t)0�t<1 generated by BH . We will denote by E1 and E2 the expectations
with respect to P1 and P2 respectively.
Let us now embed these two probability spaces in a product space

�

;F ; P

�
,

where 
 is the Cartesian product 
1 � 
2 and P is the product measure
P1 
 P2. We also introduce �1 and �2, the projections of 
 onto 
1 and

2, as well as the ��algebra N generated by all null sets from the product
��algebra F1 
F2, that is,

N = � (fF � 
1 � 
2j9G 2 F1 
F2 such that F � G and (P1 
 P2) (G) = 0g) :

4



Moreover, we let F = (F1 
F2)_N , the ��algebra generated by the union
of the ��algebras F1 
F2 and N . Then F =

�
F t

�
0�t<1 is the �ltration for

F t = (F1;t 
F2;t) _N .
Furthermore, we extend B and BH to F�adapted processes on

�

;F ; P

�
by B (!1; !2) = (B � �1) (!1; !2) and BH (!1; !2) = (BH � �2) (!1; !2) for
(!1; !2) 2 
. Then, it is easy to prove that B and BH are Brownian and
fractional Brownian motions with respect to P and are independent. For
notational simplicity, hereafter B and BH will stand for B and BH .
We now consider a market with a risk-free asset with dynamics given by

dAt = rAt dt A0 = 1 (6)

with r > 0 constant and a risky asset with price process St given by Eqs.(2)-
(3), with �t a F-adapted process with continuous paths, k the volatility
intensity parameter and � the observation time scale of the process.
The volatility �t is a measurable and an F�adapted process satisfying for

all 0 � t <1

EP

�Z t

0

�2sds

�
=

Z t

0

�2e�(
k
� )

2
�2HEP

h
e
2k
�
fBH(s)�BH(s��)g

i
ds

= �2 exp

(�
k

�

�2
�2H

)
t <1

by Fubini�s theorem and the moment generating function of the Gaussian
random variable BH (s)�BH (s� �).
Moreover

R t
0
j�sj ds being �nite P�almost surely for 0 � t < 1, an

application of Itô�s formula yields

St = S0 exp

�Z t

0

�
�s �

1

2
�2s

�
ds+

Z t

0

�sdBs

�
Additionally, we assume that investors are allowed to trade only up to some
�xed �nite planning horizon T > 0.
Lemma 2.1. Consider the measurable process de�ned by

t =
r � �t
�t

; 0 � t <1 (7)

with � 2 L1
�
[0; T ]� 


�
. Then, for a continuous version of the BH process

exp

�
1

2

Z T

0

2s (!2) ds

�
< A (!2) <1 (8)
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P2�almost all !2 2 
2.
We use the fact that P2�almost surely the paths of a continuous version

of fractional Brownian motion are Hölder continuous of any order � � 0
strictly less than H, that is, there is a random variable C� > 0 such that
for P2�almost all !2 2 
2 jBH (t)�BH (s)j � C� (!2) jt� sj� for every
t; s 2 [0;1)

exp

�
1

2

Z T

0

2s (!2) ds

�
� exp

"
ek

2�2H�2

2�2

Z T

0

(r + j�sj)
2 e�2

k
�
(BH(s)�BH(s��))ds

#

� exp

"
(r + k�sk1)

2

2�2
ek

2�2H�2
Z T

0

e�2
k
�
(BH(s)�BH(s��))ds

#

� exp

(
T (r + k�sk1)

2

2�2
ek

2�2H�2+2kC�(!2)���1

)
< A (!2) <1

�
Proposition 2.2. The market de�ned by (2), (3) and (6) is free of arbitrage
Proof: Restricting the process to a particular path !2 of the BH�process,

we construct the stochastic exponential of
R t
0
s (!2) dBs, that is

�t (!2) = exp

�Z t

0

s (!2) dBs �
1

2

Z t

0

2s (!2) ds

�
The bound proved on Lemma 2.1 is the Kallianpur condition [24] that insures
that2

EP1 [�t (!2)] = 1 !2 � a:s: (9)

Hence, we are in the framework of Girsanov theorem and each nonnegative
continuous supermartingale �t (!2) in (??) is a true P1�martingale. Hence
we can de�ne for each 0 � T <1 a new probability measure QT (!2) on F1
by

dQT (!2)

dP1
= �T (!2) ; P1 � a:s: (10)

2Notice that this is di¤erent from EP [�t] = 1 but what is needed for the construction
of the equivalent martingale measure by Girsanov is Eq.(9) and not the latter stronger
condition.
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Then, by the Cameron-Martin-Girsanov theorem, for each �xed T 2 [0;1),
the process

B�t = Bt �
Z t

0

r � �s
�s (!2)

ds 0 � t � T (11)

is a Brownian motion on the probability space (
;F1; QT (!2)).
Consider now the discounted price process

Zt =
St
At

0 � t � T

Under the new probability measure QT (!2), equivalent to P1 on F1, its
dynamics is given by

Zt (!2) = Z0 +

Z t

0

�s (!2)Zs (!2) dB
�
s (12)

and is a martingale in the probability space (
1;F1; QT (!2)) with respect to
the �ltration (F1;t)0�t<T . By the fundamental theorem of asset pricing, the
existence of an equivalent martingale measure for Zt implies that there are
no arbitrages, that is, EQT (!2) [Zt (!2) jF1;s] = Zs (!2) for 0 � s < t � T .
We have proved that there are no arbitrages for P2�almost all !2 trajec-

tories of the BH process. But because this process is independent from the
B process in (2), it follows that the no-arbitrage result is also valid in the
probability product space. �
Another important concept is market completeness. We note that, in

this �nancial model, trading takes place only in the stock and in the money
market and, as a consequence, volatility risk cannot be hedged. Hence, since
there are more sources of risk than tradable assets, in this model, the market
is incomplete, as proved in the next proposition.
Proposition 2.3. The market de�ned by (2),(3) and (6) is incomplete
Proof : Here we use an integral representation for the fractional Brownian

motion [22], [23]

BH (t) =

Z t

0

KH (t; s) dWs (13)

Wt being a Brownian motion independent from Bt and K is the square inte-
grable kernel

KH (t; s) = CHs
1
2
�H
Z t

s

(u� s)H� 3
2uH�

1
2 du; s < t
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(H > 1=2). Then the process

�0t = exp

�
Wt �

1

2
t

�
(14)

is a square-integrable P2�martingale. Then, de�ning a standard bi-dimensional
Brownian motion,

W �
t = (Bt;Wt)

the process ��t (!2) = �t�
0
t (!2)

��t (!2) = exp

�Z t

0

�s (!2) � dW �
t �

1

2

Z t

0

k�s (!2)k2 ds
�

where, by Lemma 2.1, � (!2) = ( (!2) ; 1) satis�es the Novikov condition, is
also a P1�martingale. Then, by the Cameron-Martin-Girsanov theorem, the
process fW �

t =
�fW �(1)

t ;fW �(2)
t

�
de�ned by

fW �(1)
t = Bt �

Z t

0

s (!2) dsfW �(2)
t = Wt � t

is a bi-dimensional Brownian motion on the probability space (
1;F1; Q�T (!2)),
where Q�T (!2) is the probability measure

dQ�T (!2)

dP1
= ��T (!2) (15)

Moreover, the discounted price process Z remains a martingale with respect
to the new measureQ�T (!2). Q

�
T (!2) being an equivalent martingale measure

distinct from QT (!2), the market is incomplete.
�

As stated above, incompleteness of the market is a re�ection of the fact
that there are two di¤erent sources of risk and only one of the risks is tradable.
A choice of measure is how one �xes the volatility risk premium.
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3 Leverage and completeness

The following nonlinear correlation of the returns

L (�) =


jr (t+ �)j2 r (t)

�
�


jr (t+ �)j2

�
hr (t)i (16)

is called leverage and the leverage e¤ect is the fact that, for � > 0, L (�)
starts from a negative value whose modulus decays to zero whereas for � < 0
it has almost negligible values. In the form of Eqs.(2)(3) the volatility process
�t a¤ects the log-price, but is not a¤ected by it. Therefore, in its simplest
form the fractional volatility model contains no leverage e¤ect.
Leverage may, however, be implemented in the model in a simple way.

Using a standard representation for fractional Brownian motion [23] as a sto-
chastic integral over Brownian motion and identifying the random generator
of the log-price process with the stochastic integrator of the volatility, at least
a part of the leverage e¤ect is taken into account [25]. Here, for the genera-
tor of the volatility process we use a truncated version of a representation of
Fractional Brownian motion [23],

H (t) = �(M)

�
CH

�Z 0

�1

�
(t� u)H�

1
2 � (�u)H�

1
2

�
dWu +

Z t

0

(t� u)H�
1
2 dWu

��
(17)

�(M) meaning the truncation of the representation to an interval [�M;M ]
with M arbitrarily large.
The identi�cation of the two Brownian processes means that now, instead

of two, there is only one source of risk. Hence it is probable that in this case
completeness of the market might be achieved.
The new fractional volatility model would be

dSt = �tStdt+ �tStdWt

log �t = � +
k0

�
fH (t)�H (t� �)g (18)

Proposition 3.1. The market de�ned by (18), (17) and (6) is free of arbi-
trage and complete.
Proof: In this case because the two processes are not independent we

cannot use the same argument as before to obtain the Kallianpur condition.
However with the truncation in (17) the Hölder condition is trivially veri�ed
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for all the truncated paths of �t and the construction of an equivalent mar-
tingale measure follows the same steps as in Proposition 2.2. Hence we have
a P1-martingale with respect to (F1;t)0�t<T

�t = exp

(Z t

0

r � �s
�s

dWs �
1

2

Z t

o

�
r � �s
�s

�2
ds

)

and the probability measure QT , de�ned by
dQT
dP1

= �T is an equivalent mar-
tingale measure.
The set of equivalent local martingale measures for the market being non-

empty, let Q� be an element in this set. Then, recalling that (F1;t)0�t<T is
the augmentation of the natural �ltration of the Brownian motionWt, by the
Girsanov converse [26] [27] there is a (F1;t)0�t<T progressively measurable R-
valued process � such that the Radon-Nikodym density of Q� with respect
to P1 equals

dQ�T
dP1

= exp

�Z T

0

�sdWs �
1

2

Z T

0

�2sds

�
Moreover the process W �

t given by

W �
t = Wt �

Z t

0

�sds

is a standard Q��Brownian motion and the discounted price process Z sat-
is�es the following stochastic di¤erential equation

dZt = (�t � r + �t�t)Ztdt+ �tZtdW �
t

Because Zt is aQ��martingale, then it must be hold �(t; !)�r+�(t; !)�(t; !) =
0 almost everywhere w.r.t. dt� P in [0; T ]� 
. It implies

�(t; !) =
r � �(t; !)
�(t; !)

a. e. (t; !) 2 [0; T ]�
1. HenceQ�T = QT , that is, QT is the unique equivalent
martingale measure. This market model is complete.

�
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4 Remarks and conclusions

1) Partially reconstructed from empirical data, the fractional volatility model
describes well the statistics of returns. The fact that, once the parameters
are adjusted by the data for a particular observation time scale �, it describes
well di¤erent time lags is related to the fact that the volatility is driven not
by fractional Brownian motion but its increments.
Speci�c trader strategies and psychology should play a role on market

crisis and bubbles. However, the fact that in the fractional volatility model
the same set of parameters would describe very di¤erent markets [8] seems to
imply that the market statistical behavior (in normal days) is more in�uenced
by the nature of the �nancial institutions (the double auction process) than
by the traders strategies [11]. Therefore some kind of universality of the
statistical behavior of the bulk data throughout di¤erent markets would not
be surprising.
The identi�cation of the Brownian process of the log-price with the one

that generates the fractional noise driving the volatility, introduces an asym-
metric coupling between �t and St that is also exhibited by the market data.
2) In this paper, mathematical consistency of the fractional volatility

model has been established. This and its better consistency with the exper-
imental data, makes it a candidate to replace geometrical Brownian as the
standard market model.
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