On Idempotent Generated Semigroups

João Araújo

Abstract

We provide short and direct proofs for some classical theorems proved by Howie, Levi and McFadden concerning idempotent generated semigroups of transformations on a finite set.

Mathematics subject classification: 20M20.
Let n be a natural number and $[n]=\{1, \ldots, n\}$. Let T_{n}, S_{n} be, respectively, the transformation semigroup and the symmetric group on $[n]$. Let $P=\left(A_{i}\right)_{i \in[k]}$ be a partition of $[n]$ and let $C=\left\{x_{1}, \ldots, x_{k}\right\}$ be a crosssection of $P\left(\right.$ say $\left.x_{i} \in A_{i}\right)$. Then we represent A_{i} by $\left[x_{i}\right]_{P}$ and the pair (P, C) induces an idempotent mapping defined by $\left[x_{i}\right]_{P} e=\left\{x_{i}\right\}$. Conversely, every idempotent can be so constructed. To save space instead of $e=\left(\begin{array}{ccc}{\left[x_{1}\right]_{P}} & \ldots & {\left[x_{k}\right]_{P}} \\ x_{1} & \ldots & x_{k}\end{array}\right)$ we write $e=\left(\left[x_{1}\right]_{P}, \ldots,\left[x_{k}\right]_{P}\right)$. This notation extends to $e=\left(\left[x_{1}, y\right]_{P},\left[x_{2}\right]_{P}, \ldots,\left[x_{k}\right]_{P}\right)$ when $y \in\left[x_{1}\right]_{P}$ and $\left[x_{i}\right]_{P} e=\left\{x_{i}\right\}$. By $\left(\left[x_{1}\right], \ldots,\left[\underline{x_{i}}, y\right], \ldots,\left[x_{k}\right]\right)$ we denote the set of all idempotents e with image $\left\{x_{1}, \ldots, x_{n}\right\}$ and such that the $\operatorname{Ker}(e)$-class of x_{i} contains (at least) two elements: x_{i} and y, where the underlined element (in this case x_{i}) is the image of the class under e. For $a \in T_{n}$, we denote the image of a by ∇a.

Lemma 1 Let $a \in I_{n}=T_{n} \backslash S_{n}, \operatorname{rank}(a)=k$, and $(x y) \in \operatorname{Sym}(X)$. Then $a(x y)=a b$, where $b=1$ or $b=e_{1} e_{2} e_{3}$, with $e_{i}^{2}=e_{i}$ and $\operatorname{rank}\left(e_{i}\right)=k$.

Proof. Let $\nabla a=\left\{a_{i} \mid i \in[k]\right\}$. If $x, y \notin \nabla a$, then $a(x y)=a$. If, say, $x=a_{1}$ and $y \notin \nabla a$, then $a e_{1}=a\left(a_{1} y\right)$, for all $e_{1} \in\left(\left[a_{1}, \underline{y}\right],\left[a_{2}\right], \ldots,\left[a_{k}\right]\right)$. Finally, if $x, y \in \nabla a$, without loss of generality, we can assume that $x=a_{1}$ and $y=a_{2}$. Then $a\left(a_{1} a_{2}\right)=a e_{2} e_{3} e_{4}$, for $e_{2} \in\left(\left[a_{1}\right],\left[a_{2}, \underline{u}\right],\left[a_{3}\right], \ldots,\left[a_{k}\right]\right)$, $e_{3} \in\left([u],\left[a_{1}, \underline{a_{2}}\right],\left[a_{3}\right], \ldots,\left[a_{k}\right]\right)$ and $e_{4} \in\left(\left[u, \underline{a_{1}}\right],\left[a_{2}\right], \ldots,\left[a_{k}\right]\right)$.

Theorem 2 [1] Every ideal of I_{n} is generated by its own idempotents.
Proof. Let $a \in I_{n}$. Then $a=e g$ for some $e=e^{2} \in T_{n}$ and $g \in S_{n}$. Therefore $a=e\left(x_{1} y_{1}\right) \ldots\left(x_{m} y_{m}\right)$ and hence, applying m times Lemma 1, a can be obtained as a product of idempotents of the same rank as a.

Let $t \in I_{n}$ and $g \in S_{n}$. Denote $g^{-1} t g$ by t^{g} and let $C_{t}=\left\{t^{g} \mid g \in S_{n}\right\}$ and $t^{S_{n}}=\left\langle\{t\} \cup S_{n}\right\rangle \backslash S_{n}$. For $f=\left(\left[x_{1}, \underline{w}\right]_{Q},\left[x_{2}\right]_{Q}, \ldots,\left[x_{k}\right]_{Q}\right)$ and $g \in S_{n}$, it is easy to check that we have $f^{g}=\left(\left[x_{1} g, \underline{w g}\right]_{Q g}, \ldots,\left[x_{k} g\right]_{Q g}\right) \in\left(\left[x_{1} g, \underline{w g}\right], \ldots,\left[x_{k} g\right]\right)$.

Lemma 3 Let $a \in I_{n}, \operatorname{rank}(a)=k$, let $f=\left(\left[x_{1}, \underline{w}\right]_{Q},\left[x_{2}\right]_{Q}, \ldots,\left[x_{k}\right]_{Q}\right)$ and let $(x y) \in S_{n}$. Then $a(x y)=a b$, where $b=1$ or $b=e_{1} e_{2} e_{3}$, with $e_{i} \in C_{f}$.

Proof. As in Lemma 1, one only has to show that the sets $\left(\left[a_{1}, y\right],\left[a_{2}\right], \ldots,\left[a_{k}\right]\right)$, $\left(\left[a_{1}\right],\left[a_{2}, \underline{u}\right], \ldots,\left[a_{k}\right]\right),\left([u],\left[a_{1}, \underline{a_{2}}\right], \ldots,\left[a_{k}\right]\right)$ and $\left(\left[\underline{a_{1}}, u\right],\left[a_{2}\right], \ldots,\left[a_{k}\right]\right)$ intersect C_{f}. Let $g \in S_{n}$ such that $x_{1} g=a_{1}, w g=y$ and $x_{i} g=a_{i}(2 \leq i \leq k)$. Thus $f^{g}=\left(\left[x_{1} g, \underline{w} g\right]_{Q g},\left[x_{2} g\right]_{Q g}, \ldots,\left[x_{k} g\right]_{Q g}\right) \in\left(\left[a_{1}, \underline{y}\right],\left[a_{2}\right], \ldots,\left[a_{k}\right]\right)$. The proof that C_{f} intersects the remaining three sets is similar.

Repeating the arguments of Theorem 1 together with Lemma 3 we have
Corollary 4 Let eg $\in I_{n}$ (for some $e=e^{2}, g \in S_{n}$) and let $f^{2}=f$ with $\operatorname{rank}(e g)=\operatorname{rank}(f)$. Then eg $\in e\left\langle C_{f}\right\rangle$ and, in particular, $e g \in\left\langle C_{e}\right\rangle$.

From now on let $a=e g \in I_{n}$ (for some $e=e^{2}, g \in S_{n}$).
Corollary $5\left\langle C_{e}\right\rangle=e^{S_{n}}=(e g)^{S_{n}}=a^{S_{n}}$.
Proof. The only non-trivial inclusion is $e^{S_{n}} \subseteq\left\langle C_{e}\right\rangle$. As $e^{S_{n}}$ is generated by $\left\{g e h \mid g, h \in S_{n}\right\}$, let $g, h \in S_{n}$. By Corollary 4 , he $=\left(h e h^{-1}\right) h \in\left\langle C_{h e h^{-1}}\right\rangle$ and $e g \in\left\langle C_{e}\right\rangle$. Since $h e h^{-1} \in\left\langle C_{e}\right\rangle$, it follows that $\left\langle C_{h e h^{-1}}\right\rangle \leq\left\langle C_{e}\right\rangle$. Thus $h e g=(h e)(e g) \in\left\langle C_{e}\right\rangle$. It is proved that $e^{S_{n}} \subseteq\left\langle C_{e}\right\rangle$.

Theorem $6[2]\left\langle C_{a}\right\rangle=\left\langle C_{e}\right\rangle=a^{S_{n}}$ and hence is idempotent generated.
Proof. Since $a=e g$, then $e=a g^{-1}$ and it is easy to check that we have $\left(a g^{-1}\right)^{n}=a a^{g} a^{g^{2}} \ldots a^{g^{n-1}} g^{-n}$. But for some natural m we have $g^{-m}=1$. Thus $\left(a g^{-1}\right)^{m}=a a^{g} a^{g^{2}} \ldots a^{g^{m-1}} \in\left\langle C_{a}\right\rangle$ so that $e=e^{m}=\left(a g^{-1}\right)^{m} \in\left\langle C_{a}\right\rangle$ and hence, by Corollary 5, it follows that $a^{S_{n}}=\left\langle C_{e}\right\rangle \leq\left\langle C_{a}\right\rangle \leq a^{S_{n}}$. (Cf. [3]).

References

[1] J. M. Howie, R. B. McFadden Idempotent rank in finite full transformation semigroups, Proc. R. Soc. Edinburgh, Sect. A 114 (1990), 161-167.
[2] I. Levi and R. McFadden S_{n}-normal semigroups, Proc. Edinburgh Math. Soc., 37 (1994), 471-476.
[3] D.B. McAlister Semigroups generated by a group and an idempotent, Comm. Algebra, 26 (1998), 515-547.

