Semigroups of Transformations Preserving an Equivalence Relation and a Cross-Section

João Araújo
Universidade Aberta, R. Escola Politécnica, 147
1269-001 Lisboa, Portugal
\&
Centro de Álgebra, Universidade de Lisboa
1649-003 Lisboa, Portugal, mjoao@lmc.fc.ul.pt
Janusz Konieczny
Department of Mathematics, Mary Washington College
Fredericksburg, VA 22401, USA, jkoniecz@mwc.edu

Abstract

For a set X, an equivalence relation ρ on X, and a cross-section R of the partition X / ρ induced by ρ, consider the semigroup $T(X, \rho, R)$ consisting of all mappings a from X to X such that a preserves both ρ (if $(x, y) \in \rho$ then $(x a, y a) \in \rho$) and R (if $r \in R$ then $r a \in R$). The semigroup $T(X, \rho, R)$ is the centralizer of the idempotent transformation with kernel ρ and image R. We determine the structure of $T(X, \rho, R)$ in terms of Green's relations, describe the regular elements of $T(X, \rho, R)$, and determine the following classes of the semigroups $T(X, \rho, R)$: regular, abundant, inverse, and completely regular.

2000 Mathematics Subject Classification: 20M20.

1 Introduction

Let X be an arbitrary nonempty set. The semigroup $T(X)$ of full transformations on X consists of the mappings from X to X with composition as the semigroup operation.

Let ρ be an equivalence relation on X and let R be a cross-section of the partition X / ρ induced by ρ. Consider the following subset of $T(X)$:

$$
T(X, \rho, R)=\{a \in T(X): R a \subseteq R \text { and }(x, y) \in \rho \Rightarrow(x a, y a) \in \rho\}
$$

Clearly $T(X, \rho, R)$ is a subsemigroup of $T(X)$. The family of semigroups $T(X, \rho, R)$ includes the semigroup $T(X)(T(X)=T(X, \Delta, X)$ where $\Delta=\{(x, x): x \in X\})$ and the semigroup $P T\left(X^{\prime}\right)$ of partial transformations on X^{\prime} where X^{\prime} is X with one element removed (if $X^{\prime}=X-\{r\}$ then $P T\left(X^{\prime}\right)$ is isomorphic to $T(X, X \times X,\{r\})$).

Another way of describing the semigroups $T(X, \rho, R)$ is through the notion of the centralizer. Let S be a semigroup and $a \in S$. The centralizer $C(a)$ of a is defined as

$$
C(a)=\{b \in S: a b=b a\} .
$$

It is clear that $C(a)$ is a subsemigroup of S.
The full transformation semigroup $T(X)$ is the centralizer of the identity mapping $i d_{X}$ on $X: T(X)=C\left(i d_{X}\right)$. More generally, the semigroups $T(X, \rho, R)$ are the centralizers of the idempotent transformations: $T(X, \rho, R)$ is the centralizer of the idempotent in $T(X)$ with kernel ρ and image $R[1]$.

Centralizers in $T(X)$ for a finite set X have been studied by Higgins [4], Liskovec and Fě̆nberg [10], [11], and Weaver [14]. The second author has studied centralizers in the semigroup $P T(X)$ of partial transformations on a finite set $X[6]$, [7], [8]. In [1], the authors determined the automorphism group of $T(X, \rho, R)$.

In this paper, we study the structure and regularity of the semigroups $T(X, \rho, R)$ for an arbitrary set X. In Section 2, we determine Green's relations in $T(X, \rho, R)$. In particular, we find that, in general, the relations \mathcal{D} and \mathcal{J} are not the same in $T(X, \rho, R)$, and that the \mathcal{J}-classes of $T(X, \rho, R)$ do not form a chain. We characterize the relations ρ for which $\mathcal{D}=\mathcal{J}$ and the relations ρ for which the partially ordered set of \mathcal{J}-classes is a chain. In Section 3, we describe the regular elements of $T(X, \rho, R)$ and characterize the relations ρ for which $T(X, \rho, R)$ is a regular semigroup. In Section 4, we show that abundant semigroups $T(X, \rho, R)$ are precisely those that are regular. Finally, in Section 5, we determine that $T(X, \rho, R)$ is never an inverse semigroup (if $|X| \geq 3$) or a completely regular semigroup (if $|X| \geq 4$).

2 Green's Relations in $T(X, \rho, R)$

For $a \in T(X)$, we denote the kernel of a (the equivalence relation $\{(x, y) \in X \times X: x a=$ $y a\})$ by $\operatorname{Ker}(a)$ and the image of a by ∇a. For $Y \subseteq X, Y a$ will denote the image of Y under a, that is, $Y a=\{x a: x \in Y\}$. As customary in transformation semigroup theory, we write transformations on the right (that is, $x a$ instead of $a(x)$).

Let ρ be an equivalence relation on X and R a cross-section of X / ρ. If $x \in X$ then there is exactly one $r \in R$ such that $x \rho r$, which will be denoted by r_{x}. Of course, for $s \in R$, we have $r_{s}=s$.

For the remainder of the paper, ρ will denote an equivalence relation on X and R will denote a cross-section of X / ρ.

If S is a semigroup and $a, b \in S$, we say that $a \mathcal{R} b$ if $a S^{1}=b S^{1}, a \mathcal{L} b$ if $S^{1} a=S^{1} b$, and $a \mathcal{J} b$ if $S^{1} a S^{1}=S^{1} b S^{1}$, where S^{1} is the semigroup S with an identity adjoined, if necessary. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R}, and \mathcal{D} as the join of \mathcal{L} and \mathcal{R}, that is, the smallest equivalence relation on S containing both \mathcal{L} and \mathcal{R}. These five equivalence relations on S are known as Green's relations [5, p. 45]. The relations \mathcal{L} and \mathcal{R} commute [5, Proposition 2.1.3], and consequently $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$. If \mathcal{T} is one of Green's relations and $a \in S$, we denote the equivalence class of a with respect to \mathcal{T} by T_{a}. Since \mathcal{R}, \mathcal{L}, and \mathcal{J} are defined in terms of principal ideals in S, which are partially ordered by inclusion, we have the induced partial orders in the sets of the equivalence classes of \mathcal{R}, \mathcal{L}, and $\mathcal{J}: R_{a} \leq R_{b}$ if $a S^{1} \subseteq b S^{1}, L_{a} \leq L_{b}$ if $S^{1} a \subseteq S^{1} b$, and $J_{a} \leq J_{b}$ if $S^{1} a S^{1} \subseteq S^{1} b S^{1}$.

Green's relations in the semigroup $T(X)$ are well known [5, Exercise 16, p. 63].
Lemma 2.1 If $a, b \in T(X)$ then:
(1) $a \mathcal{R} b \Leftrightarrow \operatorname{Ker}(a)=\operatorname{Ker}(b)$.
(2) $a \mathcal{L} b \Leftrightarrow \nabla a=\nabla b$.
(3) $a \mathcal{D} b \Leftrightarrow|\nabla a|=|\nabla b|$.
(4) $\mathcal{D}=\mathcal{J}$.

Our aim in this section is to describe Green's relations in the semigroups $T(X, \rho, R)$.

2.1 Relations \mathcal{R} and \mathcal{L}

The relation \mathcal{R} in $T(X, \rho, R)$ is simply the restriction of the relation \mathcal{R} in $T(X)$ to $T(X, \rho, R) \times T(X, \rho, R)$. This result will follow from the following lemma.

Lemma 2.2 Let $a, b \in T(X, \rho, R)$. Then $R_{a} \leq R_{b}$ if and only if $\operatorname{Ker}(b) \subseteq \operatorname{Ker}(a)$.
Proof: Suppose $R_{a} \leq R_{b}$. Then there is $c \in T(X, \rho, R)$ such that $a=b c$, and so for all $x, y \in X, x b=y b$ implies $x a=(x b) c=(y b) c=y a$. Thus $\operatorname{Ker}(b) \subseteq \operatorname{Ker}(a)$.

Conversely, suppose $\operatorname{Ker}(b) \subseteq \operatorname{Ker}(a)$. We shall construct $c \in T(X, \rho, R)$ such that $a=b c$. Consider an equivalence class $r \rho$ where $r \in R$. If $r \notin \nabla b$, define $y c=y$ for every $y \in r \rho$. Suppose $r \in \nabla b$. Then, since $b \in T(X, \rho, R), r=t b$ for some $t \in R$. Since $a \in T(X, \rho, R), t a=p$ for some $p \in R$. Let $y \in r \rho$. If $y=x b \in \nabla b$, define $y c=x a$; if $y \notin \nabla b$, define $y c=p$. Note that c is well defined since for all $x, x^{\prime} \in X$, if $x b=x^{\prime} b$ then $x a=x^{\prime} a$ (since $\operatorname{Ker}(b) \subseteq \operatorname{Ker}(a)$) and so $(x b) c=x a=x^{\prime} a=\left(x^{\prime} b\right) c$. It is clear by the construction of c that $b c=a$. It remains to show that $c \in T(X, \rho, R)$.

If $r \notin \nabla b$ then $r c=r \in R$ and $(r \rho) c=r \rho$. Suppose $r \in \nabla b$. By the definition of c, $r c=(t b) c=t a=p \in R$. Next we show that $(r \rho) c \subseteq p \rho$. Let $y \in r \rho$. If $y \notin \nabla b$ then $y c=p \in p \rho$, and so $(r \rho) c \subseteq p \rho$, in this case. Let $y=x b \in \nabla b$. Then $x \in q \rho$ for some $q \in R$. Since $x \in q \rho$ and $x b \in r \rho, q b=r$. Since $\operatorname{Ker}(b) \subseteq \operatorname{Ker}(a), t b=q b(=r)$ implies $t a=q a$. Thus $q a=t a=p$, and so $(q \rho) a \subseteq p \rho$. Hence $y c=x a \in p \rho$. It follows that $c \in T(X, \rho, R)$, and so $R_{a} \leq R_{b}$.

Theorem 2.3 Let $a, b \in T(X, \rho, R)$. Then $a \mathcal{R} b$ if and only if $\operatorname{Ker}(a)=\operatorname{Ker}(b)$.
Proof: It follows immediately from Lemma 2.2.
Let \mathcal{A} and \mathcal{B} be families of sets. We write $\mathcal{A} \hookrightarrow \mathcal{B}$ if for every set $C \in \mathcal{A}$ there is a set $D \in \mathcal{B}$ such that $C \subseteq D$. If $\mathcal{A} \hookrightarrow \mathcal{B}$ and $\mathcal{B} \hookrightarrow \mathcal{A}$, we write $\mathcal{A} \leftrightarrow \mathcal{B}$.

Our characterization of the relation \mathcal{L} in $T(X, \rho, R)$ will follow from the following lemma. For $a \in T(X, \rho, R)$, we denote by ∇a the family $\{(r \rho) a: r \in R\}$.
Lemma 2.4 Let $a, b \in T(X, \rho, R)$. Then $L_{a} \leq L_{b}$ if and only if $\boldsymbol{\nabla} a \hookrightarrow \boldsymbol{\nabla} b$.
Proof: Suppose $L_{a} \leq L_{b}$. Then there is $c \in T(X, \rho, R)$ such that $a=c b$. Let $A \in \nabla a$. Then $A=(r \rho) a=((r \rho) c) b$ for some $r \in R$. Since $c \in T(X, \rho, R),(r \rho) c \subseteq t \rho$ for some $t \in R$. Thus $A \subseteq(t \rho) b \in \mathbf{\nabla} b$, and so $\boldsymbol{\nabla} a \hookrightarrow \boldsymbol{\nabla} b$.

Conversely, suppose $\boldsymbol{\nabla} a \hookrightarrow \nabla b$. To construct $c \in T(X, \rho, R)$ such that $a=c b$, consider $r \rho(r \in R)$. Since $\boldsymbol{\nabla} a \hookrightarrow \nabla b$ and $b \in T(X, \rho, R),(r \rho) a \subseteq(t \rho) b \subseteq p \rho$ for some $t, p \in R$. Thus, for every $x \in r \rho$, we can select $y_{x} \in t \rho$ such that $x a=y_{x} b$ (if $x=r$, we may assume that $y_{x}=t$ since $r a=t b=p$) and define $x c=y_{x}$. By the construction of $c, a=c b$ and $c \in T(X, \rho, R)$ (since $(r \rho) c \subseteq t \rho$ and $r c=t$). Thus $L_{a} \leq L_{b}$.

Theorem 2.5 Let $a, b \in T(X, \rho, R)$. Then $a \mathcal{L} b$ if and only if $\boldsymbol{\nabla} a \leftrightarrow \boldsymbol{\nabla} b$.
Proof: It follows immediately from Lemma 2.4.

For $a \in T(X, \rho, R)$, denote by $m(\boldsymbol{\nabla} a)$ the family of all sets maximal in $\boldsymbol{\nabla} a$ (with respect to inclusion). Suppose X is finite. Then for every $A \in \boldsymbol{\nabla} a$, there is $A^{\prime} \in m(\boldsymbol{\nabla} a)$ such that $A \subseteq A^{\prime}$. (This is not necessarily true if X is infinite.) It easily follows that for all $a, b \in T(X, \rho, R), \boldsymbol{\nabla} a \leftrightarrow \boldsymbol{\nabla} b$ if and only if $m(\boldsymbol{\nabla} a)=m(\boldsymbol{\nabla} b)$. Thus in the finite case, $a \mathcal{L} b$ if and only if $m(\nabla a)=m(\nabla)$ [7].

2.2 Relations \mathcal{D} and \mathcal{J}

Let $f: Y \rightarrow Z$ be a function from a set Y to a set Z. For a family \mathcal{A} of subsets of $Y, f(\mathcal{A})$ denotes the family $\{f(A): A \in \mathcal{A}\}$ of subsets of Z. The following theorem characterizes Green's \mathcal{D}-relation in $T(X, \rho, R)$.

Theorem 2.6 Let $a, b \in T(X, \rho, R)$. Then $a \mathcal{D} b$ if and only if there is a bijection f : $\nabla a \rightarrow \nabla b$ such that $f(R \cap \nabla a) \subseteq R$ and $f(\nabla a) \leftrightarrow \nabla b$.

Proof: Suppose $a \mathcal{D} b$. Since $\mathcal{D}=\mathcal{R} \circ \mathcal{L}$, there is $c \in T(X, \rho, R)$ such that $a \mathcal{R} c$ and $c \mathcal{L} b$. Then, by Theorem 2.3 and Theorem 2.5, $\operatorname{Ker}(a)=\operatorname{Ker}(c)$ and $\boldsymbol{\nabla} c \leftrightarrow \nabla b$.

Next we shall construct a bijection $f: \nabla a \rightarrow \nabla c$ such that $f(R \cap \nabla a) \subseteq R$ and $f(\nabla a)=\nabla c$. For every $x a \in \nabla a$, define $f(x a)=x c$. For all $x a, x^{\prime} a \in \nabla a, f(x a)=$ $f\left(x^{\prime} a\right) \Leftrightarrow x c=x^{\prime} c \Leftrightarrow x a=x^{\prime} a$ (since $\left.\operatorname{Ker}(a)=\operatorname{Ker}(c)\right)$. Thus f is well defined and one-to-one. It is obviously onto since for every $x c \in \nabla c, x c=f(x a)$. Suppose $r \in R \cap \nabla a$. Then there is $t \in R$ such that $r=t a$, and so $f(r)=f(t a)=t c \in R$. Thus $f(R \cap \nabla a) \subseteq R$. For every $(r \rho) a \in \mathbf{\nabla} a(r \in R), f((r \rho) a)=\{f(x a): x \in r \rho\}=\{x c: x \in r \rho\}=(r \rho) c$. It follows that $f(\mathbf{\nabla} a)=\boldsymbol{\nabla} c$, and so $f(\boldsymbol{\nabla} a) \leftrightarrow \boldsymbol{\nabla} b$.

Conversely, suppose there is a bijection $f: \nabla a \rightarrow \nabla b$ such that $f(R \cap \nabla a) \subseteq R$ and $f(\nabla a) \leftrightarrow \nabla b$. Define $c \in T(X)$ by $x c=f(x a)$. Let $r \in R$. Then $r a \in R$ and so $r c=f(r a) \in R$. Thus $R c \subseteq R$. Moreover, $(r \rho) c=f((r \rho) a) \in f(\nabla a)$. Since $f(\boldsymbol{\nabla} a) \leftrightarrow \nabla b$, there is $B \in \boldsymbol{\nabla} b$ such that $(r \rho) c \subseteq B$. Since $B \in \nabla b, B \subseteq t \rho$ for some $t \in R$. Thus $(r \rho) c \subseteq t \rho$. It follows that $c \in T(X, \rho, R)$. For all $x, x^{\prime} \in X$, $x c=x^{\prime} c \Leftrightarrow f(x a)=f\left(x^{\prime} a\right) \Leftrightarrow x a=x^{\prime} a$ (since f is one-to-one). Thus $\operatorname{Ker}(a)=\operatorname{Ker}(c)$. Since for every $r \in R,(r \rho) c=f((r \rho) a)$, we have $\boldsymbol{\nabla} c=f(\nabla a)$. Thus $\boldsymbol{\nabla} c \leftrightarrow \nabla b$. Hence, by Theorem 2.3 and Theorem 2.5, $a \mathcal{R} c$ and $c \mathcal{L} b$, which gives $a \mathcal{D} b$.

Suppose X is finite and let $f: \nabla a \rightarrow \nabla b$ be as in the statement of Theorem 2.6. Since f is a bijection, $f(m(\boldsymbol{\nabla} a))=m(f(\nabla a))$. Thus, by the argument after Theorem 2.5, $f(\boldsymbol{\nabla} a) \leftrightarrow \boldsymbol{\nabla} b$ if and only if $f(m(\boldsymbol{\nabla} a))=m(\boldsymbol{\nabla} b)$. Hence in the finite case, $a \mathcal{D} b$ if and only if there is a bijection $f: \nabla a \rightarrow \nabla b$ such that $f(R \cap \nabla a) \subseteq R$ and $f(m(\nabla a))=m(\nabla b)$ [7].

In the semigroup $T(X), \mathcal{D}=\mathcal{J}$ (Lemma 2.1). In general, this result is not true for $T(X, \rho, R)$. A characterization of the \mathcal{J}-relation in $T(X, \rho, R)$ is provided by Theorem 2.8. We start with the theorem that determines the partial order of the \mathcal{J}-classes in $T(X, \rho, R)$.

Theorem 2.7 Let $a, b \in T(X, \rho, R)$. Then $J_{a} \leq J_{b}$ if and only if there is a function $g: \nabla b \rightarrow \nabla a$ such that $g(R \cap \nabla b) \subseteq R$ and $\nabla a \hookrightarrow g(\nabla b) \hookrightarrow X / \rho$.

Proof: Suppose $J_{a} \leq J_{b}$. Then $a=c b d$ for some $c, d \in T(X, \rho, R)$. Fix $r_{0} \in \nabla a$ and define $g: \nabla b \rightarrow \nabla a$ by:

$$
g(x)= \begin{cases}x d & \text { if } x \in \nabla(c b) \\ r_{x} d & \text { if } x \notin \nabla(c b) \text { but } x \rho \cap \nabla(c b) \neq \emptyset \\ r_{0} & \text { if } x \rho \cap \nabla(c b)=\emptyset .\end{cases}
$$

Let $x \in \nabla b$. If $x \in \nabla(c b)$ then $x d \in \nabla a$ (since $a=c b d$). If $x \notin \nabla(c b)$ but $x \rho \cap \nabla(c b) \neq \emptyset$ then $r_{x} \in \nabla(c b)$, and so $r_{x} d \in \nabla a$. Thus g indeed maps ∇b to ∇a.

We have $g(R \cap \nabla b) \subseteq R$ since $R d \subseteq R$. Let $C \in \mathbf{\nabla} b$. Then $C=(r \rho) b$ for some $r \in R$. By the definition of g, either $g(C)=\left\{r_{0}\right\} \subseteq r_{0} \rho$ (if $x \rho \cap \nabla(c b)=\emptyset$) or $g(C)=(C \cap \nabla(c b)) d \subseteq C d=(r \rho) b d \subseteq q \rho$ for some $q \in R$ (since $b, d \in T(X, \rho, R)$). It follows that $g(\mathbf{v} b) \hookrightarrow X / \rho$.

Let $A \in \mathbf{\nabla} a$. Then $A=(p \rho) a$ for some $p \in R$. Since $c \in T(X, \rho, R),(p \rho) c \subseteq r \rho$ for some $r \in R$. Let $C=(r \rho) b$. Then $C \in \mathbf{\nabla} b$ and $A=(p \rho) a=(p \rho)(c b d) \subseteq(C \cap \nabla(c b)) d=$ $g(C) \in g(\mathbf{\nabla} b)$. Thus $\mathbf{\nabla} a \hookrightarrow g(\mathbf{v} b)$

Conversely, suppose there is a function $g: \nabla b \rightarrow \nabla a$ such that $g(R \cap \nabla b) \subseteq R$ and $\boldsymbol{\nabla} a \hookrightarrow g(\mathbf{\nabla} b) \hookrightarrow X / \rho$. Let $A \in \mathbf{\nabla} a$. Then there is a unique $q_{A} \in R$ such that $A \subseteq q_{A} \rho$. Since $\mathbf{\nabla} a \hookrightarrow g(\mathbf{v} b)$, there is $C_{A} \in \mathbf{\nabla} b$ such that $A \subseteq g\left(C_{A}\right)$. Since $C_{A} \in \mathbf{\nabla} b$, there is $r_{A} \in R$ such that $C_{A}=\left(r_{A} \rho\right) b$. Let $t_{A}=r_{A} b$. Since $b \in T(X, \rho, R), t_{A} \in R$ and $C_{A}=\left(r_{A} \rho\right) b \subseteq t_{A} \rho$. For every $z \in A$, select $u_{z}^{A} \in C_{A}$ such that $z=g\left(u_{z}^{A}\right)$ (since $g\left(t_{A}\right)=q_{A}$, we may assume that $u_{z}^{A}=t_{A}$ if $\left.z=q_{A}\right)$. Let $C_{A}^{\prime}=\left\{u_{z}^{A}: z \in A\right\}$ and note that $C_{A}^{\prime} \subseteq C_{A}$. For every $y \in C_{A}^{\prime}$, select $w_{y}^{A} \in r_{A} \rho$ such that $y=w_{y}^{A} b$ (since $r_{A} b=t_{A}$, we may assume that $w_{y}^{A}=r_{A}$ if $\left.y=t_{A}\right)$.

We shall construct $c, d \in T(X, \rho, R)$ such that $a=c b d$. To construct c, let $x \in X$. Then there is a unique $p \in R$ such that $x \in p \rho$. Let $A=(p \rho) a$ and $z=x a$. Then $A \in \mathbf{V} a$ and $z \in A$. Let $y=u_{z}^{A}$ and note that $y \in C_{A}^{\prime}$. Define $x c=w_{y}^{A}$. By the definition of c, we have $(p \rho) c \subseteq r_{A} \rho$. Since $p a=q_{A}$ (from the paragraph above), we have $p c=r_{A}$ (since $u_{z}^{A}=t_{A}$ for $z=q_{A}$ and $w_{y}^{A}=r_{A}$ for $\left.y=t_{A}\right)$. It follows that $c \in T(X, \rho, R)$.

To construct d, let $y \in X$. Then there is a unique $t \in R$ such that $y \in t \rho$. We define $y d$ as follows:
(i) If $y \in C_{A}^{\prime}$ for some $A \in \mathbf{\nabla} a$, define $y d=g(y)$.
(ii) If $y \notin C_{B}^{\prime}$ for every $B \in \mathbf{\nabla} a$ but $C_{A} \subseteq t \rho$ for some $A \in \mathbf{\nabla} a$, define $y d=q_{A}$.
(iii) If there is no $A \in \mathbf{\nabla} a$ such that $C_{A} \subseteq t \rho$, define $y d=y$.

If $C_{A}, C_{B} \subseteq t \rho$ for some $A, B \in \mathbf{\nabla} a$ then $q_{A}=g(t)=q_{B}$, and so the definition of d in (ii) does not depend on the choice of A. Thus d is well defined.

Let $t \in R$ and consider $t \rho$. Suppose $C_{A} \subseteq t \rho$ for some $A \in \mathbf{\nabla} a$. Then, by (i), $t d=g(t)=q_{A}$. Let $B \in \mathbf{\nabla} a$ be such that $C_{B} \subseteq t \rho$. Then $q_{A}=g(t)=q_{B}$. It follows that $B \subseteq q_{A} \rho$ and so, by (i) and (ii), $(t \rho) d \subseteq q_{A} \rho$. If there is no $A \in \mathbf{V} a$ such that $C_{A} \subseteq t \rho$ then, by (iii), $t d=t$ and $(t \rho) d=t \rho$. It follows that $d \in T(X, \rho, R)$.

Let $x \in X$. Then there is a unique $p \in R$ such that $x \in p \rho$. Let $A=(p \rho) a$ and $z=x a$. Then $A \in \mathbf{\nabla} a$ and $z \in A$. Let $y=u_{z}^{A}$ and note that $y \in C_{A}^{\prime}$. By the definition of c and d, $x c=w_{y}^{A}\left(\right.$ recall that w_{y}^{A} was selected so that $\left.w_{y}^{A} b=y\right)$ and $y d=g(y)=g\left(u_{z}^{A}\right)=z=x a$. Thus $x(c b d)=w_{y}^{A}(b d)=y d=x a$. Hence $a=c b d$ and so $J_{a} \leq J_{b}$.

Theorem 2.8 Let $a, b \in T(X, \rho, R)$. Then $a \mathcal{J} b$ if and only if there are functions f : $\nabla a \rightarrow \nabla b$ and $g: \nabla b \rightarrow \nabla a$ such that $f(R \cap \nabla a) \subseteq R, \nabla b \hookrightarrow f(\nabla a) \hookrightarrow X / \rho, g(R \cap \nabla b) \subseteq$ R, and $\boldsymbol{\nabla} a \hookrightarrow g(\mathbf{\nabla}) \hookrightarrow X / \rho$.

Proof: It is immediate by Theorem 2.7.

Let $a, b \in T(X, \rho, R)$ with $a \mathcal{J} b$, and let f and g be functions as in the statement of Theorem 2.8. We make the following observations.
(1) The functions f and g are onto.
(2) $|\nabla a|=|\nabla b|$.
(3) For every $r \in R$, there are $s, t \in R$ such that $f(r \rho \cap \nabla a) \subseteq s \rho$ and $g(r \rho \cap \nabla b) \subseteq t \rho$.

To illustrate Theorems 2.6 and 2.8 , consider $T(X, \rho, R)$, where $X=\{0,1,2,3,4, \ldots\}$,

$$
X / \rho=\{\{0,2,4\},\{6,8\},\{10,12\},\{14,16\}, \ldots,\{1,3\},\{5,7\},\{9,11\}, \ldots\}
$$

and $R=\{0,6,10,14, \ldots, 1,5,9, \ldots\}$. Let $a, b \in T(X, \rho, R)$ be such that

$$
\begin{aligned}
\boldsymbol{\nabla} a & =\{\{0,2\},\{0,4\},\{6,8\},\{10,12\},\{14,16\}, \ldots\} \\
\boldsymbol{\nabla} b & =\{\{1,3\},\{5,7\},\{9,11\},\{13,15\},\{17,19\}, \ldots\}
\end{aligned}
$$

It is clear that such a and b can be defined. It is also clear that we can define $f: \nabla a \rightarrow \nabla b$ and $g: \nabla b \rightarrow \nabla a$ such that $f(R \cap \nabla a) \subseteq R, g(R \cap \nabla b) \subseteq R$, and

$$
\begin{aligned}
& f(\{0,2\})=\{1,3\}, \quad f(\{0,4\})=\{1,3\}, f(\{6,8\})=\{5,7\}, \quad f(\{10,12\})=\{9,11\}, \ldots \\
& g(\{1,3\})=\{0,2\}, g(\{5,7\})=\{0,4\}, g(\{9,11\})=\{6,8\}, g(\{13,15\})=\{10,12\}, \ldots
\end{aligned}
$$

Then f and g satisfy the conditions given in Theorem 2.8 (in fact, $\boldsymbol{\nabla} b=f(\boldsymbol{\nabla} a)$ and $\boldsymbol{\nabla} a=g(\boldsymbol{\nabla} b)$), and so $a \mathcal{J} b$. However, there is no bijection $f: \nabla a \rightarrow \nabla b$ such that $f(R \cap \nabla a) \subseteq R$ and $f(\nabla a) \leftrightarrow \nabla b$ since if such an f existed, there would have to be $C \in \nabla b$ such that $f(\{0,2\}) \subseteq C$ and $f(\{0,4\}) \subseteq C$, which is impossible because every $C \in \nabla b$ has 2 elements. Thus, by Theorem 2.6, a and b are not in the same \mathcal{D}-class of $T(X, \rho, R)$.

The above example shows that, in general, $\mathcal{D} \neq \mathcal{J}$ in $T(X, \rho, R)$. This is in contrast with the semigroups $T(X)$ and $P T(X)$ of, respectively, full and partial transformations on X, in which $\mathcal{D}=\mathcal{J}$ [5, Exercises 16 and 17, p. 63]. We shall characterize the equivalence relations ρ on X for which $\mathcal{D}=\mathcal{J}$ in $T(X, \rho, R)$.

Lemma 2.9 Let ρ be a relation such that exactly one ρ-class has size at least 2 . Then for all $a, b \in T(X, \rho, R)$, if $a \mathcal{J} b$ then $a \mathcal{D} b$.

Proof: Let $a, b \in T(X, \rho, R)$ be such that $a \mathcal{J} b$. Then, by Theorem 2.8, there are functions $f: \nabla a \rightarrow \nabla b$ and $g: \nabla b \rightarrow \nabla a$ such that $f(R \cap \nabla a) \subseteq R, \nabla b \hookrightarrow f(\nabla a) \hookrightarrow X / \rho$, $g(R \cap \nabla b) \subseteq R$, and $\boldsymbol{\nabla} a \hookrightarrow g(\nabla b) \hookrightarrow X / \rho$. Let $r \rho$ be the ρ-class of size at least $2(r \in R)$.

Suppose $\nabla a \subseteq R$. Then every element of $\boldsymbol{\nabla} a$ has size 1, and so, since $\boldsymbol{\nabla} b \hookrightarrow f(\mathbf{\nabla} a)$, every element of $\boldsymbol{\nabla} b$ also has size 1 and $\nabla b \subseteq R$. Since $|\nabla a|=|\nabla b|$ (see observation (2) after Theorem 2.8), there is a bijection $h: \nabla a \rightarrow \nabla b$. Since $\nabla a, \nabla b \subseteq R$, we clearly
have $h(R \cap \nabla a) \subseteq R$. Since $\nabla a=\{\{s\}: s \in \nabla a\}$ and $\nabla b=\{\{t\}: t \in \nabla b\}$, we have $h(\nabla a)=\boldsymbol{\nabla} b$. Thus $a \mathcal{D} b$ by Theorem 2.6.

Suppose $\nabla a \nsubseteq R$. This can only happen when $|r \rho \cap \nabla a| \geq 2$ (since $r \rho$ is the only ρ-class of size at least 2). We claim that $|r \rho \cap \nabla a|=|r \rho \cap \nabla b|$ and $|\nabla a-r \rho|=|\nabla b-r \rho|$.

To see that this claim is true, note that since $g(R \cap \nabla b) \subseteq R, g$ is onto, and g preserves ρ-classes (see observations (1) and (3) after Theorem 2.8), we have that $|r \rho \cap \nabla a| \geq 2$ implies $r \rho \cap \nabla a=g(r \rho \cap \nabla b)$. Thus $|r \rho \cap \nabla a| \leq|r \rho \cap \nabla b|$. By a similar argument, $|r \rho \cap \nabla b| \leq|r \rho \cap \nabla a|$. Now $r \rho \cap \nabla a=g(r \rho \cap \nabla b)$ and $\nabla a=g(\nabla b)$ imply $\nabla a-r \rho=$ $g(\nabla b-r \rho)$. Thus $|\nabla a-r \rho| \leq|\nabla b-r \rho|$. By a similar argument, $|\nabla b-r \rho| \leq|\nabla a-r \rho|$.

The claim has been proved. Thus there is a bijection $h: \nabla a \rightarrow \nabla b$ such that $h(r)=r$, $h(r \rho \cap \nabla a)=r \rho \cap \nabla b$, and $h(\nabla a-r \rho)=\nabla b-r \rho$. Note that if $s \in(R \cap \nabla a)-\{r\}$ then $s \in \nabla a-r \rho$, and so $h(s) \in \nabla b-r \rho$. Since $\nabla b-r \rho \subseteq R$, it follows that $h(R \cap \nabla a) \subseteq R$. Since $\nabla a=\{\{r \rho \cap \nabla a\}\} \cup\{\{s\}: s \in \nabla a-\{r\}\}$ and $\nabla b=\{\{r \rho \cap \nabla b\}\} \cup\{\{t\}: t \in \nabla b-\{r\}\}$, we have $h(\nabla a)=\boldsymbol{\nabla} b$. Thus $a \mathcal{D} b$ by Theorem 2.6.

Lemma 2.10 Let ρ be a relation such that all ρ-classes are finite and only finitely many of them have size at least 2. Then for all $a, b \in T(X, \rho, R)$, if $a \mathcal{J} b$ then $a \mathcal{D} b$.

Proof: Let $a, b \in T(X, \rho, R)$ be such that $a \mathcal{J} b$. Then, by Theorem 2.8, there are functions $f: \nabla a \rightarrow \nabla b$ and $g: \nabla b \rightarrow \nabla a$ such that $f(R \cap \nabla a) \subseteq R, \nabla b \hookrightarrow f(\nabla a) \hookrightarrow X / \rho$, $g(R \cap \nabla b) \subseteq R$, and $\boldsymbol{\nabla} a \hookrightarrow g(\mathbf{\nabla} b) \hookrightarrow X / \rho$.

Since only finitely many ρ-classes have size at least 2 , there are finitely many ρ-classes $r \rho$ such that $|r \rho \cap \nabla a| \geq 2$, say $r_{1} \rho, \ldots, r_{k} \rho\left(r_{i} \in R, k \geq 0\right)$, and finitely many ρ-classes $s \rho$ such that $|s \rho \cap \nabla b| \geq 2$, say $s_{1} \rho, \ldots, s_{m} \rho\left(s_{j} \in R, m \geq 0\right)$.

Note that for every $i \in\{1, \ldots, k\}$ there is $j \in\{1, \ldots, m\}$ such that $g\left(s_{j} \rho \cap \nabla b\right) \subseteq r_{i} \rho$. (Indeed, otherwise, since g preserves ρ-classes, there would be an i such that $r_{i} \rho \cap$ $g\left(s_{j} \rho \cap \nabla b\right)=\emptyset$ for all $j \in\{1, \ldots, m\}$. But then, since $g(R \cap \nabla b) \subseteq R$, we would have $r_{i} \rho \cap g(\nabla b) \subseteq\left\{r_{i}\right\}$, which would contradict the fact that g is onto.) Since $r_{1} \rho, \ldots, r_{k} \rho$ are pairwise disjoint, it follows that $k \leq m$. By a similar argument, we have $m \leq k$, and so $k=m$.

Suppose $k=0$. Then $\nabla a=\{\{r\}: r \in \nabla a\}$ and $\nabla b=\{\{s\}: s \in \nabla b\}$. Since $|\nabla a|=|\nabla b|$, there is a bijection $h: \nabla a \rightarrow \nabla b$. Note that $h(R \cap \nabla a) \subseteq R$ (since $\nabla a, \nabla b \subseteq R)$ and $h(\nabla a)=\nabla b$. Thus $a \mathcal{D} b$ by Theorem 2.6.

Suppose $k \geq 1$. Let $\left\{t_{1} \rho, \ldots, t_{p} \rho\right\}$ be the set of all ρ-classes of size at least $2\left(t_{i} \in R\right)$. (Note that each $r_{i} \rho$ and each $s_{i} \rho(i=1, \ldots, k)$ is an element of this set.) Let

$$
X_{0}=t_{1} \rho \cup \ldots \cup t_{p} \rho, \quad Y=r_{1} \rho \cup \ldots \cup r_{k} \rho, \text { and } Z=s_{1} \rho \cup \ldots \cup s_{k} \rho .
$$

Note that X_{0} is finite, $Y \cup Z \subseteq X_{0}, f(Y \cap \nabla a) \subseteq Z$, and $g(Z \cap \nabla b) \subseteq Y$. (Indeed, if, say, $g(Z \cap \nabla b) \nsubseteq Y$ then for at least one $i \in\{1, \ldots, k\}$ there would be no $j \in\{1, \ldots, k\}$ such that $g\left(s_{j} \rho \cap \nabla b\right) \subseteq r_{i} \rho$, which would contradict the observation made in the third paragraph of the proof.)

Consider the semigroup $T\left(X_{0}, \rho_{0}, R_{0}\right)$, where X_{0} is the set defined above, ρ_{0} is the equivalence relation on X_{0} with the partition $\left\{t_{1} \rho, \ldots, t_{p} \rho\right\}$, and $R_{0}=\left\{t_{1}, \ldots, t_{p}\right\}$. Define $a_{0}, b_{0} \in T\left(X_{0}\right)$ by:

$$
x a_{0}=\left\{\begin{array}{ll}
x a & \text { if } x a \in Y \\
r_{1} & \text { otherwise }
\end{array} \quad \text { and } \quad x b_{0}= \begin{cases}x b & \text { if } x b \in Z \\
s_{1} & \text { otherwise } .\end{cases}\right.
$$

Then $a_{0}, b_{0} \in T\left(X_{0}, \rho_{0}, R_{0}\right), \nabla a_{0}=Y \cap \nabla a$, and $\nabla b_{0}=Z \cap \nabla b$. Moreover, there are sets (possibly empty) $R^{\prime} \subseteq\left\{r_{1}, \ldots, r_{k}\right\}$ and $S^{\prime} \subseteq\left\{s_{1}, \ldots, s_{k}\right\}$ such that

$$
\begin{aligned}
\mathbf{\nabla} a_{0} & =\{A \in \mathbf{v} a:|A| \geq 2\} \cup\left\{\{r\}: r \in R^{\prime}\right\} \text { and } \\
\mathbf{\nabla} b_{0} & =\{B \in \mathbf{v} b:|B| \geq 2\} \cup\left\{\{s\}: s \in S^{\prime}\right\} .
\end{aligned}
$$

Define $f_{0}: \nabla a_{0} \rightarrow \nabla b_{0}$ and $g_{0}: \nabla b_{0} \rightarrow \nabla a_{0}$ by: $f_{0}=f \mid(Y \cap \nabla a)$ and $g_{0}=g \mid(Z \cap \nabla b)$. Then $f_{0}\left(R_{0} \cap \nabla a_{0}\right) \subseteq R_{0}, \nabla b_{0} \hookrightarrow f_{0}\left(\mathbf{\nabla} a_{0}\right) \hookrightarrow X_{0} / \rho_{0}, g_{0}\left(R_{0} \cap \nabla b_{0}\right) \subseteq R_{0}$, and $\boldsymbol{\nabla} a_{0} \hookrightarrow$ $g_{0}\left(\boldsymbol{\nabla} b_{0}\right) \hookrightarrow X_{0} / \rho_{0}$. Thus $a_{0} \mathcal{J} b_{0}$ in $T\left(X_{0}, \rho_{0}, R_{0}\right)$ by Theorem 2.8. Hence $a_{0} \mathcal{D} b_{0}$ in $T\left(X_{0}, \rho_{0}, R_{0}\right)$ (since $T\left(X_{0}, \rho_{0}, R_{0}\right)$ is finite and $\mathcal{D}=\mathcal{J}$ in any finite semigroup).

Thus, by Theorem 2.6, there is a bijection $h_{0}: \nabla a_{0} \rightarrow \nabla b_{0}$ such that $h_{0}\left(R_{0} \cap \nabla a_{0}\right) \subseteq$ R_{0} and $h_{0}\left(\mathbf{\nabla} a_{0}\right) \leftrightarrow \mathbf{\nabla} b_{0}$. It follows that $|Y \cap \nabla a|=|Z \cap \nabla b|$ (since $Y \cap \nabla a=\nabla a_{0}$ and $\left.Z \cap \nabla b=\nabla b_{0}\right)$. Thus, since $|\nabla a|=|\nabla b|$ and $Y \cap \nabla a$ is finite, we have $|\nabla a-Y|=|\nabla b-Z|$. Hence there is a bijection $h_{1}: \nabla a-Y \rightarrow \nabla b-Z$. Define $h: \nabla a \rightarrow \nabla b$ by:

$$
h(x)= \begin{cases}h_{0}(x) & \text { if } x \in Y \cap \nabla a \\ h_{1}(x) & \text { if } x \in \nabla a-Y .\end{cases}
$$

Since $h_{0}: Y \cap \nabla a \rightarrow Z \cap \nabla b$ and $h_{1}: \nabla a-Y \rightarrow \nabla b-Z$ are bijections, we have that h is a bijection. Note that

$$
\begin{aligned}
& \mathbf{\nabla} a=\{A \in \mathbf{\nabla} a: A \subseteq Y\} \cup\{\{r\}: r \in \nabla a-Y\} \text { and } \\
& \mathbf{\nabla} b=\{B \in \mathbf{\nabla} b: B \subseteq Z\} \cup\{\{s\}: s \in \nabla b-Z\} .
\end{aligned}
$$

Let $r \in R \cap \nabla a$. If $r \in Y \cap \nabla a$ then $h(r)=h_{0}(r) \in R_{0} \subseteq R$. If $r \in \nabla a-Y$ then $h(r)=h_{1}(r) \in R$ (since $h_{1}: \nabla a-Y \rightarrow \nabla b-Z$ and $\nabla b-Z \subseteq R$). Thus $h(R \cap \nabla a) \subseteq R$.

Now, $h_{0}\left(\mathbf{\nabla} a_{0}\right) \leftrightarrow \mathbf{\nabla} b_{0}$ implies $h(\{A \in \mathbf{\nabla} a: A \subseteq Y\}) \leftrightarrow\{B \in \mathbf{\nabla} b: B \subseteq Z\}$. Indeed, let $B \in \mathbf{\nabla} b$ and $B \subseteq Z$. Then $B \subseteq s_{i} \rho$ for some $i \in\{1, \ldots, k\}$. Since $\left|s_{i} \rho \cap \nabla b\right| \geq 2$, there is $B_{0} \in \mathbf{\nabla} b$ such that $\left|B_{0}\right| \geq 2$ and $B \subseteq B_{0} \subseteq s_{i} \rho$. Then $B_{0} \in \mathbf{\nabla} b_{0}$, and so $B_{0} \subseteq h_{0}(A)$ for some $A \in \mathbf{\nabla} a_{0}$. Note that $|A| \geq 2$, and so $A \in \mathbf{\nabla} a, A \subseteq Y$, and $h_{0}(A)=h(A)$. Thus $B \subseteq B_{0} \subseteq h_{0}(A)=h(A)$, and so $\{B \in \mathbf{\nabla} b: B \subseteq Z\} \hookrightarrow h(\{A \in \mathbf{\nabla} a: A \subseteq Y\})$. By a similar argument, we have $h(\{A \in \mathbf{\nabla} a: A \subseteq Y\}) \hookrightarrow\{B \in \mathbf{\nabla} b: B \subseteq Z\}$.

Finally, since $h_{1}(\{\{r\}: r \in \nabla a-Y\})=\{\{s\}: s \in \nabla b-Z\}$, it follows that $h(\mathbf{\nabla} a) \leftrightarrow \mathbf{\nabla} b$. Hence $a \mathcal{D} b$ by Theorem 2.6.

With the previous two lemmas, we are ready to describe the equivalence relations ρ on X for which $\mathcal{D}=\mathcal{J}$ in $T(X, \rho, R)$.

Theorem 2.11 In the semigroup $T(X, \rho, R), \mathcal{D}=\mathcal{J}$ if and only if ρ satisfies one of the following conditions:
(1) Exactly one ρ-class is infinite and all other ρ-classes (if any) have size 1; or
(2) All ρ-classes are finite and only finitely many of them have size at least 2 .

Proof: If (1) or (2) holds then $\mathcal{J} \subseteq \mathcal{D}$ by Lemma 2.9 and Lemma 2.10, and so $\mathcal{D}=\mathcal{J}$ (since $\mathcal{D} \subseteq \mathcal{J}$ in any semigroup). Conversely, suppose that neither (1) nor (2) holds. Then there are two possible cases to consider.
Case 1. There is an infinite ρ-class and another ρ-class of size at least 2 .

Let $r \rho$ be infinite and $s \rho$ be of size at least 2 , where $r, s \in R$ and $r \neq s$. Select $x_{0} \in r \rho$ such that $x_{0} \neq r$, and $y_{0} \in s \rho$ such that $y_{0} \neq s$. Consider the mappings

$$
a=\left(\begin{array}{cc}
x & y \\
x & r
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{cccc}
z & x_{0} & y_{0} & w \\
z & r & x_{0} & r
\end{array}\right)
$$

where x is an arbitrary element of $r \rho, y$ is an arbitrary element of $X-r \rho, z$ is an arbitrary element of $r \rho-\left\{x_{0}\right\}$, and w is an arbitrary element of $X-\left(r \rho \cup\left\{y_{0}\right\}\right)$. Then $a, b \in T(X, \rho, R)$ with $\nabla a=\nabla b=r \rho$,

$$
\boldsymbol{\nabla} a=\{r \rho,\{r\}\} \quad \text { and } \quad \boldsymbol{\nabla} b=\left\{r \rho-\left\{x_{0}\right\},\left\{r, x_{0}\right\}\right\} \text { or }\left\{r \rho-\left\{x_{0}\right\},\left\{r, x_{0}\right\},\{r\}\right\} .
$$

Define $f: r \rho \rightarrow r \rho$ by $f(x)=x$. Since $r \rho$ is infinite, there is $g: r \rho \rightarrow r \rho$ such that $g(r)=r$ and $g\left(r \rho-\left\{x_{0}\right\}\right)=r \rho$. Then f and g satisfy the conditions from the statement of Theorem 2.8, and so $a \mathcal{J} b$.

Let $h: r \rho \rightarrow r \rho$ be a bijection. Then $h(r \rho)=r \rho$. Note that $r \rho$ is not included in $r \rho-\left\{x_{0}\right\}$ or $\left\{r, x_{0}\right\}$ or $\{r\}$. Since $r \rho \in \nabla a$, it follows that it is not true that $h(\nabla a) \hookrightarrow \nabla b$. Thus a and b are not \mathcal{D}-related by Theorem 2.6 , and so $\mathcal{D} \neq \mathcal{J}$.
Case 2. There are infinitely many ρ-classes of size at least 2 .
Let $r_{1} \rho=\left\{r_{1}, x_{1}, \ldots\right\}, r_{2} \rho=\left\{r_{2}, x_{2}, \ldots\right\}, \ldots$ be an infinite sequence of ρ-classes of size at least $2\left(r_{i} \in R, x_{i} \neq r_{i}, i=1,2, \ldots\right)$. We may assume that there is a ρ-class not in the sequence. Consider the mappings

$$
a=\left(\begin{array}{cccc}
r_{i} & x_{i} & y_{i} & y \\
r_{i} & x_{i} & r_{i} & r_{1}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{ccccc}
r_{i} & x_{1} & x_{j} & y_{i} & y \\
r_{i} & r_{1} & x_{j} & r_{i} & r_{1}
\end{array}\right)
$$

where $i \geq 1, j \geq 2, y_{i}$ is an arbitrary element of $r_{i} \rho-\left\{r_{i}, x_{i}\right\}$, and y is an arbitrary element of $X-\left(r_{1} \rho \cup r_{2} \rho \cup \ldots\right)$. Then $a, b \in T(X, \rho, R)$ with

$$
\begin{gathered}
\nabla a=\left\{r_{1}, x_{1}, r_{2}, x_{2}, r_{3}, x_{3}, \ldots\right\}, \quad \nabla b=\left\{r_{1}, r_{2}, x_{2}, r_{3}, x_{3}, \ldots\right\}, \\
\nabla a=\left\{\left\{r_{1}\right\},\left\{r_{1}, x_{1}\right\},\left\{r_{2}, x_{2}\right\},\left\{r_{3}, x_{3}\right\}, \ldots\right\} \quad \text { and } \quad \boldsymbol{\nabla} b=\left\{\left\{r_{1}\right\},\left\{r_{2}, x_{2}\right\},\left\{r_{3}, x_{3}\right\}, \ldots\right\} .
\end{gathered}
$$

Define $f: \nabla a \rightarrow \nabla b$ and $g: \nabla b \rightarrow \nabla a$ by:

$$
f=\left(\begin{array}{cccc}
r_{1} & x_{1} & r_{j} & x_{j} \\
r_{1} & r_{1} & r_{j} & x_{j}
\end{array}\right) \quad \text { and } \quad g=\left(\begin{array}{ccc}
r_{1} & r_{j} & x_{j} \\
r_{1} & r_{j-1} & x_{j-1}
\end{array}\right)
$$

where $j \geq 2$. Then $f(\mathbf{\nabla} a), g(\mathbf{\nabla} b) \hookrightarrow X / \rho, f(\nabla a)=\nabla b$, and $g(\mathbf{\nabla} b)=\boldsymbol{\nabla} a$. Thus $a \mathcal{J} b$ by Theorem 2.8.

Let $h: \nabla a \rightarrow \nabla b$ be such that $h(\boldsymbol{\nabla} a) \hookrightarrow \boldsymbol{\nabla} b$. Then, since $\left\{r_{1}\right\} \in \boldsymbol{\nabla} b$, there is $A \in \boldsymbol{\nabla} a$ such that $h(A) \subseteq\left\{r_{1}\right\}$. If $A=\left\{r_{i}, x_{i}\right\}$ for some i then h is not one-to-one. Suppose $A=\left\{r_{1}\right\}$. Then $h\left(r_{1}\right)=r_{1}$. Since $\left\{r_{1}, x_{1}\right\} \in \nabla a$, we have $h\left(\left\{r_{1}, x_{1}\right\}\right) \subseteq B$ for some $B \in \boldsymbol{\nabla} b$. Since $h\left(r_{1}\right)=r_{1}$ and $\left\{r_{1}\right\}$ is the only element of $\boldsymbol{\nabla} b$ containing r_{1}, B must be $\left\{r_{1}\right\}$. Then $h\left(x_{1}\right)=r_{1}$, and so again h is not one-to-one. It follows from Theorem 2.6 that a and b are not \mathcal{D}-related, and so $\mathcal{D} \neq \mathcal{J}$.

Recall that the \mathcal{J}-classes of any semigroup S are partially ordered by the relation \leq defined by: $J_{a} \leq J_{b}$ if $S^{1} a S^{1} \subseteq S^{1} b S^{1}$. The poset $(S / \mathcal{J}, \leq)$ of \mathcal{J}-classes of S is isomorphic to the poset $\left\{S^{1} a S^{1}: a \in S\right\}, \subseteq$) of principal ideals of S.

In the semigroup $T(X)$ of full transformations on X, the poset of \mathcal{J}-classes is a chain [9, Proposition 4.1]. We find that this never happens in the semigroup $T(X, \rho, R)$ except in the two extreme cases when ρ is the identity relation on X or the universal relation on X.

Theorem 2.12 The partially ordered set of \mathcal{J}-classes of $T(X, \rho, R)$ is a chain if and only if $\rho=\{(x, x): x \in X\}$ or $\rho=X \times X$.

Proof: Suppose $\rho=\{(x, x): x \in X\}$. Then $T(X, \rho, R)=T(X)$ and it is well known that the \mathcal{J}-classes of $T(X)$ form a chain [9, Proposition 4.1].

Suppose $\rho=X \times X$. Then R is a one-element set, say $R=\{r\}$, and $r \rho=X$. Let $a, b \in T(X, \rho, R)$. Note that $r \in \nabla a \cap \nabla b$. Suppose $|\nabla a| \leq|\nabla b|$. Then there is a function $g: \nabla b \rightarrow \nabla a$ such that $g(r)=r$ and $g(\nabla b)=\nabla a$. We have $g(R \cap \nabla b)=g(\{r\})=\{r\}$ and $\boldsymbol{\nabla} a \hookrightarrow g(\nabla b) \hookrightarrow X / \rho$ (since $\boldsymbol{\nabla} a=\{\nabla a\}, g(\nabla b)=g(\{\nabla b\})=\{\nabla a\}$, and $X / \rho=\{X\})$. Thus $J_{a} \leq J_{b}$ by Theorem 2.7. Similarly, if $|\nabla b| \leq|\nabla a|$ then $J_{b} \leq J_{a}$. It follows that the \mathcal{J}-classes of $T(X, \rho, R)$ form a chain.

Conversely, suppose that $\rho \neq\{(x, x): x \in X\}$ and $\rho \neq X \times X$. Then there are two distinct ρ-classes of which at least one has size at least 2 , say $r \rho=\{r, x, \ldots\}$ and $s \rho=\{s, \ldots\}(r, s \in R)$. Consider the mappings

$$
a=\left(\begin{array}{cc}
x & y \\
x & r
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{cc}
z & w \\
r & s
\end{array}\right)
$$

where y is an arbitrary element of $X-\{x\}, z$ is an arbitrary element of $r \rho$, and w is an arbitrary element of $X-r \rho$. Then $a, b \in T(X, \rho, R)$ with

$$
\nabla a=\{r, x\}, \quad \nabla b=\{r, s\}, \quad \nabla a=\{\{r, x\},\{r\}\}, \quad \text { and } \quad \nabla b=\{\{r\},\{s\}\} .
$$

Thus there is no $f: \nabla a \rightarrow \nabla b$ such that $\nabla b \hookrightarrow f(\nabla a) \hookrightarrow X / \rho$ (since otherwise we would have $f(\{r, x\})=\{r\}$ and $f(\{r\})=\{s\}$ or $f(\{r, x\})=\{s\}$ and $f(\{r\})=\{r\}$, which is impossible). Similarly, there is no $g: \nabla b \rightarrow \nabla a$ such that $\boldsymbol{\nabla} a \hookrightarrow g(\nabla b)$ (since $\{r, x\} \in \mathbf{\nabla} a$ has size 2 and, since $\boldsymbol{\nabla} b=\{\{r\},\{s\}\}$, every element of $g(\nabla b)$ would have size 1$)$.

It follows from Theorem 2.7 that $J_{a} \not \leq J_{b}$ and $J_{b} \not \leq J_{a}$. Hence the partially ordered set of \mathcal{J}-classes of $T(X, \rho, R)$ is not a chain.

We recall that if $\rho=X \times X$ and $|X| \geq 2$ then the semigroup $T(X, \rho, R)$ is isomorphic to the semigroup $P T\left(X^{\prime}\right)$ of partial transformations on X^{\prime}, where X^{\prime} is the set X with one element removed. Thus, the poset of \mathcal{J}-classes of $T(X, \rho, R)$ is a chain if and only if $T(X, \rho, R)=T(X)$ or $T(X, \rho, R)$ is isomorphic to $P T\left(X^{\prime}\right)$.

3 Regular $T(X, \rho, R)$

An element a of a semigroup S is called regular if $a=a x a$ for some x in S. If all elements of S are regular, we say that S is a regular semigroup. If a \mathcal{D}-class D in S contains a regular element then all elements in D are regular [5, Proposition 2.3.1], and we call D a regular \mathcal{D}-class. In a regular \mathcal{D}-class, every \mathcal{L}-class and every \mathcal{R}-class contains an idempotent [5, Proposition 2.3.2]. It follows that an element of S is regular if and only if it is \mathcal{L}-related (\mathcal{R}-related) to an idempotent in S.

Let A be a nonempty subset of X. An equivalence relation ρ on X induces a partition A / ρ of A :

$$
A / \rho=\{x \rho \cap A: x \in X \text { and } x \rho \cap A \neq \emptyset\}
$$

The semigroup $T(X)$ is regular [5, Exercise 15, p. 63]. This is not true in general about $T(X, \rho, R)$. The next theorem characterizes the regular elements of $T(X, \rho, R)$.

Theorem 3.1 Let $a \in T(X, \rho, R)$. Then a is regular if and only if $\nabla a / \rho \subseteq \nabla a$.
Proof: Suppose a is regular, that is, $a=a b a$ for some $b \in T(X, \rho, R)$. Let $r \rho \cap \nabla a \in$ $\nabla a / \rho(r \in R)$. Since $b \in T(X, \rho, R)$, there is $p \in R$ such that $(r \rho) b \subseteq p \rho$ and $r b=p$. Since $r \rho \cap \nabla a \neq \emptyset, r=t a$ for some $t \in R$, and so $r=t a=((t a) b) a=(r b) a=p a$. It follows that $(p \rho) a \subseteq r \rho \cap \nabla a$. For the reverse inclusion, if $x a \in r \rho \cap \nabla a$ then $(x a) b \in p \rho$ and so $x a=((x a) b) a \in(p \rho) a$. It follows that $r \rho \cap \nabla a=(p \rho) a \in \nabla a$, and so $\nabla a / \rho \subseteq \nabla a$.

Conversely, suppose $\nabla a / \rho \subseteq \nabla a$. We shall construct $b \in T(X, \rho, R)$ such that $a=$ $a b a$. Consider $r \rho(r \in R)$. If $r \rho \cap \nabla a=\emptyset$, define $x b=x$ for every $x \in r \rho$. Suppose $r \rho \cap \nabla a \neq \emptyset$. Then $r \rho \cap \nabla a \in \nabla a / \rho \subseteq \nabla a$ and so there is $p \in R$ such that $r \rho \cap \nabla a=(p \rho) a$. Let $x \in r \rho$. If $x \in \nabla a$ then $x=w a$ for some $w \in p \rho$ (if $x=r$, we may assume $w=p$), and we define $x b=w$. If $x \notin \nabla a$, we define $x b=p$.

By the construction of $b, b \in T(X, \rho, R)$ and $a=a b a$. Thus a is regular.

Using the fact that $a \in T(X, \rho, R)$ is regular if and only if $a \mathcal{R} e$ for some idempotent $e \in T(X, \rho, R)$, we can obtain another characterization of the regular elements of $T(X, \rho, R)$.

For $a \in T(X, \rho, R)$, let $\rho_{a}=\rho \vee \operatorname{Ker}(a)$, that is, ρ_{a} is the smallest equivalence relation on X that contains both ρ and $\operatorname{Ker}(a)$. Note that every ρ_{a}-class $x \rho_{a}$ is a union of ρ-classes and a union of $\operatorname{Ker}(a)$-classes.

Lemma 3.2 For every $x \in X,\left(x \rho_{a}\right) a \subseteq r \rho$ for some $r \in R$.
Proof: Let $x \in X$. Then $x a \in r \rho$ for some $r \in R$. We claim that $\left(x \rho_{a}\right) a \subseteq r \rho$. Let $y \in x \rho_{a}$. Since $\rho_{a}=\rho \vee \operatorname{Ker}(a)$, there are $z_{1}, z_{2}, \ldots, z_{2 n-1} \in X(n \geq 1)$ such that

$$
\left(x, z_{1}\right) \in \rho,\left(z_{1}, z_{2}\right) \in \operatorname{Ker}(a),\left(z_{2}, z_{3}\right) \in \rho, \ldots,\left(z_{2 n-1}, y\right) \in \operatorname{Ker}(a)
$$

Since $a \in T(X, \rho, R),\left(x a, z_{1} a\right) \in \rho$ and so $z_{1} a \in r \rho$. Thus, since $z_{1} a=z_{2} a, z_{2} a \in r \rho$. It follows by induction on n that $y a \in r \rho$, and so $\left(x \rho_{a}\right) a \subseteq r \rho$.

We say that an element $a \in T(X, \rho, R)$ is normal if for every ρ_{a}-class $x \rho_{a}$ there is a ρ-class $r \rho$ that intersects all $\operatorname{Ker}(a)$-classes included in $x \rho_{a}$. (Note that such a ρ-class $r \rho$ must be included in $x \rho_{a}$.)

Lemma 3.3 Let $a \in T(X, \rho, R)$ with $X / \rho_{a}=\left\{E_{i}: i \in I\right\}$. Then a is normal if and only if for every $i \in I$ there is $x_{i} \in E_{i}$ such that for every $y \in E_{i},\left(x_{i}, y\right) \in \rho \circ \operatorname{Ker}(a)$.

Proof: Suppose a is normal and let $i \in I$. Then there is $x_{i} \in E_{i}$ such that $\left(x_{i} \rho\right) \cap K \neq \emptyset$ for every $\operatorname{Ker}(a)$-class K included in E_{i}. Let $y \in E_{i}$. Then $y \in K$ for some $\operatorname{Ker}(a)$-class K. Let $z \in\left(x_{i} \rho\right) \cap K$. Then $\left(x_{i}, z\right) \in \rho$ and $(z, y) \in \operatorname{Ker}(a)$. Thus $\left(x_{i}, y\right) \in \rho \circ \operatorname{Ker}(a)$.

Conversely, suppose that the given condition holds and let $i \in I$. Then there is $x_{i} \in E_{i}$ such that $\left(x_{i}, y\right) \in \rho \circ \operatorname{Ker}(a)$ for every $y \in E_{i}$. Let K be a $\operatorname{Ker}(a)$-class included in E_{i} and let $y \in K$. Then, since $\left(x_{i}, y\right) \in \rho \circ \operatorname{Ker}(a)$, there is $z \in x_{i} \rho$ such that $(z, y) \in \operatorname{Ker}(a)$. Thus $z \in\left(x_{i} \rho\right) \cap K$. It follows that $x_{i} \rho$ intersects all $\operatorname{Ker}(a)$-classes included in E_{i}, and so a is normal.

Lemma 3.4 Let $e \in T(X, \rho, R)$ be an idempotent. Then e is normal.
Proof: Consider $x \rho_{e}(x \in X)$. By Lemma 3.2, $\left(x \rho_{e}\right) e \subseteq r \rho$ for some $r \in R$. We claim that $r \rho$ intersects all $\operatorname{Ker}(e)$-classes included in $x \rho_{e}$. Let K be a $\operatorname{Ker}(e)$-class included in $x \rho_{e}$. Then $K e=\{y\}$ for some $y \in r \rho$. Since e is an idempotent and $y \in \nabla e, y=y e$. Thus $y \in K$ and so $r \rho \cap K \neq \emptyset$. It follows that e is normal.

Corollary 3.5 Let $a, e \in T(X, \rho, R)$ such that e is an idempotent and $\operatorname{Ker}(a)=\operatorname{Ker}(e)$. Then a is normal.

Proof: Since $\operatorname{Ker}(a)=\operatorname{Ker}(e), \rho_{a}=\rho_{e}$. Thus the result follows from Lemma 3.4 and the definition of normal elements.

Theorem 3.6 Let $a \in T(X, \rho, R)$ with $X / \rho_{a}=\left\{E_{i}: i \in I\right\}$. Then the following are equivalent:
(1) a is regular.
(2) a is normal.
(3) $(\forall i \in I)\left(\exists x_{i} \in E_{i}\right)\left(\forall y \in E_{i}\right)\left(x_{i}, y\right) \in \rho \circ \operatorname{Ker}(a)$.

Proof: (2) is equivalent to (3) by Lemma 3.3. Suppose a is regular. Then $a \mathcal{R} e$ for some idempotent $e \in T(X, \rho, R)$. By Theorem 2.3, $\operatorname{Ker}(a)=\operatorname{Ker}(e)$. Thus a is normal by Corollary 3.5 . Hence (1) implies (2).

It remains to show that (2) implies (1). Suppose a is normal. Then for every $i \in I$ there is $x_{i} \in E_{i}$ such that $\left(x_{i} \rho\right) \cap K \neq \emptyset$ for every $\operatorname{Ker}(a)$-class K included in E_{i}. We shall construct an idempotent $e \in T(X, \rho, R)$ such that $\operatorname{Ker}(e)=\operatorname{Ker}(a)$. Let K be a $\operatorname{Ker}(a)$-class. Then there is a unique $i \in I$ such that $K \subseteq E_{i}$. Select $y_{i} \in x_{i} \rho \cap K$ in such a way that $y_{i}=r_{x_{i}}$ if $r_{x_{i}} \in x_{i} \rho \cap K$. Define $e \in T(X)$ by $K e=\left\{y_{i}\right\}$.

It is clear that $\operatorname{Ker}(e)=\operatorname{Ker}(a)$ and that e preserves ρ (since it maps all ρ-classes included in E_{i} to $x_{i} \rho$). By Lemma 3.2, all elements of R contained in E_{i} are in the same $\operatorname{Ker}(a)$-class. Thus e maps all such elements to $r_{x_{i}}$ and so it preserves R. Hence $e \in T(X, \rho, R)$. By Theorem 2.3, $a \mathcal{R} e$ and so a is regular.

Let ρ be an equivalence relation on X. We say that ρ is a T-relation if there is at most one ρ-class containing two or more elements. If there is $n \geq 1$ such that each ρ-class has at most n elements, we say that ρ is n-bounded.

The following theorem characterizes the equivalence relations ρ on X for which the semigroup $T(X, \rho, R)$ is regular.

Theorem 3.7 The semigroup $T(X, \rho, R)$ is regular if and only if ρ is 2-bounded or a T-relation.

Proof: Suppose ρ is neither 2-bounded nor a T-relation. Then there are $r, s \in R$ such that $r \neq s$ and

$$
r \rho=\left\{r, x_{1}, x_{2}, \ldots\right\} \quad \text { and } \quad s \rho=\left\{s, y_{1}, \ldots\right\} .
$$

Consider the mapping

$$
a=\left(\begin{array}{llllll}
r & x_{1} & x_{2} & s & y_{1} & z \\
r & x_{1} & x_{1} & r & x_{2} & r
\end{array}\right),
$$

where z denotes an arbitrary element in $X-\left\{r, x_{1}, x_{2}, s, y_{1}\right\}$. Then $a \in T(X, \rho, R)$ with $\nabla a / \rho=\left\{\left\{r, x_{1}, x_{2}\right\}\right\}$ and either $\mathbf{\nabla} a=\left\{\left\{r, x_{1}\right\},\left\{r, x_{2}\right\}\right\}$ or $\mathbf{\nabla} a=\left\{\left\{r, x_{1}\right\},\left\{r, x_{2}\right\},\{r\}\right\}$. In either case, $\nabla a / \rho$ is not included in ∇a, which implies that a is not regular (by Theorem 3.1).

Conversely, suppose that ρ is 2 -bounded or a T-relation and let $a \in T(X, \rho, R)$. We shall prove that $\nabla a / \rho \subseteq \mathbf{\nabla} a$. Let $r \rho \cap \nabla a \in \nabla a / \rho$. Then there is $p \in R$ such that $r=p a$ and $(p \rho) a \subseteq r \rho$.

Suppose $r \rho$ has at least 3 elements. Then ρ is not 2-bounded and so it must be a T-relation. Thus every ρ-class except $r \rho$ has 1 element. Hence $r \rho \cap \nabla a=(r \rho) a$ (if $(r \rho) a \subseteq r \rho$) or $r \rho \cap \nabla a=\{r\}=(p \rho) a$ (if $(r \rho) a$ is not included in $r \rho$). Suppose $r \rho=\{r, x\}$ has 2 elements. If $x \in \nabla a$ then $x \in(s \rho) a$ for some $s \in R$, and so $r \rho \cap \nabla a=$ $\{r, x\}=(s \rho) a$. If $x \notin \nabla a$ then $r \rho \cap \nabla a=\{r\}=(p \rho) a$. Finally, if $r \rho$ has 1 element then $r \rho \cap \nabla a=\{r\}=(p \rho) a$.

It follows that $r \rho \cap \nabla a \in \mathbf{\nabla} a$, and so a is regular by Theorem 3.1.
There is an asymmetry between the relations \mathcal{R} and \mathcal{L} in $T(X, \rho, R)$: while the \mathcal{R} relation is simply the restriction of the \mathcal{R}-relation in $T(X)$ to $T(X, \rho, R) \times T(X, \rho, R)$, the corresponding result is not true in general for the \mathcal{L}-relation. The following theorem determines the semigroups $T(X, \rho, R)$ in which the \mathcal{L}-relation is the restriction of the \mathcal{L}-relation in $T(X)$.

Theorem 3.8 The \mathcal{L}-relation in $T(X, \rho, R)$ is the restriction of the \mathcal{L}-relation in $T(X)$ to $T(X, \rho, R) \times T(X, \rho, R)$ if and only if $T(X, \rho, R)$ is regular.

Proof: Suppose $T(X, \rho, R)$ is not regular. Then, by Theorem 3.7, there are $r, s \in R$ such that $r \neq s$ and

$$
r \rho=\left\{r, x_{1}, x_{2}, \ldots\right\} \quad \text { and } \quad s \rho=\left\{s, y_{1}, \ldots\right\} .
$$

Consider the mappings

$$
a=\left(\begin{array}{cccccc}
r & x_{1} & x_{2} & s & y_{1} & z \\
r & x_{1} & x_{1} & r & x_{2} & r
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{cccccc}
r & x_{1} & x_{2} & s & y_{1} & z \\
r & x_{1} & x_{2} & r & r & r
\end{array}\right) \text {, }
$$

where z is an arbitrary element in $X-\left\{r, x_{1}, x_{2}, s, y_{1}\right\}$. Then $a, b \in T(X, \rho, R)$ with $\nabla a=\nabla b=\left\{r, x_{1}, x_{2}\right\}$. Thus, by Lemma 2.1, $a \mathcal{L} b$ in $T(X)$. However, $\left\{r, x_{1}, x_{2}\right\} \in \mathbf{V} b$ and $\left\{r, x_{1}, x_{2}\right\}$ is not included in any $A \in \mathbf{\nabla} a$ (since $\mathbf{\nabla} a=\left\{\left\{r, x_{1}\right\},\left\{r, x_{2}\right\}\right\}$ or $\mathbf{\nabla} a=$ $\left.\left\{\left\{r, x_{1}\right\},\left\{r, x_{2}\right\},\{r\}\right\}\right)$. Thus, by Theorem 2.5, a and b are not \mathcal{L}-related in $T(X, \rho, R)$.

The converse follows from a general result saying that if T is a regular subsemigroup of a semigroup S then the relations \mathcal{L} and \mathcal{R} in T are the restrictions of the relations \mathcal{L} and \mathcal{R}, respectively, in S to $T \times T$ [5, Proposition 2.4.2].

4 Abundant $T(X, \rho, R)$

Let S be a semigroup. We say that $a, b \in S$ are \mathcal{L}^{*}-related if they are \mathcal{L}-related in a semigroup T such that S is a subsemigroup of T. We have the dual definition of the \mathcal{R}^{*}-relation on $S[3]$. The relations \mathcal{L}^{*} and \mathcal{R}^{*} are equivalence relations. They have been studied by J. Fountain [2], [3] and others. A semigroup S is called abundant if every \mathcal{L}^{*}-class and every \mathcal{R}^{*}-class of S contains an idempotent [3]. As stated in [3], where the concept was introduced, the word "abundant" comes from the fact that such semigroups have a plentiful supply of idempotents.

It is clear from the definition of \mathcal{L}^{*} and \mathcal{R}^{*} that $\mathcal{L} \subseteq \mathcal{L}^{*}$ and $\mathcal{R} \subseteq \mathcal{R}^{*}$ in any semigroup S. Since in a regular semigroup, every \mathcal{L}-class and every \mathcal{R}-class contains an idempotent, we have that regular semigroups are abundant. Of course, the converse is not true. For example, A. Umar [12] proved that the semigroup of non-bijective, order-decreasing transformations on the set $X=\{1, \ldots, n\}$ is abundant but not regular.

We first note that every \mathcal{L}^{*}-class of $T(X, \rho, R)$ contains an idempotent.
Proposition 4.1 Let $a \in T(X, \rho, R)$. Then there is an idempotent $e \in T(X, \rho, R)$ such that $\nabla a=\nabla e$.

Proof: Select $r_{0} \in \nabla a \cap R$ and define $e \in T(X)$ as follows:

$$
x e= \begin{cases}x & \text { if } x \in \nabla a \\ r_{x} & \text { if } x \notin \nabla a \text { but } x \rho \cap \nabla a \neq \emptyset \\ r_{0} & \text { if } x \rho \cap \nabla a=\emptyset\end{cases}
$$

By the definition of e and the fact that $a \in T(X, \rho, R)$, we have that $e \in T(X, \rho, R), e$ is an idempotent, and $\nabla e=\nabla a$.

The statement preceding Proposition 4.1 follows since, by Lemma 2.1, the elements a and e are \mathcal{L}-related in $T(X)$. The corresponding statement for \mathcal{R}^{*}-classes of $T(X, \rho, R)$ is not true, and so not every semigroup $T(X, \rho, R)$ is abundant. Similar results have been obtained by A. Umar [13] for the semigroup of order-decreasing transformations on an infinite totally ordered set X. In contrast with Umar [13], who showed that in the class he studied the abundant semigroups are not regular, we find that abundant semigroups $T(X, \rho, R)$ are precisely those that are regular.

Theorem 4.2 A semigroup $T(X, \rho, R)$ is abundant if and only if it is regular.
Proof: If $T(X, \rho, R)$ is regular then it is abundant (since every regular semigroup is abundant). Conversely, suppose that $T(X, \rho, R)$ is abundant, and let $a \in T(X, \rho, R)$. Then there is an idempotent $e \in T(X, \rho, R)$ such that $a \mathcal{R}^{*} e$. By [3, the dual of Corollary 1.2], ea $=a$ and for all $c, d \in T(X, \rho, R), c a=d a$ implies $c e=d e$. We claim that $\operatorname{Ker}(a)=\operatorname{Ker}(e)$.

The inclusion $\operatorname{Ker}(e) \subseteq \operatorname{Ker}(a)$ follows immediately from $e a=a$. Suppose $(x, y) \in$ $\operatorname{Ker}(a)$, that is, $x a=y a$. Since $\left(x, r_{x}\right) \in \rho,\left(y, r_{y}\right) \in \rho$, and $a \in T(X, \rho, R)$, we have $\left(x a, r_{x} a\right) \in \rho$ and $\left(y a, r_{y} a\right) \in \rho$. Thus, since $x a=y a$, we have $\left(r_{x} a, r_{y} a\right) \in \rho$, which implies $r_{x} a=r_{y} a$ (since $r_{x} a, r_{y} a \in R$ and R is a cross-section of X / ρ).

Define $c, d \in T(X)$ by : $(X-R) c=\{x\}, R c=\left\{r_{x}\right\},(X-R) d=\{y\}$, and $R d=\left\{r_{y}\right\}$. It is clear that $c, d \in T(X, \rho, R)$, and that there is $z_{0} \in X$ such that $z_{0} c=x$ and $z_{0} d=y$. Let $z \in X$. If $z \in X-R$ then $z(c a)=x a=y a=z(d a)$. If $z \in R$ then $z(c a)=r_{x} a=$ $r_{y} a=z(d a)$. Hence $c a=d a$, which implies $c e=d e$. In particular, $z_{0}(c e)=z_{0}(d e)$, which implies $x e=y e\left(\right.$ since $z_{0} c=x$ and $\left.z_{0} d=y\right)$. Hence $\operatorname{Ker}(a) \subseteq \operatorname{Ker}(e)$, and so $\operatorname{Ker}(a)=\operatorname{Ker}(e)$.

Thus a is normal (by Corollary 3.5), and so a is regular (by Theorem 3.6). It follows that $T(X, \rho, R)$ is a regular semigroup.

5 Inverse $T(X, \rho, R)$ and Completely Regular $T(X, \rho, R)$

An element a^{\prime} in a semigroup S is called an inverse of $a \in S$ if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. If every element of S has exactly one inverse then S is called an inverse semigroup. An alternative definition is that S is an inverse semigroup if it is regular and its idempotents commute [5, Theorem 5.1.1]. If every element of S is in some subgroup of S then S is called a completely regular semigroup. Of course, both inverse semigroups and completely regular semigroups are regular semigroups.

Theorem 5.1 Suppose $|X| \geq 3$. Then $T(X, \rho, R)$ is not an inverse semigroup.
Proof: We shall construct idempotents $e, f \in T(X, \rho, R)$ such that ef $\neq f e$.
Suppose there are at least two ρ-classes, that is, there are $r \rho$ and $s \rho(r, s \in R)$ such that $r \neq s$. Define $e, f \in T(X)$ by:

$$
e=\left(\begin{array}{cc}
y & z \\
r & z
\end{array}\right) \quad \text { and } \quad f=\left(\begin{array}{cc}
y & z \\
s & z
\end{array}\right)
$$

where y is an arbitrary element in $r \rho \cup s \rho$ and z is an arbitrary element in $X-(r \rho \cup s \rho)$. Note that $r(e f)=s$ and $r(f e)=r$.

Suppose there is only one ρ-class, say $r \rho$. Since $|X| \geq 3, r \rho=\left\{r, x_{1}, x_{2}, \ldots\right\}$. Define $e, f \in T(X)$ by:

$$
e=\left(\begin{array}{cc}
x_{1} & y \\
x_{2} & y
\end{array}\right) \quad \text { and } \quad f=\left(\begin{array}{cc}
x_{2} & z \\
x_{1} & z
\end{array}\right)
$$

where y is an arbitrary element in $X-\left\{x_{1}\right\}$ and z is an arbitrary element in $X-\left\{x_{2}\right\}$. Note that $x_{1}(e f)=x_{1}$ and $x_{1}(f e)=x_{2}$.

In both cases we have: $e, f \in T(X, \rho, R), e, f$ are idempotents, and $e f \neq f e$. It follows that $T(X, \rho, R)$ is not an inverse semigroup (since idempotents in an inverse semigroup commute).

When $|X|=2, T(X, \rho, R)$ is an inverse semigroup if $X / \rho=\{\{r, x\}\}$ and $T(X, \rho, R)$ is not inverse if $X / \rho=\{\{r\},\{s\}\}$.

Theorem 5.2 Suppose $|X| \geq 4$. Then $T(X, \rho, R)$ is not a completely regular semigroup.
Proof: We shall construct $a \in T(X, \rho, R)$ such that $\nabla a \neq \nabla a^{2}$.
Suppose there is a ρ-class with at least three elements, say $r \rho=\left\{r, x_{1}, x_{2}, \ldots\right\}$ $(r \in R)$. Define $a \in T(X)$ by:

$$
a=\left(\begin{array}{ll}
x_{1} & z \\
x_{2} & r
\end{array}\right)
$$

where z is an arbitrary element in $X-\left\{x_{1}\right\}$. Note that $\nabla a=\left\{r, x_{2}\right\}$ and $\nabla a^{2}=\{r\}$.
Suppose there are at least three ρ-classes, that is, there are $r \rho, s \rho$, and $t \rho$ with $r, s, t \in R$ pairwise distinct. Define $a \in T(X)$ by:

$$
a=\left(\begin{array}{ll}
y & z \\
s & t
\end{array}\right)
$$

where y is an arbitrary element in $r \rho$ and z is an arbitrary element in $X-r \rho$. Note that $\nabla a=\{s, t\}$ and $\nabla a^{2}=\{t\}$.

Since $|X| \geq 4$, the only remaining case to consider is when there are exactly two ρ-classes with two elements each, say $r \rho=\{r, x\}$ and $s \rho=\{s, y\}(r, s \in R)$. Define $a \in T(X)$ by:

$$
a=\left(\begin{array}{ll}
x & z \\
y & s
\end{array}\right)
$$

where z is an arbitrary element in $X-\{x\}$. Note that $\nabla a=\{s, y\}$ and $\nabla a^{2}=\{s\}$.
In all cases we have: $a \in T(X, \rho, R)$ and $\nabla a \neq \nabla a^{2}$. By Lemma 2.1, $\nabla a \neq \nabla a^{2}$ implies that a and a^{2} are not \mathcal{H}-related in $T(X)$ (not even \mathcal{L}-related in $T(X)$), and so they are not \mathcal{H}-related in $T(X, \rho, R)$. It follows that $T(X, \rho, R)$ is not completely regular (since for every element a in a completely regular semigroup, a and a^{2} are \mathcal{H}-related [5, Proposition 4.1.1]).

When $|X|=3, T(X, \rho, R)$ is completely regular if $X / \rho=\{\{r, x\},\{s\}\}$, and $T(X, \rho, R)$ is not completely regular if $X / \rho=\{\{r\},\{s\},\{t\}\}$ or $\left\{\left\{r, x_{1}, x_{2}\right\}\right\}$. When $|X|=2$, $T(X, \rho, R)$ is completely regular.

References

[1] J. Araújo and J. Konieczny, Automorphism groups of centralizers of idempotents, submitted.
[2] J. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. (2) 22 (1979), 113125.
[3] J. Fountain, Abundant semigroups, Proc. London Math. Soc. (3) 44 (1982), 103129.
[4] P.M. Higgins, Digraphs and the semigroup of all functions on a finite set, Glasgow Math. J. 30 (1988), 41-57.
[5] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[6] J. Konieczny, Green's relations and regularity in centralizers of permutations, Glasgow Math. J. 41 (1999), 45-57.
[7] J. Konieczny, Semigroups of transformations commuting with idempotents, Algebra Colloq. 9 (2002), 121-134.
[8] J. Konieczny and S. Lipscomb, Centralizers in the semigroup of partial transformations, Math. Japon. 48 (1998), 367-376.
[9] G. Lallement, Semigroups and Combinatorial Applications, John Wiley \& Sons, New York, 1979.
[10] V.A. Liskovec and V.Z. Fĕ̆nberg, On the permutability of mappings, Dokl. Akad. Nauk BSSR 7 (1963), 366-369 (Russian).
[11] V.A. Liskovec and V.Z. Fel̆nberg, The order of the centralizer of a transformation, Dokl. Akad. Nauk BSSR 12 (1968), 596-598 (Russian).
[12] A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 129-142.
[13] A. Umar, On certain infinite semigroups of order-decreasing transformations. I, Comm. Algebra 25 (1997), 2987-2999.
[14] M.W. Weaver, On the commutativity of a correspondence and a permutation, $P a$ cific J. Math. 10 (1960), 705-711.

