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Abstract

We introduce the class of dense relations on a set X and prove that for any finitary
or infinitary dense relation Ω on X, the relational system (X, Ω) is determined up to
semi-isomorphism by the monoid End (X, Ω) of endomorphisms of (X, Ω). In the case
of binary relations, a semi-isomorphism is an isomorphism or an anti-isomorphism.
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1 Introduction

For a mathematical structure M , let End(M) denote the endomorphism monoid of M .
A general problem, which attracted a considerable attention, can be stated as follows:
Let M1,M2 be two mathematical structures. Given that End(M1) ª= End(M2), what
can we say about the relation between the structures M1 and M2 themselves? For
example, Schein [8] proved that if M1 and M2 are two partially ordered sets, semilattices,
distributive lattices, or Boolean algebras, then End(M1) ª= End(M2) if and only if M1

and M2 are isomorphic or anti-isomorphic. For other results of this kind, see [2], [4],
and [5].

The aim of this note is to prove a similar result for the class of dense relations. These
relations include partial orders, binary relations that are reflexive and symmetric, and
generalized equivalence relations.

Let I be an arbitrary non-empty index set. An I-tuple of elements of a set X is a
mapping f : I ! X. If I is finite with |I| = n, we shall assume that I = {1, 2, . . . , n},
denote f : I ! X by (1f, 2f, . . . , nf), and refer to f as an n-tuple. An I-relation Ω on
X is any set of I-tuples of elements of X. If |I| = n, an I-relation Ω is an n-ary relation
on X, that is, a set of n-tuples of elements of X. By a relation on X, we shall mean an
I-relation on X for some index set I.

Let Ω be an I-relation on X. An endomorphism of a relational system (X, Ω) is a
mapping a : X ! X that preserves Ω, that is, fa 2 Ω for every f 2 Ω, where fa : I ! X

is the composition of f : I ! X and a : X ! X. (We compose from left to right, that
is, i(fa) = (if)a for i 2 I.) If Ω is an n-ary relation, we can use the n-tuple notation.
With that notation, we have that a : X ! X is an endomorphism of (X, Ω) if and only
if (x1a, . . . , x

n

a) 2 Ω for every (x1, . . . , xn

) 2 Ω. We denote by End (X, Ω) the monoid of
endomorphisms of (X, Ω).

Turning to the definition of a dense relation, we denote by Ω

§ the set of all mappings
f : I ! X such that æf /2 Ω for every æ 2 S(I), where S(I) is the symmetric group of I.
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That is,
Ω

§ = {f : I ! X : (8æ 2 S(I)) æf /2 Ω}.

A reflexive I-relation Ω on X is said to be dense if it satisfies the following two
properties:

(D1) For every injective f1 2 Ω [ Ω

§ and every f 2 Ω, there is a 2 End (X, Ω) such that
f1a = f .

(D2) There is an injective f1 in Ω.

Examples of dense relations (for details see [1]) are partial orders, binary relations that
are reflexive and symmetric, generalized equivalence relations (see [6]), relations defined
by families of sets intersecting in at most one element (see [7]).

Let Ω1, Ω2 be I-relations on X1,X2, respectively. We say that a bijection g : X1 ! X2

is a semi-isomorphism of (X1, Ω1) to (X2, Ω2) if there is a permutation æ 2 S(I) such
that for all f : I ! X1,

f 2 Ω1 , æfg 2 Ω2.

We say that relational systems (X1, Ω1) and (X2, Ω2) are semi-isomorphic if there is a
semi-isomorphism from (X1, Ω1) to (X2, Ω2).

Note that if I = {1, 2} then the only elements of S(I) are idI (the identity permuta-
tion of I) and the transposition (1 2). It follows that if Ω1 and Ω2 are binary relations then
any semi-isomorphism g : X1 ! X2 is either an isomorphism ((x, y) 2 Ω1 , (xg, yg) 2
Ω2) or an anti-isomorphism ((x, y) 2 Ω1 , (yg, xg) 2 Ω2).

In the next section, we prove that if Ω is a dense I-relation on X then End (X, Ω)
determines Ω up to a semi-isomorphism.

2 Main Theorem and Its Application to Binary Relations

The following lemma belongs to the folklore (see [2], for example) and we include a proof
just for the sake of completeness.

Lemma 2.1 Let Ω1, Ω2 be reflexive I-relations on X1,X2, respectively, and suppose that

¡ : End (X1, Ω1) ! End (X2, Ω2) is an isomorphism. Then there exists a bijection g :
X1 ! X2 such that a¡ = g

°1
ag for every a 2 End (X1, Ω1).

Proof: For a set X and x 2 X, we denote by X

x

the constant mapping from X to X

defined by: yX

x

= x for every y 2 X. Let S be a semigroup of mappings from X to X

with X

x

2 S for some x 2 X. It is easy to see that {X
x

} is a minimal left ideal of S. In
fact, all minimal left ideals of S are of the form {X

y

} where y 2 X. For suppose J is a
minimal left ideal of S and let a 2 J . Then X

x

a 2 J and X

x

a = X

xa

. Since {X
xa

} µ J

and J is a minimal left ideal, it follows that {X
xa

} = J . Denote by M(S) the set of
minimal left ideals of S. We proved that M(S) = {{X

x

} : X

x

2 S}.
Since End (X1, Ω1) and End (X2, Ω2) contain all constant mappings on X1 and X2,

respectively, we have M(End (X1, Ω1)) = {{(X1)x

} : x 2 X1} and M(End (X2, Ω2)) =
{{(X2)y

} : y 2 X2}. Since an isomorphism must map minimal left ideals to minimal left
ideals, it follows that {(X1)x

¡ : x 2 X1} = {(X2)y

: y 2 X2}, so that |X1| = |X2|. Define
g : X1 ! X2 by: xg = y if (X1)x

¡ = (X2)y

. Then g is a bijection and (X1)x

¡ = (X2)xg

for every x 2 X1.
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Let x 2 X1 and a 2 End (X1, Ω1). We claim that (xg)(a¡) = (xa)g. Indeed,
(xg)(X2)xg

(a¡) = (xg)((X1)x

¡)(a¡) = (xg)((X1)x

a)¡ = (xg)((X1)xa

¡) = (xg)(X2)(xa)g.
Therefore (xg)(a¡) = (xg)(X2)xg

(a¡) = (xg)(X2)(xa)g = (xa)g. It follows that g(a¡) =
ag and hence a¡ = g

°1
ag.

Note that if g is as in the statement of Lemma 2.1 then for all a 2 End (X1, Ω1) and
b 2 End (X2, Ω2), g

°1
ag 2 End (X2, Ω2) and gbg

°1 2 End (X1, Ω1).

Lemma 2.2 Let Ω1, Ω2 be dense I-relations on X1,X2, respectively, and let g : X1 ! X2

be a bijection such that g

°1
ag 2 End (X2, Ω2) for every a 2 End (X1, Ω1). Then for every

f 2 Ω1 there is a permutation æ 2 S(I) such that æfg 2 Ω2.

Proof: Fix an injective f2 2 Ω2 (which exists by (D2)) and let f1 = f2g
°1. Note that

f1 is injective and f2 = f1g. Let f be an arbitrary element of Ω1.
Suppose f1 2 Ω

§
1. Then, by (D1), there is a 2 End (X1, Ω1) such that f1a = f . Thus,

since g

°1
ag 2 End (X2, Ω2), we have

f2 2 Ω2 ) f2(g°1
ag) 2 Ω2 ) f1ag 2 Ω2 ) fg 2 Ω2 ) idIfg 2 Ω.

Suppose f1 62 Ω

§
1. Then æf1 2 Ω1 for some æ 2 S(I). By (D1), there is a 2

End (X1, Ω1) such that æf1a = f . Then f1a = æ

°1
f and we have

f2 2 Ω2 ) f2(g°1
ag) 2 Ω2 ) f1ag 2 Ω2 ) æ

°1
fg 2 Ω2.

The lemma follows.

Lemma 2.3 With the hypothesis of Lemma 2.2, let f1 2 Ω1 be injective and let æ 2 S(I).
If æf1g 2 Ω2 then æfg 2 Ω2 for every f 2 Ω1.

Proof: Suppose æf1g 2 Ω2 and let f 2 Ω1. By (D1), there is a 2 End (X1, Ω1) such that
f1a = f . Since g

°1
ag 2 End (X2, Ω2), we have

æf1g 2 Ω2 ) æf1g(g°1
ag) 2 Ω2 ) æf1ag 2 Ω2 ) æfg 2 Ω2,

which concludes the proof.

We can now prove the main theorem of this note.

Theorem 2.4 Let Ω1, Ω2 be dense I-relations on X1,X2, respectively. Then the en-

domorphism monoids End (X1, Ω1) and End (X2, Ω2) are isomorphic if and only if the

relational systems (X1, Ω1) and (X2, Ω2) are semi-isomorphic.

Proof: Suppose ¡ : End (X1, Ω1) ! End (X2, Ω2) is an isomorphism. By Lemma 2.1,
there is a bijection g : X1 ! X2 such that a¡ = g

°1
ag for every a 2 End (X1, Ω1). We

claim that g is a semi-isomorphism from (X1, Ω1) to (X2, Ω2). Since Ω1 and Ω2 are dense,
there are f1 2 Ω1 and f2 2 Ω2 such that f1 and f2 are injective. By Lemma 2.2, there
is æ 2 S(I) such that æf1g 2 Ω2. By Lemma 2.3, æfg 2 Ω2 for every f 2 Ω1. Now,
note that f

0
2 = æf1g is an injective element of Ω2 and æ

°1
f

0
2g

°1 = f1 2 Ω1. Thus, by
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Lemma 2.3, æ

°1
f

0
g

°1 2 Ω1 for every f

0 2 Ω2. It follows that for every f : I ! X1,
f 2 Ω1 , æfg 2 Ω2, and so g is a semi-isomorphism.

Conversely, suppose that g : X1 ! X2 is a semi-isomorphism, and let æ 2 S(I) be
such that for every f : I ! X1, f 2 Ω1 , æfg 2 Ω2. Then for all a 2 End (X1, Ω1) and
f

0 : I ! X2,

f

0 2 Ω2 ) æ

°1
f

0
g

°1 2 Ω1 ) æ

°1
f

0
g

°1
a 2 Ω1 ) ææ

°1
f

0
g

°1
ag 2 Ω2 ) f

0
g

°1
ag 2 Ω2.

It follows that ¡ : End (X1, Ω1) ! End (X2, Ω2) defined by: a¡ = g

°1
ag is an isomor-

phism.

Applying Theorem 2.4 to binary relations, we obtain the following corollary.

Corollary 2.5 Let Ω1, Ω2 be binary dense relations on X1,X2, respectively. Then the

endomorphism monoids End (X1, Ω1) and End (X2, Ω2) are isomorphic if and only if the

relational systems (X1, Ω1) and (X2, Ω2) are isomorphic or anti-isomorphic.

Problem Classify the n-ary dense relations, for n ∏ 2.
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J. Araújo J. Konieczny
Universidade Aberta and CAUL University of Mary Washington
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