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Automorphisms of partial endomorphism semigroups

By J. Araújo, V. H. Fernandes, M. M. Jesus, V. Maltcev and J. D. Mitchell

Abstract. In this paper we propose a general recipe for calculating the automor-
phism groups of semigroups consisting of partial endomorphisms of relational structures
over a finite set with a single m-ary relation for any m 2 N.

We use this recipe to determine the automorphism groups of the following semi-
groups: the full transformation semigroup, the partial transformation semigroup, and the
symmetric inverse semigroup, the wreath product of two full transformation semigroups,
the partial endomorphisms of any partially ordered set, the full spectrum of semigroups
of partial mappings preserving or reversing a linear or circular order.

1. Introduction and the Main Result

A number of works in the literature are dedicated to calculating the auto-
morphism groups of certain transformation semigroups. In an earlier paper [3],
a method for calculating automorphism groups of some such objects is given. In
this paper we prove a more general result and use it to find the automorphism
group of several well-known transformation semigroups. In order to state our
main result we must recall some definitions and introduce some notation.

We assume throughout the paper that ⌦ is a finite set. We denote the semi-
group of all partial mappings on ⌦ under composition of functions by P⌦, the
semigroup of total mappings on ⌦ by T⌦, the inverse semigroup of partial in-
jective mappings by I⌦, and the group of permutations on ⌦ by S⌦. If ⌦ =

{1, 2, . . . ,m}, then we abbreviate P⌦, T⌦, I⌦, and S⌦ to Pm, Tm, Im, and Sm, re-
spectively. If U is a subsemigroup of P⌦, then we let Aut(U) denote the group
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of automorphisms of U . For any a 2 S⌦ let �a : P⌦ �! P⌦ be the inner automor-
phism of P⌦ associated to a, that is, �a is the function defined by (f)�a = a�1fa

(f 2 P⌦). Now, for any subgroup H of S⌦ denote

InnH(U) = {�a | a 2 H and (U)�a = U}.

In particular, denote by Inn(U) the group of inner automorphisms InnS⌦(U) of U .
The image of f 2 P⌦ is denoted by im(f) and the domain of f by dom(f). A

mapping f 2 P⌦ is called a constant with value ↵ if �f = ↵ for all � 2 dom(f).
For the sake of convenience, we will assume that the empty mapping ; is also a
constant.

Let m 2 N. Then an m-ary relation ⇢ on ⌦ is just a subset of

⌦

m
= {(↵1,↵2, . . . ,↵m) | ↵1,↵2, . . . ,↵m 2 ⌦}.

If ⇢ is an m-ary relation, then define

⇢0 = {(↵1,↵2, . . . ,↵m) 2 ⇢ | ↵i 6= ↵j if i 6= j}.

Let ⇢ and � be m-ary relations on ⌦. We say that a subsemigroup U of P⌦ acts
transitively from ⇢0 to �0 if for all (↵1, . . . ,↵m) 2 ⇢0 and (�1, . . . ,�m) 2 �0 there
exists f 2 U with

(↵1f, . . . ,↵mf) = (�1, . . . ,�m).

If U is a group of permutations and ⇢0 = �0
= (⌦

m
)

0, then our defini-
tion of transitivity is just the usual definition of m-transitivity for permutation
groups. If (↵1, . . . ,↵m) 2 ⌦

m and f 2 U , then we denote (↵1f, . . . ,↵mf) by
(↵1, . . . ,↵m)

f . The monoid of partial endomorphisms of ⇢ is

PEnd(⇢) = {f 2 P⌦ | (↵1, . . . ,↵m) 2 ⇢ \ dom(f)m implies (↵1, . . . ,↵m)

f 2 ⇢}.

We consider also the following submonoids of PEnd(⇢)

End(⇢) = PEnd(⇢) \ T⌦ and IEnd(⇢) = PEnd(⇢) \ I⌦

consisting of the (total) endomorphisms of ⇢ and the partial injective endomorphisms
of ⇢, respectively.

If ⇢ is a binary relation on ⌦, then an anti-automorphism of ⇢ is an element
f 2 S⌦ such that (↵,�) 2 ⇢ implies (�,↵)f 2 ⇢. Since ⌦ is finite, the set of
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automorphisms and anti-automorphisms of ⇢ forms a group. The following def-
inition can be thought of as a generalization of this notion to relations of higher
arity. Let H be a subgroup of Sm. Then we define

AutH(⇢) = {f 2 S⌦ | (9 t 2 H) (8 (↵1, . . . ,↵m) 2 ⇢) (↵(1)t, . . . ,↵(m)t)
f 2 ⇢}.

In particular, if H is trivial, then we denote AutH(⇢) simply by Aut(⇢). Again
since ⌦ is finite, AutH(⇢) is a group. The group of automorphisms and anti-
automorphisms of a binary relation ⇢ is denoted by AutS2(⇢) using this notation.

We also require the following definition:

N(⇢, H) = {(↵1, . . . ,↵m) 2 (⌦

m
)

0 | (↵(1)t, . . . ,↵(m)t) 62 ⇢ for all t 2 H}.

We are now ready to state the main result of this paper, which is a general-
ization of [3, Theorem 2.1].

Theorem 1.1. Let ⇢ be an m-ary relation on a finite set ⌦ for some m 2 N,

let H be a subgroup of Sm, and let U be a subsemigroup of PEnd(⇢) such that:

(1) U contains a constant idempotent with value ↵ for all ↵ 2 ⌦;

(2) U acts transitively from N(⇢, H) [ ⇢0 to ⇢0.

Then Aut(U) = InnAutH(⇢0)(U). Moreover, if a, b 2 AutH(⇢0) are such that a 6= b

and �a,�b 2 Aut(U), then �a 6= �b.

We prove Theorem 1.1 in Section 2. In Section 3, we derive several corol-
laries of Theorem 1.1, and discuss whether it is possible to weaken its hypoth-
esis and still obtain its conclusion. In Sections 4 and 5, we use the main theo-
rem and its corollaries to determine the automorphism groups of the following
semigroups: the full transformation semigroup, the partial transformation semi-
group, the symmetric inverse semigroup, the wreath product of two full trans-
formation semigroups, the partial endomorphisms of any finite partially ordered
set, the semigroups of partial mappings preserving or reversing a linear order,
the semigroups of orientation-preserving or reversing partial mappings on a lin-
ear order, and related semigroups.

2. Proof of Theorem 1.1

We prove Theorem 1.1 in the following sequence of lemmas, some of them
belonging to the folklore of this topic and included here for the sake of complete-
ness.
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Lemma 2.1. Let V be a subsemigroup of constants in P⌦ such that for all ↵ 2
⌦ there exists a constant idempotent in V with value ↵. Then Aut(V ) = Inn(V ).

PROOF. The inclusion Inn(V )  Aut(V ) is obvious.
Let � 2 Aut(V ). If ; 2 V , then clearly ;� = ;. If f 2 V \ {;}, then denote

by ↵f the unique element of im(f). Let f, g 2 V \ {;}. It is obvious that if fg 6= ;
then ↵(fg) = ↵g , and fg 6= ; if and only if ↵f 2 dom(g). In particular, either
f2

= ; or f2
= f , and if h = h2 2 V \ {;} with ↵h = ↵f , then fh = f . Since

� 2 Aut(V ), fg 6= ; if and only if (f�)(g�) 6= ;, so that fg 6= ; if and only if
↵f� 2 dom(g�), and if g = g2 and fg 6= ;, then (f�)(g�) = f�.

By assumption, for all ↵ 2 ⌦ there exists h = h2 2 V such that ↵ = ↵h. We
will show that b : ⌦ �! ⌦ defined by (↵)b = ↵h� for all ↵ 2 ⌦ is a well-defined
bijection. If f 2 V \ {;} with ↵f = ↵, then fh = f 6= ; and so ↵f� = ↵h�, so we
have a well-defined mapping b : ⌦ �! ⌦. Suppose ↵b = ↵0b for some ↵,↵0 2 ⌦.
Then↵h� = ↵h0� where h, h0 2 V \{;} are idempotents with↵h = ↵ and↵h0

= ↵0.
Since (hh0

)� = (h�)(h0�) = h�, we have hh0
= h and so ↵ = ↵h = ↵h0

= ↵0.
Therefore b is an injection and, since ⌦ is finite, we have b 2 S⌦.

Let f 2 V \ {;}. Take any ↵ 2 ⌦ and choose h = h2 2 V \ {;} with
↵h = ↵. Suppose ↵ 2 dom(f). Then (↵)(fb) = (↵f )b = ↵f�. Since hf 6= ;,
we have ↵h� 2 dom(f�) and therefore (↵)[b(f�)] = (↵h�)(f�) = ↵f�. Thus
(↵)(fb) = (↵)[b(f�)]. If ↵ 62 dom(f), then hf = ; and so ↵h� 62 dom(f�) and
so ↵ 62 dom(b(f�)). It follows that b(f�) = fb and so f� = b�1fb. Therefore
� 2 Inn(V ), as required. ⇤

Lemma 2.2. Let U be a subsemigroup of P⌦ such that for all ↵ 2 ⌦ there

exists a constant idempotent in U with value ↵. Then Aut(U) = Inn(U).

PROOF. Let V denote the set of all constants in U and let V� = {f 2 V |
im(f) ✓ {�}} for every � 2 ⌦. Thus V = [�2⌦V� . Take any � 2 ⌦. By as-
sumption, V� \ {;} contains an idempotent, and it is easy to check that V� is a
0-minimal left ideal of U . It follows that V is a subsemigroup of U . If I is a 0-
minimal left ideal of U containing an idempotent f 2 V \ {;} with value � 2 ⌦,
then {;} 6= V� = V�f ✓ I which implies I = V� . Clearly, if  is an automor-
phism of a semigroup S with zero and J is a 0-minimal left ideal of S containing
a nonzero idempotent e, then J is also a 0-minimal left ideal of S containing a
nonzero idempotent e . It follows that V � = V for all � 2 Aut(U).

Let � 2 Aut(U). Then �|V 2 Aut(V ) and so, by Lemma 2.1, �|V 2 Inn(V ).
Thus there exists b 2 S⌦ such that (↵f )b = ↵f�|V and f�|V = b�1fb for all
f 2 V \ {;}. Take an arbitrary g 2 U . Clearly, ;� = b�1;b. Suppose g 6= ;. For
each � 2 ⌦, fix an idempotent f� 2 V� \ {;}, so that ↵f� = �. Then for � 2 ⌦ we
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have,

� 2 dom(g) () (f��)(g�) 6= ; () ↵f�� 2 dom(g�)

() (↵f� )b 2 dom(g�) () � 2 (dom(g�))b�1,

from which it follows that dom(g�) = (dom(g))b and hence

� 2 dom(b(g�)) () �b 2 dom(g)b () � 2 dom(g) = dom(gb).

Therefore dom(b(g�)) = dom(gb) and for each � 2 dom(b(g�)),

(�)(b(g�)) = ((↵f� )b)g� = (↵f��)g� = ↵(f��)(g�) = ↵(f�g)� = (↵f�g)b

= ((↵f� )g)b = (�)(gb),

so b(g�) = gb and so g� = b�1gb. Thus � = �b and since (U)�b = U� = U , we
have � 2 Inn(U). ⇤

PROOF OF THEOREM 1.1. The assumptions about the semigroup U from
the statement of the theorem will be used below without comment. By Lemma
2.2, Aut(U) = Inn(U). Our goal is to prove that Inn(U) = InnAutH(⇢0)(U). Since
it is obvious that InnAutH(⇢0)(U)  Inn(U), we only need to show that Inn(U) 
InnAutH(⇢0)(U). Take any �b 2 Inn(U). Thus b 2 S⌦ and (U)�b = (U)�b�1

= U .
We are going to prove that b 2 AutH(⇢0).

Suppose b 62 AutH(⇢0), that is, there exists (↵1, . . . ,↵m) 2 ⇢0 such that
(↵1t, . . . ,↵mt)

b 62 ⇢0 for all t 2 H . Let (�1, . . . ,�m) 2 ⇢0. Then there exists f 2 U

such that (�1, . . . ,�m)

f
= (↵1, . . . ,↵m). If (�1t0 , . . . ,�mt0)

b 2 ⇢0 for some t0 2 H ,
then

[(�1t0 , . . . ,�mt0)
b
]

b�1fb
= (�1t0 , . . . ,�mt0)

fb
= (↵1t0 , . . . ,↵mt0)

b 62 ⇢0,

so that (f)�b 62 U , a contradiction. It follows that (�1t, . . . ,�mt)
b 62 ⇢0 for all

t 2 H , and therefore (�1, . . . ,�m)

b 2 N(⇢, H). If (�1, . . . ,�m)

b�1 2 ⇢0, then
there exists g 2 U such that [(�1, . . . ,�m)

b�1

]

g
= (�1, . . . ,�m), which implies

(�1, . . . ,�m)

b�1gb
= (�1, . . . ,�m)

b 62 ⇢0 and so (g)�b 62 U ; a contradiction. We con-
clude that (�1, . . . ,�m)

b�1 62 ⇢0. Since (�1, . . . ,�m)

b 2 N(⇢, H), there exists h 2
U such that [(�1, . . . ,�m)

b
]

h
= (�1, . . . ,�m), and therefore (�1, . . . ,�m)

bhb�1

=

(�1, . . . ,�m)

b�1 62 ⇢0 and so (h)�b�1 62 U , again a contradiction.
Finally, let a, b 2 AutH(⇢0) such that a 6= b and �a,�b 2 Aut(U). It remains

to prove that �a 6= �b. But there exists ↵ 2 ⌦ such that (↵)a 6= (↵)b and so �a
and �b differ on any constant idempotent in U with value ↵. ⇤
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3. Corollaries and Examples

Note that if ⇢ in Theorem 1.1 satisfies ⇢0 = ; and U is a subsemigroup of
PEnd(⇢) satisfying (1) in Theorem 1.1, then Theorem 1.1 offers no new infor-
mation regarding Aut(U). That is, as there are no tuples of distinct elements in
⇢, U vacuously acts transitively from N(⇢, H) [ ⇢0 to ⇢0. Moreover, in this case
AutH(⇢0) = S⌦ and so Theorem 1.1 reasserts that Aut(U) = Inn(U). However,
this conclusion can be derived from the much weaker Lemma 2.2.

The following is a useful corollary of Theorem 1.1, which we will use later
in the paper.

Corollary 3.1. Let ⇢ be an m-ary relation on a finite set ⌦ for some m 2 N,

let H be a subgroup of Sm, and let U 2 {PEnd(⇢),End(⇢), IEnd(⇢)} such that the

following hold:

(1) U contains a constant idempotent with value ↵ for all ↵ 2 ⌦;

(2) U acts transitively from N(⇢, H) [ ⇢0 to ⇢0;

(3) AutH(⇢0) = AutH(⇢).

Then Aut(U) = {�a | a 2 AutH(⇢)} ⇠
=

AutH(⇢).

PROOF. We prove the corollary in the case that U = End(⇢), the remaining
cases can be proved analogously.

It follows from Theorem 1.1 and (3) that Aut(U) = InnAutH(⇢)(U). Let
a 2 AutH(⇢). We will prove that a�1Ua = U . Let f 2 End(⇢) be arbitrary
and let (↵1, . . . ,↵m) 2 ⇢. Since a 2 AutH(⇢), there exists t 2 H such that
(↵1t�1 , . . . ,↵mt�1

)

a�1 2 ⇢. Hence, since f 2 U , (↵1t�1 , . . . ,↵mt�1
)

a�1f 2 ⇢ and so
(↵1, . . . ,↵m)

a�1fa 2 ⇢. Therefore a�1fa 2 U and so a�1Ua = U , as required.
It follows that Aut(U) = {�a | a 2 AutH(⇢)}. Let F : AutH(⇢) �! Aut(U)

be defined by (a)F = �a. Then, since distinct elements in AutH(⇢) induce dis-
tinct automorphisms of U and Aut(U) is finite, F is a bijection. It is straightfor-
ward to verify that F is a homomorphism, and the corollary follows. ⇤

Corollary 3.2. Let ⇢ be a reflexive binary relation on a finite set ⌦ and let H

be a subgroup of S2. Then AutH(⇢0) = AutH(⇢).

PROOF. Since ⇢0 ✓ ⇢, it follows that AutH(⇢)  AutH(⇢0). To prove the
converse, let a 2 AutH(⇢0) and let (↵,�) 2 ⇢ be arbitrary. If ↵ 6= �, then either
(↵,�)a 2 ⇢0 ✓ ⇢ or (�,↵)a 2 ⇢0 ✓ ⇢, as required. If ↵ = �, then, since ⇢ is
reflexive, (↵,�)a = (�,↵)a 2 ⇢. Hence a 2 AutH(⇢) and so AutH(⇢0) = AutH(⇢).

⇤
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Let U , ⇢, and H be as in Theorem 1.1. Then the following example demon-
strates that there can exist elements a 2 AutH(⇢0) such that a�1Ua 6= U .

Example 3.3. Let ⌦ = {1, 2, 3, 4, 5}, let H = S5, and let

⇢ = {(1, 2, 3, 4, 5), (2, 1, 3, 4, 5)} [ {(↵1,↵2, . . . ,↵5) | {↵1,↵2, . . . ,↵5} = {3, 4}}
[ {(↵,↵,↵,↵,↵) | ↵ 2 {1, . . . , 5}}.

Then N(⇢, H) = ;, Aut(⇢0) = S{1,2} = Aut(⇢), S{1,2} ⇥ S{3,4,5} is a subgroup of
AutH(⇢0), and every element of AutH(⇢) stabilizes {3, 4} setwise. In particular,
AutH(⇢0) 6= AutH(⇢).

Let U = Aut(⇢) [ {f 2 T5 | im(f) = {3, 4} or | im(f)| = 1}. Then U is a
subsemigroup of PEnd(⇢) and, since Aut(⇢) is transitive from ⇢0 to ⇢0, U is also
transitive from ⇢0 to ⇢0. Let

f =

 
1 2 3 4 5

3 3 3 3 4

!
2 U.

Then (3, 4, 3, 4, 3)(4 5)f(4 5)
= (3, 5, 3, 5, 3) 62 ⇢. Hence (4 5)f(4 5) 62 U and so the

element (4 5) 2 AutH(⇢0) does not induce an inner automorphism of U .

The following example shows that it is not true that if a 2 AutH(⇢0) and
a�1Ua = U , then a 2 AutH(⇢).

Example 3.4. Let ⇢ be the relation from Example 3.3 and let V = Aut(⇢) [
{f 2 T5 | f is constant}. Then, as in Example 3.3, V is transitive on ⇢0. However,
(4 5) 2 AutH(⇢0) and (4 5)V (4 5) = V but (4 5) 62 AutH(⇢), as required.

4. Applications I - Transformation semigroups

In this section we apply Theorem 1.1 to determine the automorphism groups
of several well-known transformation semigroups, defined below. Some of the
results contained in this section are well-known and included here only to il-
lustrate how Theorem 1.1 can be used. Recall that T⌦, P⌦, and I⌦ denote the
monoids of all total mappings, all partial mappings, and all partial injective map-
pings of the finite set ⌦, respectively. As above, if ⌦ = {1, 2, . . . ,m}, then we may
write Tm, Pm, or Im instead of T⌦, P⌦, or I⌦, respectively.

Corollary 4.1. Let ⌦ be a finite set and let U be any one of the semigroups

P⌦, T⌦, and I⌦. Then Aut(U) = Inn(U) = {�a | a 2 S⌦} ⇠
=

S⌦.
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PROOF. Let ⇢ = ⌦⇥ ⌦. Then

PEnd(⇢) = P⌦,End(⇢) = T⌦, and IEnd(⇢) = I⌦.

In any case, U contains a constant idempotent with value ↵ for all ↵ 2 ⌦ and
so part (1) of the hypothesis of Corollary 3.1 is satisfied. If H is an arbitrary
subgroup of S2, then N(⇢, H) = ;. Also ⇢0 = (⌦⇥⌦)\{(↵,↵) | ↵ 2 ⌦}. It is clear
that U is transitive from ⇢0 to ⇢0 and so part (2) of Corollary 3.1 is satisfied. Finally,
⇢ is a reflexive binary relation and so by Corollary 3.2, AutH(⇢0) = AutH(⇢).
Thus, by Corollary 3.1, Aut(U) = {�a | a 2 S⌦} ⇠

=

S⌦, as required. ⇤

Next, we consider a set ⌦ with mn elements and an equivalence relation ⇢ on
⌦ with m classes each of size n. We aim to describe the groups of automorphisms
of the monoids PEnd(⇢), End(⇢) and IEnd(⇢).

First, recall that if S and T are semigroups acting on sets � and ⌃, respec-
tively, then the wreath product of S and T , denoted S o T , is the set S ⇥ T�, where
T� denotes the set of all mappings from � to T , with multiplication

(s, f)(t, g) = (st, f ? sg),

where (↵)sg = (↵s)g and (↵)f ? sg = (↵)f · (↵)sg, for all ↵ 2 �. The semigroup
S o T acts on � ⇥ ⌃ as follows: (↵,�)(s,f) = (↵s, (�)(↵f)), for all (↵,�) 2 � ⇥ ⌃

and (s, f) 2 S ⇥ T�. For further details about wreath products see [15] or [17].

Now, observe that Aut(⇢) ⇠
=

Sm o Sn and End(⇢) ⇠
=

Tm o Tn (for a proof, see
[4, Lemma 2.1]). Furthermore, we have:

Corollary 4.2. Let ⇢ be an equivalence relation on a set ⌦ with m classes

each of size n and let U 2 {PEnd(⇢),End(⇢), IEnd(⇢)}. Then Aut(U) = {�a | a 2
Sm o Sn} ⇠

=

Sm o Sn.

PROOF. First, notice that U contains a constant idempotent with value ↵ for
all ↵ 2 ⌦.

Let H be the trivial subgroup of S2. Then, since ⇢ is symmetric, N(⇢, H)

contains all the pairs of distinct elements in ⌦

2 \ ⇢. Next, we prove that U is
transitive from the pairs of distinct entries in ⌦

2 to ⇢0. Let (↵,�) 2 ⌦

2 and let
(�, �) 2 ⇢ such that ↵ 6= � and � 6= �. Then

f =

 
↵ �

� �

!
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is an element of IEnd(⇢), and so of PEnd(⇢), such that (↵,�)f = (�, �). Let
g : ⌦ �! ⌦ be any total mapping with image {�, �} such that ↵g = � and
�g = �. Then g 2 End(⇢) and again (↵,�)g = (�, �).

Finally, by Corollaries 3.1 and 3.2, we deduce that that Aut(U) = {�a | a 2
Sm o Sn} ⇠

=

Sm o Sn. ⇤

In particular, by the above observation, we have that Aut(Tm oTn)
⇠
=

Sm oSn.

5. Applications II – Ordered sets

In this section, we consider the automorphism groups of semigroups of
order-preserving partial mappings of a partially ordered set, and some related
semigroups.

Theorem 5.1. Let ⌦ be a finite set, let ⇢ be a partial order on ⌦, and let U 2
{PEnd(⇢),End(⇢), IEnd(⇢)}. Then Aut(U) = {�a | a 2 AutS2(⇢)} ⇠

=

AutS2(⇢)

where the latter is the group of automorphisms and anti-automorphisms of ⇢.

PROOF. If ↵,� 2 ⌦ are such that (↵,�) 62 ⇢ and (�,↵) 62 ⇢, then we will
write ↵ k �. An anti-chain in ⇢ is any subset ⌃ of ⌦ where ↵ k � for all ↵,� 2 ⌃

with ↵ 6= �.
Since ⇢ is reflexive, PEnd(⇢), End(⇢), and IEnd(⇢) contain a constant idem-

potent with value ↵ for all ↵ 2 ⌦. If H = S2, then

N(⇢, H) = {(↵,�) 2 ⌦

2 | ↵ k �}.

We will prove that U is transitive from N(⇢, H) [ ⇢0 to ⇢0.
If (�,↵) 62 ⇢, � 6= ↵, and (�, �) 2 ⇢, then the mapping f from the proof of

Corollary 4.2 is an element of IEnd(⇢) and PEnd(⇢) such that (↵,�)f = (�, �).
It remains to prove that U is transitive from N(⇢, H) [ ⇢0 to ⇢0 when U =

End(⇢). Let ⌃ be a subset of ⌦. Then we define

⌃

^
= {� 2 ⌦ | (8↵ 2 ⌃) (↵,�) 2 ⇢0 or � k ↵}

and
⌃

_
= {� 2 ⌦ | (8↵ 2 ⌃) (�,↵) 2 ⇢0 or � k ↵}

If ⌃ is a maximal (with respect to containment) anti-chain in ⇢, then the sets ⌃^,
⌃, and ⌃

_ are disjoint and their union is the whole of ⌦.
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Let ↵,�, �, � 2 ⌦ be such that ↵ 6= �, (�,↵) 62 ⇢, and (�, �) 2 ⇢0. If (↵,�) 2 ⇢,
then since ⌦ is finite, there exists a maximal anti-chain ⌃ in ⇢ such that ↵ 2 ⌃. It
follows that � 2 ⌃

^. Let f : ⌦ �! ⌦ be defined by

✏f =

(
� ✏ 2 ⌃ [ ⌃

_

� ✏ 2 ⌃

^.

Then f 2 End(⇢) and (↵,�)f = (�, �).
If (↵,�) 62 ⇢, then as in the previous case, since ⌦ is finite, there exists a

maximal anti-chain ⌃ in ⇢ such that ↵,� 2 ⌃. Let f : ⌦ �! ⌦ be defined by

✏f =

(
� ✏ 2 (⌃ \ {�}) [ ⌃

_

� ✏ 2 ⌃

^ [ {�}.

Then f 2 End(⇢) and (↵,�)f = (�, �).
In any case, U is transitive from N(⇢, H) [ ⇢0 to ⇢0. Thus, by Corollaries 3.1

and 3.2, Aut(U) = {�a | a 2 AutS2(⇢)} ⇠
=

AutS2(⇢), as required. ⇤

If ⇢ is the usual total order of {1, . . . , n}, then End(⇢), PEnd(⇢), and IEnd(⇢)

are usually denoted On, POn, POIn (the semigroups of total, partial, and partial
injective order-preserving mappings of the chain ⇢, respectively). These monoids
have been extensively studied, for example see [1, 2, 8, 13, 14].

Recall that, for a given real number x, the expressions bxc and dxe denote
the greatest integer less than or equal to x and the least integer greater than or
equal to x, respectively. We also let C2 denote a cyclic group of order 2.

The following is an immediate corollary of Theorem 5.1.

Corollary 5.2. If U 2 {On,POn,POIn}, then

Aut(U) = h �(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= C2. ⇤

Let ODn, let PODn, and let PODIn be the monoids of all total, partial,
and partial injective order-preserving and order-reversing mappings of the usual
total order on {1, . . . , n}, respectively. Again these monoids appear in several
papers in the literature, for example see [9, 10, 11]. The automorphism groups
of these monoids are given in the theorem below. However, the theorem is not
a direct corollary of any of the preceding theorems, since these semigroups are
not defined as the partial endomorphisms of a relation.

We require the following well-known combinatorial fact in order to find the
automorphism groups of ODn, PODn, and PODIn.
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Lemma 5.3. If p, q 2 N, then in any sequence of distinct natural numbers

of length pq + 1, there exists a strictly increasing subsequence of length p or a

strictly decreasing subsequence of length q.

Theorem 5.4. Let n � 10 and let U 2 {ODn,PODn,PODIn}. Then

Aut(U) = h �(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= C2.

PROOF. We prove the theorem in the case of U = ODn; the the cases when
U = PODn, or PODIn follow by an analogous argument.

Let ⇢ be the ternary relation on {1, . . . , n} defined by

⇢ = {(↵1,↵2,↵3) | ↵1  ↵2  ↵3 or ↵1 � ↵2 � ↵3}.

Then U = ODn  End(⇢). It is straightforward to verify that U is transitive from
⇢0 [ N(⇢, S3) = ⇢0 to ⇢0, and U contains a constant idempotent with value ↵ for
all ↵ 2 {1, 2, . . . , n}. It follows from Theorem 1.1 that Aut(U) = InnAutS3 (⇢

0)(U).
We will show that AutS3(⇢

0
) = AutS3(⇢) = Aut(⇢) and

Aut(⇢) = h (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i.

Since AutS3(⇢) is always a subset of AutS3(⇢
0
), to prove that AutS3(⇢

0
) =

AutS3(⇢) it suffices to show that AutS3(⇢
0
)  AutS3(⇢). Let a 2 AutS3(⇢

0
) and

let (↵1,↵2,↵3) 2 ⇢. Then there exists (�1,�2,�3) 2 ⇢0 such that {↵1,↵2,↵3} ✓
{�1,�2,�3}. Since a 2 AutS3(⇢

0
), there exists t 2 S3 such that (�1t,�2t,�3t)a 2 ⇢.

Hence (↵1t,↵2t,↵3t)
a 2 ⇢ and so a 2 AutS3(⇢). We have shown that AutS3(⇢

0
) 

AutS3(⇢).
Clearly, Aut(⇢)  AutS3(⇢). To prove the converse inclusion, take an ar-

bitrary a 2 AutS3(⇢). Then there exists t 2 S3 such that (↵1t,↵2t,↵3t)
a 2 ⇢

for all (↵1,↵2,↵3) 2 ⇢. By Lemma 5.3, since 10 = 3 · 3 + 1, the sequence
1a, 2a, . . . , 10a must contain a subsequence �1a,�2a,�3a where �1 < �2 < �3 and
�1a < �2a < �3a or �1a > �2a > �3a. Therefore (�1,�2,�3) 2 ⇢, (�1,�2,�3)a 2 ⇢

and (�1t,�2t,�3t)
a 2 ⇢. This implies that t is the identity permutation or t = (1 3).

In either case, by the definition of ⇢, we have that a 2 Aut(⇢). Thus AutS3(⇢) =

Aut(⇢).
Let a 2 Aut(⇢). We will prove that 1a 2 {1, n}. Assume to the contrary that

1a 62 {1, n}. If na 6= 1, then (1, 1a�1, n) 2 ⇢ but (1, 1a�1, n)a = (1a, 1, na) /2 ⇢,
a contradiction. Therefore na = 1. Now, we have that (1, na�1, n) 2 ⇢ and
(1, na�1, n)a = (1a, n, na) = (1a, n, 1) /2 ⇢ since 1a 6= n, a contradiction. Hence
1a 2 {1, n}.
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If 1a = 1 and ↵,� 2 {2, . . . , n} are such that ↵ < �, then (1,↵,�) 2 ⇢ and
so (1,↵a,�a) 2 ⇢. Hence ↵a < �a and so a is the identity on {1, 2, . . . , n}. If
1a = n and ↵,� 2 {2, . . . , n} are such that ↵ < �, then (1,↵,�) 2 ⇢ and so
(n,↵a,�a) 2 ⇢. Thus ↵a > �a and so a = (1n)(2n � 1) · · · (bn/2c dn/2e + 1).
Therefore

Aut(⇢) = h (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i.
It is straightforward to verify that �a(U) = U for all a 2 Aut(⇢) and so

Aut(U) = {�a | a 2 AutS3(⇢
0
) and �a(U) = U} = {�a | a 2 Aut(⇢)}

= h �(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= C2,

as required. ⇤

A finite sequence (↵1,↵2, . . . ,↵m) of natural numbers is called cyclic if there
exists k � 1 such that ↵1gk  ↵2gk  · · ·  ↵mgk , where g = (1 2 · · · m). A
partial mapping with domain and range contained in {1, 2, . . . , n} is orientation-
preserving if the image of every cyclic sequence in dom(f) is a cyclic sequence.
A finite sequence (↵1,↵2, . . . ,↵m) of natural numbers is called anti-cyclic if there
exists k � 1 such that ↵1gk � ↵2gk � · · · � ↵mgk , where g = (1 2 · · · m). If f is
an orientation-preserving mapping, then it is straightforward to verify that the
image of every anti-cyclic sequence in dom(f) is anti-cyclic.

Let OPn, let POPn, and let POPIn be the monoids of all total, partial,
and partial injective orientation-preserving mappings, respectively, of the set
{1, 2, . . . , n}. Some references from the literature concerning these monoids are
[6, 7, 9, 10, 12, 16].

For n 2 N, denote the dihedral group of order 2n by D2n. It is well-known
that D2n is isomorphic to the subgroup of the symmetric group Sn generated by
the permutations: (1 2 · · · n) and(1n)(2n� 1) · · · (bn/2c dn/2e+ 1).

Theorem 5.5. Let U 2 {OPn,POPn,POPIn}. Then

Aut(U) = h �(1 2 ···n),�(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= D2n.

PROOF. We prove the theorem in the case that U = OPn; the other two
cases follow by analogous arguments. Since On  OPn, it follows that OPn

contains a constant idempotent with value ↵ for all ↵ 2 {1, 2, . . . , n}.
Let ⇢ denote the set of all cyclic sequences of length 3 over {1, 2, . . . , n} and

let H = h (1 3) i  S3. Then OPn  End(⇢) and N(⇢, H) = ;. We will prove that
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OPn acts transitively from ⇢0 to ⇢0. Let (i, j, k), (i0, j0, k0) 2 ⇢0 be arbitrary. Then
either i < j < k, j < k < i or k < i < j. If i < j < k, then define

f=

 
1 · · · i� 1 i i+ 1 · · · j � 1 j j + 1 · · · n

i0 · · · i0 i0 j0 · · · j0 j0 k0 · · · k0

!
.

If j < k < i, then define

f=

 
1 · · · j � 1 j j + 1 · · · k � 1 k k + 1 · · · n

j0 · · · j0 j0 k0 · · · k0 k0 i0 · · · i0

!
.

If k < i < j, then define

f=

 
1 · · · k � 1 k k + 1 · · · i� 1 i i+ 1 · · · n

k0 · · · k0 k0 i0 · · · i0 i0 j0 · · · j0

!
.

In any case, f 2 OPn and (i, j, k)f = (i0, j0, k0). It follows from Theorem 1.1 that
Aut(OPn) = InnAutH(⇢0)(OPn).

We will prove that AutH(⇢0) = AutH(⇢) and

AutH(⇢) = h (1 2 · · · n), (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i.

As before, we have that AutH(⇢)  AutH(⇢0). Let a 2 AutH(⇢0) and let
(↵1,↵2,↵3) 2 ⇢ be arbitrary. If (↵1,↵2,↵3) 2 ⇢ \ ⇢0, then (↵1t,↵2t,↵3t)

a lies in
⇢ \ ⇢0 for all t 2 S3, since every triple with at most two distinct elements is cyclic
and hence in ⇢. If (↵1,↵2,↵3) 2 ⇢0 then, since a 2 AutH(⇢0), there exists t 2 H

such that (↵1t,↵2t,↵3t)
a 2 ⇢. Hence a 2 AutH(⇢) and so AutH(⇢0) = AutH(⇢).

Let a 2 AutH(⇢). Then there exists t 2 H = {1, (1 3)} such that (↵1,↵2,↵3) 2
⇢ implies (↵1t,↵2t,↵3t)

a 2 ⇢. By multiplying a by an appropriate power of
(1 2 · · · n) we may assume that 1a = 1.

If t is the identity permutation and ↵,� 2 {1, 2, . . . , n} such that 1 < ↵ <

�  n, then (1,↵,�) 2 ⇢ and so (1,↵a,�a) 2 ⇢. Hence ↵a < �a and so a is the
identity of AutH(⇢).

If t = (1 3) and ↵,� 2 {1, 2, . . . , n} such that 1 < ↵ < �  n, then (1,↵,�) 2
⇢ and so (�a,↵a, 1) 2 ⇢. It follows that �a < ↵a and so

a = (1n)(2n� 1) · · · (bn/2c dn/2e+ 1).

It is easy to verify that �a(OPn) = OPn for all a 2 Aut(⇢) and so

Aut(OPn) = {�a | a 2 AutH(⇢0) and �a(OPn) = OPn} = {�a | a 2 AutH(⇢)}
= h �(1 2 ···n),�(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= D2n. ⇤
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A partial mapping with domain and range contained in {1, 2, . . . , n} is called
orientation-reversing if the image of every cyclic sequence in dom(f) is an anti-
cyclic sequence.

Let ORn, let PORn, and let PORIn be the monoids of all total, partial, and
partial injective orientation-preserving and orientation-reversing mappings, re-
spectively, of the set {1, 2, . . . , n}. For further details of the known results con-
cerning these monoids see [5, 9, 10, 12].

Theorem 5.6. Let n � 17 and U 2 {ORn,PORn,PORIn}. Then

Aut(U) = h �(1 2 ···n),�(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= D2n.

PROOF. As in the proofs of the previous theorems, we only prove the case
when U = ORn, since the proofs of the others cases are analogously.

Let ⇢ be the set of quadruples of elements from {1, 2, . . . , n} that are cyclic,
anti-cyclic, or contain at most two distinct elements. It is straightforward to see
that ORn  End(⇢), ORn contains a contains a constant idempotent with value
↵ for all ↵ 2 {1, 2, . . . , n}, and N(⇢, S4) = ;. It follows using a similar argument
as in the proof of Theorem 5.5 that ORn acts transitively from ⇢0 to ⇢0. It follows
by Theorem 1.1 that Aut(ORn) = InnAutS4 (⇢

0)(ORn).
We will show that AutS4(⇢

0
) = Aut(⇢) and

Aut(⇢) = h (1 2 · · · n), (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i.

Since Aut(⇢)  AutS4(⇢
0
) always holds, it suffices to show that AutS4(⇢

0
) 

Aut(⇢0) and Aut(⇢0)  Aut(⇢).
Let a 2 AutS4(⇢

0
). Then there exists t 2 S4 such that (↵1t,↵2t,↵3t,↵4t)

a 2
⇢0 for all (↵1,↵2,↵3,↵4) 2 ⇢0. By Lemma 5.3, since 17 = 4 · 4 + 1, the se-
quence (1a, . . . , 17a) must contain a subsequence (�1a, �2a, �3a, �4a) where ei-
ther �1a < �2a < �3a < �4a or �1a > �2a > �3a > �4a. In either case,
(�1,�2,�3,�4), (�1,�2,�3,�4)

a, (�1t,�2t,�3t,�4t)
a 2 ⇢0. In other words, t is the

identity or t = (1 4)(2 3). Therefore

(↵1t�1 ,↵2t�1 ,↵3t�1 ,↵4t�1
) 2 ⇢0

for all (↵1,↵2,↵3,↵4) 2 ⇢0 and so

(↵1,↵2,↵3,↵4)
a
= (↵1t�1t,↵2t�1t,↵3t�1t,↵4t�1t)

a 2 ⇢0.

Thus a 2 Aut(⇢0) and so AutS4(⇢
0
)  Aut(⇢0).
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We will now prove that Aut(⇢0)  Aut(⇢). Let a 2 Aut(⇢0) and let ↵ be any
quadruple in ⇢ \ ⇢0. If ↵ contains at most 2 distinct elements, then ↵a contains at
most 2 distinct elements and so ↵a 2 ⇢. If ↵ contains 3 distinct elements, then
there exists � 2 ⇢0 containing all the elements occurring in ↵. Hence �a 2 ⇢0 and
so �a is cyclic or anti-cyclic. It follows that ↵a is cyclic or anti-cyclic, or in other
words, that ↵a 2 ⇢. Hence a 2 Aut(⇢) and so Aut(⇢0)  Aut(⇢).

It is easy to verify that

h (1 2 · · · n), (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i  Aut(⇢).

Let a 2 Aut(⇢). Then by multiplying by a power of (1 2 · · ·n) we may as-
sume that 1a = 1. Seeking a contradiction assume that 2a 62 {2, n}. Since
(1, 2, na�1, n) 2 ⇢, if na 6= n, then (1, 2, na�1, n)a = (1, 2a, n, na) /2 ⇢. It fol-
lows that na = n and so (1, 2, 2a�1, n)a = (1, 2a, 2, n) /2 ⇢, but (1, 2, 2a�1, n) 2 ⇢

and so we have a contradiction.
It follows that 2a 2 {2, n}. Using a similar argument, we can deduce that

na 2 {2, n}. By multiplying by (2n)(3n � 1) · · · (b(n + 1)/2c d(n + 1)/2e + 1) 2
Aut(⇢), if necessary, we may suppose that 2a = n and na = 2. If 2 < ↵ < � < n,
then (2,↵,�, n) 2 ⇢ and so (2,↵,�, n)a = (n,↵a,�a, 2) 2 ⇢. It follows that ↵a >

�a which implies that

a = (2n)(3n� 1) · · · (b(n+ 1)/2c d(n+ 1)/2e+ 1)

2 h (1 2 · · · n), (1n)(2n� 1) · · · (bn/2c dn/2e+ 1) i,

as required.
It is easy to verify that �a(ORn) = ORn for all a 2 Aut(⇢) and so

Aut(ORn) = {�a | a 2 AutS4(⇢
0
) and �a(ORn) = ORn} = {�a | a 2 Aut(⇢)}

= h �(1 2 ···n),�(1n)(2n�1)···(bn/2c dn/2e+1) i ⇠= D2n. ⇤
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