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Abstract

For an arbitrary set X (finite or infinite), denote by T (X) the semigroup of full transforma-
tions on X . For ↵ 2 T (X), let C(↵) = {� 2 T (X) : ↵� = �↵} be the centralizer of ↵ in
T (X). The aim of this paper is to characterize the elements of C(↵). The characterization is
obtained by decomposing ↵ as a join of connected partial transformations on X and analyzing
the homomorphisms of the directed graphs representing the connected transformations. The
paper closes with a number of open problems and suggestions of future investigations.
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1 Introduction

For a semigroup S and an element a 2 S, the centralizer C(a) of a in S is defined by C(a) = {x 2
S : ax = xa}. It is clear that C(a) is a subsemigroup of S. Let X be a set. We denote by P (X)

the semigroup of partial transformations on X , that is, the set of all functions ↵ : A ! X , where
A ✓ X , with function composition as multiplication. The semigroup T (X) of full transformations
on X is the subsemigroup of P (X) consisting of all elements of P (X) whose domain is X . Both
P (X) and T (X) have the symmetric group Sym(X) of permutations of X as their group of units.

A significant amount of research has been devoted to studying centralizers in subsemigroups S
of P (X) in the case when X is finite. For example, for various S: the elements of centralizers have
been described in [14], [28], [31], [34], [35], and [39]; Green’s relations and regularity have been
determined in [23], [24], and [25]; and some representation theorems have been obtained in [29],
[30], and [37]. See also [1] for the semigroup generated by the idempotents of regular centralizers;
and [2] for some centralizers related to maps preserving digraphs.

For an infinite X , the centralizers of idempotent transformations in T (X) have been studied in
[4], [5], and [38]. The cardinalities of C(↵), for certain types of ↵ 2 T (X), have been established
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for a countable X in [20], [21], and [22]. The second author has investigated the centralizers of
transformations in the semigroup �(X) of injective elements of T (X) [26], [27].

These investigations have been motivated by the fact that if S is a subsemigroup of P (X) that
contains the identity id

X

, then for any ↵ 2 S, the centralizer C(↵) is a generalization of S in the
sense that S = C(id

X

). It is therefore of interest to find out which ideas, approaches, and techniques
used to study S can be extended to the centralizers of its elements, and how these centralizers differ
as semigroups from S.

Another reason to study centralizers is that semigroups are nothing but families of commuting
maps. We say that two families of maps in T (X), (x : X ! X)

x2X and (x : X ! X)

x2X , are
linked if for all x, y 2 X we have

(y)x = (x)y.

Linked families of maps induce naturally a groupoid (or magma) S = (X, ·) with multiplication
defined by

xy = (y)x = (x)y.

Now we have the following folklore result.

Theorem 1.1. For a non-empty set X , let (x : X ! X)

x2X and (x : X ! X)

x2X be two
linked families of maps. Then (X, ·), the natural groupoid induced by these families of maps, is a
semigroup if and only if

(8x, y 2 X) x 2 C(y).

Conversely, every semigroup S induces a pair of linked maps (s : S1 ! S

1

)

s2S and (s : S

1 !
S

1

)

s2S (the images of S under the left and right regular representations [16, page 7]) such that
every s commutes with every t (s, t 2 S).

Centralizers of transformations also attract some attention in various areas of mathematical re-
search, for example, in the study of endomorphisms of unary algebras [19], [36]; in the study of
commuting graphs [3], [10], [18]; and in the study of automorphism groups of semigroups [2], [6],
and [7].

The first step in studying the centralizers in any transformation semigroup is to characterize
their elements. A characterization theorem provides a foundation for all subsequent investigations.
Such theorems have been provided for some special transformations, for example, for idempotent
transformations " 2 T (X) [5], [24], and for injective transformations [26]. The purpose of this
paper is to provide a description of C(↵) for a general ↵ 2 T (X), where X is an arbitrary set (finite
or infinite). The paper will serve as a reference for future research on centralizers of transforma-
tions. The reason is that characterization theorems for transformations of special types can easily
be obtained as consequences of either our general theorem or various lemmas (see Section 3) that
lead to the theorem.

To obtain a characterization of the elements of C(↵) for ↵ 2 T (X), we first, in Section 2,
express any ↵ 2 P (X) as a join of connected elements of P (X), which we will call the connected
components of ↵. Then we assume that ↵ 2 T (X) and further decompose each connected compo-
nent of ↵ by expressing it as a join of certain basic injective elements of P (X), which we will call
cycles, rays, and chains. It turns out that, for ↵ 2 T (X), there are three types of connected compo-
nents, depending on the types of basic partial transformations that occur in their decomposition. In
Section 3, we represent a transformation ↵ 2 T (X) as a directed graph D(↵). For given connected
components � and � of ↵, we characterize digraph homomorphisms � from D(�) to D(�), where
D(�) and D(�) are the subgraphs of D(↵) that represent � and �, respectively. In Section 4, we
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use the results of Sections 2 and 3 to characterize the elements of C(↵) for an arbitrary ↵ 2 T (X).
Finally, in Section 6, we outline a research program aimed at generalizing, for the centralizers of
some particular transformations, many of the structure results proved for T (X).

2 Decomposition of Full Transformations

In this section, we introduce the notion of the connected partial transformation on X and prove that
every ↵ 2 P (X) can be decomposed uniquely as a join of connected � 2 P (X) (called connected
components of ↵). We then introduce the concept of the basic partial transformation and prove that
each connected component of ↵ 2 T (X) can be further decomposed (although not uniquely) as a
join of basic partial transformations. Depending on this decomposition, each connected component
of ↵ will be of one of three distinguished types.

Let � 2 P (X). We denote the domain of � by dom(�) and the image of � by im(�). The union
dom(�) [ im(�) will be called the span of � and denoted span(�).

We will write mappings on the right and compose from left to right; that is, for f : A ! B and
g : B ! C, we will write xf , rather than f(x), and x(fg), rather than g(f(x)).

Notation 2.1. From now on, we will fix a nonempty set X and an element ⇧ and assume that ⇧ /2 X .
For � 2 P (X) and x 2 X , we will write x� = ⇧ if and only if x /2 dom(�). We will also assume
that ⇧� = ⇧. With this notation, it will make sense to write x� = y� or x� 6= y� (�, � 2 P (X),
x, y 2 X) even when x /2 dom(�) or y /2 dom(�). We will denote by 0 the partial transformation
on X that has empty set as its domain.

Definition 2.2. An element � 2 P (X) is called connected if � 6= 0 and for all x, y 2 span(�),
x�

k

= y�

m 6= ⇧ for some integers k,m � 0 (where �

0

= id

X

).

Definition 2.3. Let �, � 2 P (X). We say that � and � are compatible if x� = x� for all x 2
dom(�) \ dom(�); they are disjoint if dom(�) \ dom(�) = ;; and they are completely disjoint if
span(�) \ span(�) = ;.

Definition 2.4. Let C be a set of pairwise compatible elements of P (X). The join of the elements
of C, denoted

F

�2C �, is an element of P (X) defined by

x(

G

�2C
�) =

⇢

x� if x 2 dom(�) for some � 2 C,
⇧ otherwise.

If C = {�
1

, �

2

, . . . , �

k

} is finite, we may write
F

�2C � as �
1

t �

2

t · · · t �

k

.

Let � 2 P (X). We will write x

�! y to mean that x 2 dom(�) and x� = y. For � 2 P (X),
we say that � is contained in � (or � contains or has �), and write � @ �, if dom(�) ✓ dom(�) and
x� = x� for every x 2 dom(�).

For a mapping f : A ! B and A

1

✓ A, we denote by f |
A1 the restriction of f to A

1

, and by
A

1

f the image of A
1

under f .

Proposition 2.5. Let ↵ 2 P (X) with ↵ 6= 0. Then there exists a unique set C of pairwise completely
disjoint, connected elements of P (X) such that ↵ =

F

�2C �.
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Proof. Define a relation ⇢ on dom(↵) by: (x, y) 2 ⇢ if x↵

k

= y↵

m 6= ⇧ for some integers
k,m � 0. It is clear that ⇢ is an equivalence relation on dom(↵). Let J be a complete set of
representatives of the equivalence classes of ⇢. For every x 2 J , let �

x

= ↵|
x⇢

, where x⇢ is the
⇢-equivalence class of x. By the definition of ⇢, each such �

x

is connected, and �

x

and �

y

are
completely disjoint for all x, y 2 J with x 6= y. Then the set C = {�

x

: x 2 J} consists of pairwise
completely disjoint, connected transformations contained in ↵, and ↵ =

F

�2C �.
Suppose D is any set of pairwise completely disjoint, connected transformations contained in

↵ such that ↵ =

F

�2D �. Let � 2 D and let y 2 dom(�). Then y 2 x⇢ for some x 2 J . We
want to prove that � = �

x

. Let z 2 dom(�). Since � is connected, y�k = z�

m 6= ⇧ for some
k,m � 0. But then, since � is contained in ↵, we have y↵

k

= z↵

m 6= ⇧. Hence (y, z) 2 ⇢, and so
z 2 y⇢ = x⇢ = dom(�

x

). We proved that dom(�) ✓ dom(�

x

).
Suppose to the contrary that dom(�

x

) is not included in dom(�), that is, that there is w 2
dom(�

x

) such that w /2 dom(�). Since �

x

is connected, w�p
x

= x�

q

x

6= ⇧ for some p, q � 0. Let
y

i

= y�

i

x

= y↵

i and w

j

= w�

j

x

= w↵

j for i = 0, 1, . . . , p and j = 0, 1, . . . , q. Then y

p

= w

q

and
let u = y

p

= w

q

. With this notation, we have

y = y

0

↵! y

1

↵! · · · ↵! y

p

= u and w = w

0

↵! w

1

↵! · · · ↵! w

q

= u.

Since w 2 dom(�

x

) ✓ dom(↵), there is �

1

2 D such that w 2 dom(�

1

). We claim that
{y

0

, y

1

, . . . , y

p�1

} ✓ dom(�). If not, then, since y

0

= y 2 dom(�), there would be some
i 2 {0, 1, . . . , p � 2} such that y

i

2 dom(�) and y

i+1

/2 dom(�). But y
i+1

2 dom(↵), and so
y

i+1

2 dom(�

2

) for some �

2

2 D. We would then have � 6= �

2

and y

i+1

2 span(�) \ span(�

2

),
which is impossible since � and �

2

are completely disjoint. The claim has been proved. By the same
argument applied to �

1

and {w
0

, w

1

, . . . , w

q�1

}, we obtain {w
0

, w

1

, . . . , w

q�1

} ✓ dom(�

1

). Thus

y

p�1

� = y

p�1

↵ = y

p

= u = w

q

= w

q�1

↵ = w

q�1

�

1

.

Thus we have � 6= �

1

with u 2 im(�) \ im(�

1

), which is a contradiction since � and �

1

are
completely disjoint. We proved that dom(�

x

) ✓ dom(�), and so dom(�) = dom(�

x

). Now for all
v 2 dom(�) = dom(�

x

), we have v� = v↵ = v�

x

, and so � = �

x

2 C. We proved that D ✓ C.
For the reverse inclusion, let �

x

be an arbitrary element of C. Select y 2 dom(�

x

). Then, there
is � 2 D such that y 2 dom(�). By the foregoing argument, we have � = �

x

, and so �

x

2 D.
Hence C ✓ D, and so D = C. We proved that the set C is unique, which completes the proof.

Let ↵ 2 T (X). The elements of the set C from Proposition 2.5 will be called the connected
components of ↵. This use of graph theory terminology is intentional since ↵ can be represented
by the directed graph D(↵) = (X,↵), where (x, y) is an arc in D(↵) if and only if x↵ = y. (See
Section 3 for details.) Then the connected components of ↵ correspond to the connected components
of the underlying undirected graph of D(↵).

Regarding directed graphs, we will adopt the convention that the arrows will be deleted with the
understanding that the arrow goes up along the edge, to the right if the edge is horizontal, and the
arrows go counter-clockwise along a cycle. For example, the digraph in Figure 2.1 represents the
transformation

↵ =

✓

1 2 3 4 5 6 7 8 9 . . .

2 3 1 1 1 5 8 9 10 . . .

◆

2 T (X),

where X = {1, 2, 3, . . .}.
The connected components of ↵ 2 T (X) further decompose into basic elements in P (X).
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•
1

•2

•
3

•5 •4

•6

•7 •8 •9 · · ·•

•

Figure 2.1: The digraph of a transformation.

Definition 2.6. Let . . . , x�2

, x�1

, x

0

, x

1

, x

2

, . . . be pairwise distinct elements of X . The following
elements of P (X) will be called basic partial transformations on X (see Figure 2.2).

• A cycle of length k (k � 1), written (x

0

x

1

. . . x

k�1

), is an element � 2 P (X) with
dom(�) = {x

0

, x

1

, . . . , x

k�1

}, x
i

� = x

i+1

for all 0  i < k � 1, and x

k�1

� = x

0

.

• A right ray, written [x

0

x

1

x

2

. . .i, is an element ⌘ 2 P (X) with dom(⌘) = {x
0

, x

1

, x

2

, . . .}
and x

i

⌘ = x

i+1

for all i � 0.

• A double ray, written h. . . x�2

x�1

x

0

x

1

x

2

. . .i, is an element ! 2 P (X) with dom(!) =

{. . . , x�2

, x�1

, x

0

, x

1

, x

2

, . . .} and x

i

! = x

i+1

for all i.

• A left ray, written h. . . x
2

x

1

x

0

], is an element � 2 P (X) with dom(�) = {x
1

, x

2

, x

3

, . . .}
and x

i

� = x

i�1

for all i > 0.

• A chain of length k (k � 1), written [x

0

x

1

. . . x

k

], is an element ⌧ 2 P (X) with dom(⌧) =

{x
0

, x

1

, . . . , x

k�1

} and x

i

⌧ = x

i+1

for all 0  i  k � 1.

By a ray we will mean a double, right, or left ray.

•
x0

•
x1•

x

k�1

.

.

.

•x
0

•x
1

•x
2

...
...

...
•x�1

•x
0

•x
1

•x
2

•x
1

• x

0

...

Figure 2.2: Basic partial transformations.

We note the following:

(i) All basic partial transformations are connected and injective.

(ii) The span of a basic partial transformation is exhibited by the notation. For example, the span
of the right ray [1 2 3 . . .i is {1, 2, 3, . . .}.
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(iii) The left bracket in “" = [x . . .” indicates that x /2 im("); while the right bracket in “" =

. . . x]” indicates that x /2 dom("). For example, for the chain ⌧ = [1 2 3 4], dom(⌧) =

{1, 2, 3} and im(⌧) = {2, 3, 4}.

(iv) A cycle (x

0

x

1

. . . x

k�1

) differs from the corresponding cycle in the symmetric group of
permutations on X in that the former is undefined for every x 2 X � {x

0

, x

1

, . . . , x

k�1

}
while the latter is fixed for every such x.

We will now analyze which combinations of basic transformations can occur in a connected
component of ↵ 2 T (X).

Definition 2.7. A right ray ⌘ = [x

0

x

1

x

2

. . .i contained in ↵ 2 T (X) is called a maximal right ray
in ↵ if x

0

62 im(↵).

For example, consider ↵ = [4 5 6 7 . . .it[1 2 3 6] 2 T (N), where N is the set of positive integers.
Then ↵ contains infinitely many right rays, for example [3 6 7 8 . . .i and [7 8 9 10 . . .i, but only two
of them, namely [4 5 6 7 . . .i and [1 2 3 6 7 8 . . .i are maximal. Note also that ↵ is connected.

Lemma 2.8. Let � be a connected component of ↵ 2 T (X). Then:

(1) If � has a cycle (x

0

x

1

. . . x

k�1

), then for every x 2 dom(�), x�m = x

0

for some m � 0.

(2) If � has a right ray [x

0

x

1

x

2

. . . i or a double ray h. . . x�1

x

0

x

1

. . .i, then for every x 2
dom(�), x�m = x

i

for some m, i � 0.

Proof. Suppose � has a cycle (x

0

x

1

. . . x

k�1

) and let x 2 dom(�). Since � is connected, x�p =

x

0

�

q for some p, q � 0. Since x

0

lies on the cycle (x

0

x

1

. . . x

k�1

), we may assume that 0  q 
k � 1. Thus for m = p+ k � q, we have

x�

m

= x�

p+k�q

= (x�

p

)�

k�q

= (x

0

�

q

)�

k�q

= x

q

�

k�q

= x

0

.

Suppose � has a right ray [x

0

x

1

x

2

. . .i and let x 2 dom(�). Since � is connected, x�m =

x

0

�

i

= x

i

for some m, i � 0. A proof in the case of a double ray is the same.

Lemma 2.9. Let � be a connected component of ↵ 2 T (X) and let x 2 im(�) such that x does not
lie on a cycle in �. Then � contains a left ray h. . . y

3

y

2

y

1

x] or a chain [y

k

y

k�1

. . . y

1

x] (k � 1)
with y

k

/2 im(�).

Proof. Since x 2 im(�), there is y

1

2 X such that y
1

� = x

0

. If y
1

2 im(�), then y

2

� = y

1

for some y

2

2 X . Continuing this way, we either arrive at y
k

2 X such that y
k

� = y

k�1

and
y

k

/2 im(�) or the process of constructing y

1

, y

2

, y

3

, . . . will go on forever. Note that there will be
no repetition in the sequence hy

i

i (finite or infinite) since x does not lie on a cycle in �. Hence,
either � contains a left ray h. . . y

3

y

2

y

1

x] or a desired chain.

Proposition 2.10. Let � be a connected component of ↵ 2 T (X). Then:

(1) If � has a cycle, then the cycle is unique and � does not have any double or right rays.

(2) If � does not have a cycle, then � is a join of the double rays and maximal right rays contained
in �.
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Proof. Suppose that � has a cycle, say � = (x

0

x

1

. . . x

k�1

). Let ✓ = (y

0

y

1

. . . y

m�1

) be any
cycle in �. We want to prove that � = ✓. We may assume that k  m. By Lemma 2.8, y

0

�

p

= x

0

for some p � 0. On the other hand, y
0

�

p

= y

j

for some j 2 {0, . . . ,m � 1}, and so x

0

= y

j

.
Since we can rewrite ✓ as (y

j

y

j+1

. . . y

j�1

), we may assume that y
j

= y

0

, so x

0

= y

0

. But then
x

i

= x

0

�

i

= y

0

�

i

= y

i

for every i 2 {0, . . . , k � 1} and y

k�1

� = x

k�1

� = x

0

= y

0

. It follows
that k = m and � = ✓. We proved that a cycle in � is unique.

Suppose that � with a cycle (x

0

x

1

. . . x

k�1

) also has a double ray, say h. . . y�1

y

0

y

1

. . .i. By
Lemma 2.8, y

0

�

m

= x

0

for some m � 0. But then y

0

�

m+k

= (y

0

�

m

)�

k

= x

0

�

k

= x

0

= y

0

,
which is a contradiction since y

0

�

m+k

= y

m+k

6= y

0

(since m � 0 and k � 1). Thus � does not
have a double ray. Similarly, � cannot have a right ray. We have proved (1).

To prove (2), suppose � does not have a cycle. Let R be the set of all double and maximal right
rays contained in �. Then clearly

F

"2R " @ �. (Note that if �
1

, �

2

are contained in �, then �

1

and �

2

are compatible since for every x 2 dom(�

1

)\dom(�

2

), x�
1

= x� = x�

2

.) Select any x 2 dom(�).
Then x

0

= x, x

1

= x�, x

2

= x�

2

, . . . are pairwise distinct since otherwise � would have a cycle.
Consider the right ray ⌘ = [x

0

x

1

x

2

. . .i in �. If ⌘ is not maximal (that is, x
0

2 im(�)), then
� contains a left ray h. . . y

3

y

2

y

1

x

0

] or a chain [y

k

y

k�1

. . . y

1

x

0

] (k � 1) with y

k

/2 im(�) (by
Lemma 2.9). In the former case, � has a double ray h . . . y

2

y

1

x

0

x

1

x

2

. . .i; and in the latter case
� has a maximal right ray [y

k

. . . y

1

x

0

x

1

x

2

. . .i. Thus x = x

0

2 dom(") for some " 2 R, and it
follows that � =

F

"2R ".

Definition 2.11. Let � be a connected component of ↵ 2 T (X). By Proposition 2.10, exactly one
of the following three conditions holds (see Figures 2.3, 2.4, and 2.5):

(i) � contains a unique cycle;

(ii) � contains a double ray;

(iii) � does not contain a double ray and � is the join of its maximal right rays.

If � satisfies (iii), we will say that � is of type rro (“right rays only”).

•

•

• ••· · ·

• •

•

•

••

•
...

•

•

Figure 2.3: A connected component with a cycle.

Let " 2 P (X) be a basic partial transformation. If x 2 span("), we will say that x lies on ".

Definition 2.12. Let � be a connected component of ↵ 2 T (X).
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...

...
•
...

•

•

•

•

•

•

•

•

•
•

•

Figure 2.4: A connected component with a double ray.

...

••

•

•

•

•

••

•

•

•

•

•

•
•

•

Figure 2.5: A connected component of type rro.

• A chain [y

0

y

1

. . . y

m

] in � is called a finite branch of a cycle � [double ray !, right ray ⌘] in
� if y

0

/2 im(�), y
m

lies on � [!, ⌘], and y

m�1

does not lie on � [!, ⌘].

• A left ray h. . . y
2

y

1

y

0

] in � is called an infinite branch of a cycle � [double ray !] in � if y
0

lies on � [!] and y

1

does not lie on � [!].

By a branch we will mean a finite or infinite branch. We will use the notation (. . . y

2

y

1

y

0

] for
a branch that is finite or infinite (but we do not know which).

If � = (x

0

x

1

. . . x

k�1

) is a cycle in � and " is a branch of � with the terminal point x
i

, we
will say that " is a branch of � at x

i

. (If " is a left ray or a chain, then the terminal point of " is the
element x 2 X such that x 2 im(") � dom(").) We will use a similar language for branches of a
double ray ! and a right ray ⌘. Note that all branches of a right ray ⌘ in � are finite by definition.

For example, the cycle in Figure 2.3 has two infinite branches (at the same point) and four finite
branches (at three different points). The transformation whose digraph is presented in Figure 2.4
has two double rays. The vertical double ray has one infinite branch and three finite branches (at two
different points). The transformation from Figure 2.5 is connected of type rro with seven maximal
right rays. The vertical maximal right ray has six (finite) branches (at three different points).
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Proposition 2.13. Let � be a connected component of ↵ 2 T (X). Then:

(1) If � has a (unique) cycle �, then � is the join of � and its branches.

(2) If � has a double ray !, then � is the join of ! and its branches.

(3) If � is of type rro with a maximal right ray ⌘, then � is the join of ⌘ and its (finite) branches.

Proof. Suppose � has a cycle �. Let x 2 dom(�) be such that x does not lie on �. Let t be the
smallest positive integer such that x�t lies on � (such a t exists by Lemma 2.8). If x /2 im(�), then
[xx� . . . x�

t

] is a finite branch of �. If x 2 im(�), then � contains a left ray h. . . y
3

y

2

y

1

x]

or a chain [y

k

y

k�1

. . . y

1

x] (k � 1) with y

k

/2 im(�) (by Lemma 2.9). In the former case,
h . . . y

2

y

1

xx� . . . x�

t

] is an infinite branch of �; and in the latter case [y

k

. . . y

1

xx� . . . x�

t

]

is a finite branch of �. Thus every element of dom(�) either lies on � or on one of the branches
of �, which proves (1). The proofs of (2) and (3) are similar. We note that the foregoing argument
applied to ⌘ in (3) will not produce and infinite branch since � of type rro does not contain a double
ray.

3 Digraph Homomorphisms

In this section, we represent ↵ 2 T (X) and its connected components as directed graphs. For given
connected components � and � of ↵, we investigate digraph homomorphisms from D(�) to D(�).
This approach is justified by Proposition 3.1 below.

A directed graph (or a digraph) is a pair D = (X, ⇢) where X is a non-empty set (not nec-
essarily finite) and ⇢ is a binary relation on X . Any element x 2 X is called a vertex of D, and
any pair (x, y) 2 ⇢ is called an arc of D. Let D

1

= (X

1

, ⇢

1

) and D

2

= (X

2

, ⇢

2

) be digraphs. A
mapping � : X

1

! X

2

is called a homomorphism from D

1

to D

2

if it preserves edges, that is, for
all x, y 2 X

1

, if (x, y) 2 ⇢

1

, then (x�, y�) 2 ⇢

2

[13]. We say that D
1

is homomorphic to D

2

if
there is a homomorphism from D

1

to D

2

.
Let ↵ 2 T (X). Then ↵ can be represented by the directed graph D(↵) = (X,↵), where ↵

is viewed as a binary relation on X . In other words, for all x, y 2 X , (x, y) is an arc in D(↵) if
and only if x↵ = y. Let � be a connected component of ↵. By D(�) we will mean the directed
subgraph of D(↵) induced by dom(�). That is, dom(�) is the set of vertices of D(�) and for all
x, y 2 dom(�), (x, y) is an arc in D(�) if and only if (x, y) is an arc in D(↵). (The latter is
equivalent to x� = y.) If (x, y) is an arc in D(�), we will write x

�! y (or x ! y if no ambiguity
arises). The same convention will apply to the digraph D(↵).

The following proposition provides a link between centralizers of elements of T (X) and digraph
homomorphisms.

Proposition 3.1. Let ↵,� 2 T (X). Then � 2 C(↵) if and only if � is a homomorphism from D(↵)

to D(↵).

Proof. Suppose � 2 C(↵). Let x ! y be an arc in D(↵), that is, y = x↵. Then, since ↵� = �↵,
we have (x�)↵ = x(�↵) = x(↵�) = (x↵)� = y�, and so x� ! y�. Hence � is a homomorphism
from D(↵) to D(↵).

Conversely, suppose that � is a homomorphism from D(↵) to D(↵). Let x 2 X . Then x� !
(x↵)� since x ! x↵ and � preserves edges. But x� ! (x↵)� means that (x�)↵ = (x↵)�, which
implies x(↵�) = x(�↵). Hence ↵� = �↵, and so � 2 C(↵).
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For the remainder of this section, we will work on characterizing digraph homomorphisms �

from D(�) to D(�), where � and � are connected components of ↵ 2 T (X). It will be convenient
to introduce the following definitions. We agree that if ✓ = (y

0

. . . y

m�1

) is a cycle and i is an
integer, then y

i

means y
r

where r ⌘ i (mod m) and 0  r < m.

Definition 3.2. Let � 2 P (X).

• Let � = (x

0

. . . x

k�1

) and ✓ = (y

0

. . . y

m�1

) be cycles such dom(�) ✓ dom(�). We say
that � wraps � around ✓ at y

t

if x
i

� = y

t+i

for all 0  i  k � 1. (See Figure 3.1.)

• Let ⌧ = [z

0

. . . z

p

] be a chain and ✓ = (y

0

. . . y

m�1

) be a cycle such that span(⌧) ✓ dom(�).
We say that � wraps ⌧ around ✓ at y

t

if z
i

� = y

t+i

for all 0  i  p. (See Figure 3.2.)

• Let � = h. . . z
2

z

1

z

0

] be a left ray and ✓ = (y

0

. . . y

m�1

) be a cycle such that span(�) ✓
dom(�). We say that � counter-wraps � around ✓ at y

t

if z
i

� = y

t�i

for all i � 0. (See
Figure 3.3.)

• Let ! = h. . . x�1

x

0

x

1

. . .i be a double ray and ✓ = (y

0

. . . y

m�1

) be a cycle such that
dom(!) ✓ dom(�). We say that � double-wraps ! around ✓ at y

t

if x
i

� = y

t+i

for all i.
(See Figure 3.4.)

• Let ⌘ = [x

0

x

1

x

3

. . .i be a right ray and ✓ = (y

0

. . . y

m�1

) be a cycle such that dom(⌘) ✓
dom(�). We say that � wraps ⌘ around ✓ at y

t

if x
i

� = y

t+i

for all i � 0. (See Figure 3.5.)

• •

•

•

•

•,,

bb

++

22

Figure 3.1: A cycle wrapped around a cycle.

Definition 3.3. Let � 2 P (X).

• Let ⌧ = [z

0

. . . z

p

] and  = [w

0

. . . w

p

] be chains of the same length such that span(⌧) ✓
dom(�). We say that � maps ⌧ onto  if z

i

� = w

i

for all 0  i  p.

• Let � = h. . . z
2

z

1

z

0

] and µ = h. . . w
2

w

1

w

0

] be left rays such that span(�) ✓ dom(�). We
say that � maps � onto µ if z

i

� = w

i

for all i � 0.
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⇤⇤

``

NN

• •• •• •• •

•

•

•

•

''

22

Figure 3.2: A chain wrapped around a cycle.

• Let ! = h. . . x�1

x

0

x

1

. . .i and ⇡ = h. . . y�1

y

0

y

1

. . .i be double rays such that dom(!) ✓
dom(�). We say that � maps ! onto ⇡ at y

t

if x
i

� = y

t+i

for all i.

• Let ⌘ = [x

0

x

1

x

3

. . .i and µ = [y

0

y

1

y

3

. . .i be right rays such that dom(⌘) ✓ dom(�). We
say that � maps ⌘ onto µ if x

i

� = y

i

for all i � 0.

We begin with the case when � has a cycle. If D(�) is homomorphic to D(�), then � must also
have a cycle.

Lemma 3.4. Let � and � be connected components of ↵ 2 T (X) such that � has a cycle � =

(x

0

. . . x

k�1

). Let � : dom(�) ! dom(�). Then � is a homomorphism from D(�) to D(�) if and
only if � has a cycle ✓ = (y

0

. . . y

m�1

) and the following conditions are satisfied:

(1) m divides k;

(2) � wraps � around ✓ at some y

t

;

(3) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of �, then exactly one of the following holds:

(a) � wraps ⌧ around ✓ at y
t+i�p

; or

(b) There is a branch µ = (. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p� q ⌘ t+ i

(mod m) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= y

j

] and if q < p then � wraps
[z

q

. . . z

p

= x

i

] around ✓ at y
j

;

(4) If � = h. . . z
2

z

1

z

0

= x

i

] is an infinite branch of �, then exactly one of the following holds:
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⇤⇤

``

NN

· · · • •• •• •• •

•

•

•

•

''

22

Figure 3.3: A left ray counter-wrapped around a cycle.

(a) � counter-wraps � around ✓ at y
t+i

; or

(b) There is an infinite branch µ = h. . . w
2

w

1

w

0

= y

j

] of ✓ and there is s � 0 with
j + s ⌘ t+ i (mod m) such that � maps h. . . z

s+2

z

s+1

z

s

] onto µ and if s > 0 then �

wraps [z
s

. . . z

1

z

0

= x

i

] around ✓ at y
j

.

Proof. Suppose � is a homomorphism from D(�) to D(�). Since � is a cycle, we have

x

0

! x

1

! · · · ! x

k�1

! x

0

,

in D(�), and so, since � preserves edges,

x

0

� ! x

1

� ! · · · ! x

k�1

� ! x

0

� (3.1)

in D(�). If x
0

�, x

1

�, . . . , x

k�1

� are pairwise distinct, then ✓ = (x

0

�x

1

� . . . x

k�1

�) is a cycle in �

of length k and � wraps � around ✓ at x
0

�. Otherwise, let s be the smallest element of {0, . . . , k�1}
such that x

s

� = x

j

� for some j 2 {s + 1, . . . , k � 1}, and let m be the smallest positive integer
such that x

s

� = x

s+m

�. Then ✓ = (x

s

�x

s+1

� . . . x

s+m�1

�) is a cycle in �. Moreover, since (3.1)
can be rewritten as

x

s

� ! x

s+1

� ! · · · ! x

s+k�1

� ! x

s

�,

it follows that m divides k and � wraps � around ✓ at some x

s+t

�, where 0  t < m. We have
proved that � has a cycle ✓ = (y

0

. . . y

m�1

) and that (1) and (2) are satisfied.
To prove (3), let ⌧ = [z

0

. . . z

p

= x

i

] be a finite branch of �. Since x

0

� = y

t

and � wraps �
around ✓, we have x

i

� = y

t+i

. Suppose z

0

� = y

j

lies on ✓. Then

z

0

� = y

j

! z

1

� = y

j+1

! · · · ! z

p

� = y

j+p

.
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•
⇧⇧

· · · • •• •• •• • · · ·

• •

•

&&''

77

55

Figure 3.4: A double ray double-wrapped around a cycle.

• • • • • • • xxff• •• •• •• •• •• • · · · • •

•

•

33

33

''

⇢⇢

//

Figure 3.5: A right ray wrapped around a cycle.

Since y

j+p

= z

p

� = x

i

� = y

t+i

, we have j + p ⌘ t + i (mod m). Thus y
j

= y

t+i�p

, and so �

wraps ⌧ around ✓ at y
t+i�p

.
Suppose z

0

� does not lie on ✓. Then, by Proposition 2.13, z
0

� lies on some branch (finite or
infinite) µ = (. . . w

2

w

1

w

0

= y

j

] of ✓. Let z
0

� = w

q

. Then q � 1 (since z

0

� /2 dom(✓)) and

z

0

� = w

q

! z

1

� = w

q�1

! · · · ! z

q

� = w

0

= y

j

! z

q+1

� = y

j+1

! · · · ! z

p

� = y

j+p�q

.

Thus q  p, � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= y

j

], and if q < p then � wraps [z
q

. . . z

p

= x

i

]

around ✓ at y
j

. Further, y
j+p�q

= z

p

� = x

i

� = y

t+i

, and so j + p� q ⌘ t+ i (mod m).
Hence (3a) or (3b) holds. Thus exactly one of them holds since (3a) and (3b) are mutually

exclusive. We have proved (3). The proof of (4) is similar.
Conversely, suppose (1)–(4) are satisfied. Let x ! z be an edge in D(�). If x 2 dom(�), then

x

i

= x ! z = x

i+1

for some i, and so x� = x

i

� = y

t+i

! y

t+i+1

= x

i+1

� = z� by (2). If
x /2 dom(�), then x ! z is an edge of some branch of � (by Proposition 2.13), and so x� ! z� in
D(�) by (3) and (4).

Figure 3.6 illustrates 3(b) of Lemma 3.4. Extending the finite branches in Figure 3.6 to infinite
branches of the cycles, we obtain an illustration of 4(b) of Lemma 3.4.

Suppose � has a double ray and D(�) is homomorphic to D(�). Then the situation is more
complicated since � may have either a cycle or a double ray.
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•

•

44

44

44

))

⇤⇤

Figure 3.6: A homomorphism acting on a finite branch of a cycle in Lemma 3.4.

Lemma 3.5. Let � and � be connected components of ↵ 2 T (X) such that � has a double ray
! = h. . . x�1

x

0

x

1

. . .i. Suppose � is a homomorphism from D(�) to D(�). Then exactly one of
the following holds:

(a) � has a cycle ✓ = (y

0

. . . y

m�1

) and either � double wraps ! around ✓ at some y

t

or there is
u such that � wraps [x

u

x

u+1

x

u+2

. . .i around ✓ at some y

t

and x

u�1

/2 dom(✓); or

(b) � has a double ray ⇡ such that � maps ! onto ⇡.

Proof. Since � preserves edges, we have

· · · ! x�1

� ! x

0

� ! x

1

� ! · · · . (3.2)

Suppose � contains a cycle ✓ = (y

0

. . . y

m�1

). Since x

0

�, y

0

2 dom(�) and � is a connected
component of ↵, there are integers p, q � 0 such that (x

0

�)↵

p

= y

0

↵

q. By (3.2), (x
0

�)↵

p

= x

p

�,
and so x

p

� lies on ✓. Suppose every x

i

� lies on ✓ and let x
0

� = y

t

. Then � double-wraps ! around
✓ at y

t

by (3.2). Suppose not every x

i

� lies on ✓. Since x

p

� lies on ✓, there is u such that x
u

� lies
on ✓ but x

u�1

� does not. Let x
u

� = y

t

. Then, by (3.2), � wraps [x
u

x

u+1

x

u+2

. . .i around ✓ at y
t

and x

u�1

/2 dom(✓).
Suppose � does not contain a cycle. Then the vertices in (3.2) must be pairwise distinct. Thus

⇡ = h. . . x�1

�x

0

�x

1

� . . .i is a double ray in � and � maps ! onto ⇡.
We have proved that (a) or (b) holds. By Proposition 2.10, (a) and (b) are mutually exclusive,

so exactly one of them holds.

We now analyze what happens in each of the cases exhibited by Lemma 3.5.
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Lemma 3.6. Let � and � be connected components of ↵ 2 T (X) such that � has a double ray
! = h. . . x�1

x

0

x

1

. . .i and � has a cycle ✓ = (y

0

. . . y

m�1

). Let � : dom(�) ! dom(�) be such
that � double wraps ! around ✓ at some y

t

. Then � is a homomorphism from D(�) to D(�) if and
only if the following conditions are satisfied:

(1) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of !, then exactly one of the following holds:

(a) � wraps ⌧ around ✓ at y
t+i�p

; or

(b) There is a branch µ = (. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p� q ⌘ t+ i

(mod m) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= y

j

] and if q < p then � wraps
[z

q

. . . z

p

= x

i

] around ✓ at y
j

;

(2) If � = h. . . z
2

z

1

z

0

= x

i

] is an infinite branch of !, then exactly one of the following holds:

(a) � counter-wraps � around ✓ at y
t+i

; or

(b) There is an infinite branch µ = h. . . w
2

w

1

w

0

= y

j

] of ✓ and there is s � 0 with
j + s ⌘ t+ i (mod m) such that � maps h. . . z

s+2

z

s+1

z

s

] onto µ and if s > 0 then �

wraps [z
s

. . . z

0

= x

i

] around ✓ at y
j

.

Proof. Suppose � is a homomorphism from D(�) to D(�). To prove (1), follow the proof of
Lemma 3.4(3) (almost verbatim). The proof of (2) is similar.

Conversely, suppose (1) and (2) are satisfied. Let x ! z be an edge in D(�). If x 2 dom(!),
then x

i

= x ! z = x

i+1

for some i, and so x� = x

i

� = y

t+i

! y

t+i+1

= x

i+1

� = z� in D(�)

since � double-wraps ! around ✓ at y
t

. If x /2 dom(!), then x ! z is an edge of some branch of !
(by Proposition 2.13), and so x� ! z� in D(�) by (1) and (2).

Lemma 3.7. Let � and � be connected components of ↵ 2 T (X) such that � has a double ray
! = h. . . x�1

x

0

x

1

. . .i and � has a cycle ✓ = (y

0

. . . y

m�1

). Let � : dom(�) ! dom(�) be such
that for some u, � wraps [x

u

x

u+1

x

u+2

. . .i around ✓ at some y

t

and x

u�1

/2 dom(✓). Then � is a
homomorphism from D(�) to D(�) if and only if the following conditions are satisfied:

(1) There is an infinite branch µ = h. . . v
2

v

1

v

0

= y

t

] of ✓ such that � maps h. . . x
u�2

x

u�1

x

u

]

onto µ.

(2) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of ! with i � u, then exactly one of the following
holds:

(a) � wraps ⌧ around ✓ at y
t+i�u�p

; or

(b) There is a branch (. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p� q ⌘ t+ i� u

(mod m) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= y

j

] and if q < p then � wraps
[z

q

. . . z

p

= x

i

] around ✓ at y
j

;

(3) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of ! with i < u, then exactly one of the following
holds:

(a) � maps ⌧ onto [v

u�i�p

. . . v

u�i

]; or

(b) There is a branch (. . . w

q

. . . w

1

w

0

= v

j

. . . v

0

= y

t

] of ✓ with 1  q  p, j+ p� q =

u� i, and w

1

/2 dom(µ) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= v

j

] and if q < p

then � maps [z
q

. . . z

p

= x

i

] onto [v

j

. . . v

u�i

];
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(4) If � = h. . . z
2

z

1

z

0

= x

i

] is an infinite branch of ! with i � u, then exactly one of the
following holds:

(a) � counter-wraps � around ✓ at y
t+i�u

; or

(b) There is an infinite branch µ

1

= h. . . y
j

] of ✓ and there is s � 0 with j + s ⌘ t +

i� u (mod m) such that � maps h. . . z
s+2

z

s+1

z

s

] onto µ

1

and if s > 0 then � wraps
[z

s

. . . z

0

= x

i

] around ✓ at y
j

;

(5) If � = h. . . z
2

z

1

z

0

= x

i

] is an infinite branch of ! with i < u, then exactly one of the
following holds:

(a) � maps � onto h. . . v
u�i�2

v

u�i�1

v

u�i

]; or

(b) There is an infinite branch h. . . w
2

w

1

w

0

= v

j

. . . v

0

= y

t

] of ✓ such that w
1

does not
lie on µ, and there is s � 0 with j + s = u� i such that � maps h. . . z

s+2

z

s+1

z

s

] onto
h. . . w

2

w

1

w

0

= v

j

] and if s > 0 then � maps [z
s

. . . z

0

= x

i

] onto [v

j

. . . v

u�i

].

Proof. Suppose � is a homomorphism from D(�) to D(�). Then, since � wraps [x
u

x

u+1

x

u+2

. . .i
around ✓ at y

t

, we have

· · · ! x

u�2

� ! x

u�1

� ! x

u

� = y

t

! x

u+1

� = y

t+1

! · · · .

Thus, since x

u�1

� /2 dom(✓), µ = h. . . x
u�2

�x

u�1

�x

u

� = y

t

] is an infinite branch of ✓ and �

maps h. . . x
u�2

x

u�1

x

u

] onto µ. We have proved (1).
To prove (2), we follow the proof of Lemma 3.4(3). Let ⌧ = [z

0

. . . z

p

= x

i

] be a finite branch
of ! with i � u. Since x

u

� = y

t

and � wraps [x
u

x

u+1

x

u+2

. . .i around ✓, we have x

i

� = y

t+i�u

.
Suppose z

0

� = y

j

lies on ✓. Then

z

0

� = y

j

! z

1

� = y

j+1

! · · · ! z

p

� = y

j+p

.

Since y

j+p

= x

i

� = y

t+i�u

, we have j + p ⌘ t+ i� u (mod m). Thus y
j

= y

t+i�u�p

, and so �

wraps ⌧ around ✓ at y
t+i�u�p

.
Suppose z

0

� does not lie on ✓. Then, by Proposition 2.13, z
0

� lies on some branch µ =

(. . . w

2

w

1

w

0

= y

j

] of ✓. Let z
0

� = w

q

. Then q � 1 (since z

0

� /2 dom(✓)) and

z

0

� = w

q

! z

1

� = w

q�1

! · · · ! z

q

� = w

0

= y

j

! z

q+1

� = y

j+1

! · · · ! z

p

� = y

j+p�q

.

Thus q  p, � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= y

j

], and if q < p then � wraps [z
q

. . . z

p

= x

i

]

around ✓ at y
j

. Further, y
j+p�q

= z

p

� = x

i

� = y

t+i�u

, and so j + p� q ⌘ t+ i� u (mod m).
Hence (2a) or (2b) holds. Thus exactly one of them holds since (2a) and (2b) are mutually

exclusive. We have proved (2). The proofs of (3)–(5) are similar.
Conversely, suppose (1)–(5) are satisfied. Then � is a homomorphism from D(�) to D(�) by

an argument similar to the one used in the proof of Lemma 3.6.

Lemma 3.8. Let � and � be connected components of ↵ 2 T (X) such that � has a double ray
! = h. . . x�1

x

0

x

1

. . .i and � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i. Let � : dom(�) ! dom(�)

be such that � maps ! onto ⇡ at some y

t

. Then � is a homomorphism from D(�) to D(�) if and
only if the following conditions are satisfied:

(1) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of !, then exactly one of the following holds:
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(a) � maps ⌧ onto [y

t+i�p

. . . y

t+i

]; or

(b) There is a branch µ = (. . . w

q

. . . w

0

= y

t+i�p+q

] of ⇡ with 1  q  p such that �
maps [z

0

. . . z

q

] onto [w

q

. . . w

0

= y

t+i�p+q

] and if q < p then � maps [z
q

. . . z

p

= x

i

]

onto [y

t+i�p+q

. . . y

t+i

];

(2) If � = h. . . z
2

z

1

z

0

= x

i

] is an infinite branch of !, then exactly one of the following holds:

(a) � maps � onto h. . . y
t+i�2

y

t+i�1

y

t+i

]; or

(b) There is an infinite branch µ = h. . . w
2

w

1

w

0

= y

t+i�s

] of ⇡ with s � 0 such that
� maps h. . . z

s+2

z

s+1

z

s

] onto µ and if s > 0 then � maps [z

s

. . . z

0

= x

i

] onto
[y

t+i�s

. . . y

t+i

].

Proof. Suppose � is a homomorphism from D(�) to D(�). Let ⌧ = [z

0

. . . z

p

= x

i

] be a finite
branch of !. Since � preserves edges, we have

z

0

� ! z

1

� ! · · · ! z

p

� = x

i

� = y

t+i

, (3.3)

where the last equality is true since x

0

� = y

t

and � maps ! onto ⇡. Suppose z

0

� lies on ⇡. Then,
by (3.3), z

0

� = y

t+i�p

and � maps ⌧ onto [y

t+i�p

. . . y

t+i

].
Suppose z

0

� does not lie on ⇡. Then, by Proposition 2.13, z
0

� lies on some branch µ =

(. . . w

2

w

1

w

0

= y

j

] of ✓. Let z
0

� = w

q

. Then q � 1 (since z

0

� does not lie on ⇡) and

z

0

� = w

q

! · · · ! z

q

� = w

0

= y

j

! z

q+1

� = y

j+1

! · · · ! z

p

� = y

j+p�q

. (3.4)

Since y

j+p�q

= z

p

� = x

i

� = y

t+i

, we have j = t + i � p + q. Thus, by (3.4), � maps [z
0

. . . z

q

]

onto [w

q

. . . w

0

= y

t+i�p+q

], and if q < p then � maps [z
q

. . . z

p

= x

i

] onto [y

t+i�p+q

. . . y

t+i

].
Hence (1a) or (1b) holds. Thus exactly one of them holds since (1a) and (1b) are mutually exclusive.
We have proved (1). The proof of (2) is similar.

Conversely, suppose (1) and (2) are satisfied. Then � is a homomorphism from D(�) to D(�)

by an argument similar to the one used in the proof of Lemma 3.6.

Figure 3.7 illustrates 2(b) of Lemma 3.8, where the assumption is that ! = h. . . x�1

x

0

x

1

. . .i
and ⇡ = h. . . y�1

y

0

y

1

. . .i are vertical double rays in the figure.
Finally, if � is of type rro (see Definition 2.11) and D(�) is homomorphic to D(�), then � may

have a cycle, or a double ray, or be of type rro.

Lemma 3.9. Let � and � be connected components of ↵ 2 T (X) such that � is of type rro, and let
⌘ = [x

0

x

1

x

2

. . .i be a maximal right ray in �. Suppose � is a homomorphism from D(�) to D(�).
Then exactly one of the following holds:

(a) � has a cycle ✓ = (y

0

. . . y

m�1

) and either � wraps ⌘ around ✓ at some y

t

, or there is u � 1

such that � wraps [x
u

x

u+1

x

u+2

. . .i around ✓ at some y

t

and x

u�1

/2 dom(✓);

(b) � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i such that either � maps ⌘ onto [y

t

y

t+1

. . .i for
some t, or there are t and u � 1 such that � maps [x

u

x

u+1

. . .i onto [y

t

y

t+1

. . .i, x
u�1

/2
dom(⇡), and x

0

does not lie on an infinite branch of ⇡; or

(c) � is of type rro and has a maximal right ray µ = [y

0

y

1

y

2

. . .i such that � maps ⌘ onto
[y

t

y

t+1

. . .i for some t � 0.
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Figure 3.7: A homomorphism acting on an infinite branch of a double ray in Lemma 3.8.

Proof. Since � preserves edges, we have

x

0

� ! x

1

� ! x

2

� ! · · · . (3.5)

If � contains a cycle ✓ = (y

0

. . . y

m�1

), then (a) holds by an argument similar to the proof of
Lemma 3.5(a).

Suppose � contains a double ray. Then the vertices in (3.5) must be pairwise distinct since
otherwise � would also contain a cycle, which is impossible by Proposition 2.10. Suppose there are
vertices w

0

, w

1

, w

2

, . . . of D(�) such that

· · · ! w

2

! w

1

! w

0

! x

0

� ! x

1

� ! x

2

� ! · · · . (3.6)

Then � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i, namely ⇡ = h. . . w
1

w

0

x

0

�x

1

� . . .i such that �
maps ⌘ onto [y

t

y

t+1

. . .i for some t. Suppose there are no vertices w
0

, w

1

, w

2

, . . . of D(�) such that
(3.6) holds. Let ⇡ = h. . . y�1

y

0

y

1

. . .i be any double ray in �. Let u be the smallest non-negative
integer such that x

u

� = y

t

for some t. (Such u must exist since � is a connected component of
↵.) Then u � 1 since if u = 0 then (3.6) would hold for w

0

= y

t�1

, w

1

= y

t�2

, . . .. Moreover,
� maps [x

u

x

u+1

. . .i onto [y

t

y

t+1

. . .i (since x

u

� = y

t

), x
u�1

/2 dom(⇡) (by the choice of u),
and x

0

� does not lie on an infinite branch of ⇡ (since if it did then (3.6) would hold for the vertices
w

0

, w

1

, . . . preceding x

0

� on that branch).
Suppose � does not contain a cycle or a double ray. Then � is of type rro by Proposition 2.10.

Let w
0

, . . . , w

q

, q � 0, be vertices in D(�) such that

w

0

! · · · ! w

q

= x

0

� ! x

1

� ! x

2

� ! · · ·

and w

0

/2 im(↵). (Such vertices must exist since otherwise � would have a double ray.) Then
µ = [w

0

. . . w

q

= x

0

�x

1

�x

2

� . . .i is a desired maximal right ray in � from (c).
We have proved that at least one of (a)–(c) holds. By Proposition 2.10, (a), (b), (c) are pairwise

mutually exclusive, so exactly one of them holds.

18



We now analyze what happens in each of the cases exhibited by Lemma 3.9. Recall that, by
Proposition 2.13, if � is of type rro and ⌘ is a maximal right ray in �, then all branches of ⌘ are
finite.

Lemma 3.10. Let � and � be connected components of ↵ 2 T (X) such that � is of type rro and has
a maximal right ray ⌘ = [x

0

x

1

x

2

. . .i, and � has a cycle ✓ = (y

0

. . . y

m�1

). Let � : dom(�) !
dom(�) be such that � wraps ⌘ around ✓ at some y

t

. Then � is a homomorphism from D(�) to D(�)

if and only if for every (finite) branch ⌧ = [z

0

. . . z

p

= x

i

] of ⌘, exactly one of the following holds:

(a) � wraps ⌧ around ✓ at y
t+i�p

; or

(b) There is a branch µ = (. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p � q ⌘ t + i

(mod m) such that � maps [z

0

. . . z

q

] onto [w

q

. . . w

0

= y

j

] and if q < p then � wraps
[z

q

. . . z

p

= x

i

] around ✓ at y
j

.

Proof. Similar to the proof of Lemma 3.7(2).

Lemma 3.11. Let � and � be connected components of ↵ 2 T (X) such that � is of type rro and
has a right ray ⌘ = [x

0

x

1

x

2

. . .i, and � has a cycle ✓ = (y

0

. . . y

m�1

). Let � : dom(�) ! dom(�)

be such that for some u � 1, � wraps [x
u

x

u+1

x

u+2

. . .i around ✓ at some y

t

and x

u�1

/2 dom(✓).
Then � is a homomorphism from D(�) to D(�) if and only if the following conditions are satisfied:

(1) There is a branch (finite or infinite) µ = (. . . v

2

v

1

v

0

= y

t

] of ✓ such that the length of µ is
at least u+ 1 and � maps [x

0

. . . x

u

] onto [v

u

. . . v

0

].

(2) If ⌧ = [z

0

. . . z

p

= x

i

] is a branch of ⌘ with i � u, then exactly one of the following holds:

(a) � wraps ⌧ around ✓ at y
t+i�u�p

; or

(b) There is a branch (. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p� q ⌘ t+ i� u

(mod m) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

q

= y

j

] and if q < p then � wraps
[z

q

. . . z

p

= x

i

] around ✓ at y
j

;

(3) If ⌧ = [z

0

. . . z

p

= x

i

] is a branch of ⌘ with i < u, then exactly one of the following holds:

(a) � maps ⌧ onto [v

u�i+p

. . . v

u�i

]; or

(b) There is a branch (. . . w

q

. . . w

1

w

0

= v

j

. . . v

0

= y

t

] of ✓ with 1  q  p, j� p+ q =

u� i and w

1

/2 dom(µ) such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= v

j

] and if q < p

then � maps [z
q

. . . z

p

= x

i

] onto [v

j

. . . v

u�i

].

Proof. Suppose � is a homomorphism from D(�) to D(�). Then (1) and (2) follow by an argument
similar to the proof of Lemma 3.7(1)(2).

To prove (3), let ⌧ = [z

0

. . . z

p

= x

i

] be a branch of ⌘ with i < u. Since � maps [x

0

. . . x

u

]

onto [v

u

. . . v

0

] (by (1)) and z

p

= x

i

with i < u, we have z

p

� = x

i

� = v

u�i

.
Suppose z

0

� 2 dom(µ), that is, z
0

� = v

s

for some s � 1. Then

z

0

� = v

s

! z

1

� = v

s�1

! · · · ! z

p

� = v

s�p

. (3.7)

We have v

s�p

= z

p

� = v

u�i

, and so s � p = u � i. Thus s = u � i + p, and so � maps ⌧ onto
[v

u�i+p

. . . v

u�i

] by (3.7).
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Suppose z

0

� /2 dom(µ). Let q be the smallest integer in {1, . . . , p} such that z
q

� = v

j

for
some j. (Such a q exists since z

p

� = v

u�i

.) Then

z

0

� ! · · · ! z

q

� = v

j

! z

q+1

� = v

j�1

! · · · ! z

p

� = v

j�(p�q)

= v

u�i

.

Then, for the branch (. . . w

q

= z

0

� . . . w

0

= z

q

� = v

j

. . . v

0

= y

t

] of ✓, � maps [z
0

. . . z

q

] onto
[w

q

. . . w

0

= v

j

], � maps [z
q

. . . z

p

= x

i

] onto [v

j

. . . v

u�i

] (if q < p), and j� p+ q = u� i (since
v

j�(p�q)

= v

u�i

).
Thus (3a) or (3b) holds, and so exactly one of them holds since (3a) and (3b) are mutually

exclusive.
Conversely, suppose (1)–(3) are satisfied. Then � is a homomorphism from D(�) to D(�) by

an argument similar to the one used in the proof of Lemma 3.6.

Figure 3.8 illustrates how the maximal right ray ⌘ = [x

0

x

1

x

2

. . .i from Lemma 3.11 is mapped
by a homomorphism.
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Figure 3.8: A homomorphism acting on a maximal right ray in Lemma 3.11.

Lemma 3.12. Let � and � be connected components of ↵ 2 T (X) such that � is of type rro

with a maximal right ray ⌘ = [x

0

x

1

x

2

. . .i, and � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i. Let
� : dom(�) ! dom(�) such that � maps ⌘ onto [y

t

y

t+1

. . .i for some t. Then � is a homomorphism
from D(�) to D(�) if and only if for every branch ⌧ = [z

0

. . . z

p

= x

i

] of ⌘, exactly one of the
following holds:

(a) � maps ⌧ onto [y

t+i�p

. . . y

t+i

]; or

(b) There is a branch µ = (. . . w

q

. . . w

0

= y

t+i�p+q

] of ⇡ with 1  q  p such that � maps
[z

0

. . . z

q

] onto [w

q

. . . w

0

= y

t+i�p+q

] and if q < p then � maps [z

q

. . . z

p

= x

i

] onto
[y

t+i�p+q

. . . y

t+i

].
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Proof. To prove ()), follow the proof of Lemma 3.8(1). The converse follows easily from the fact
that � is the join of ⌘ and its (necessarily finite) branches (see Proposition 2.13).

Lemma 3.13. Let � and � be connected components of ↵ 2 T (X) such that � is of type rro and has
a right ray ⌘ = [x

0

x

1

x

2

. . .i, and � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i such that for some
t and u � 1, � maps [x

u

x

u+1

. . .i onto [y

t

y

t+1

. . .i, x
u�1

/2 dom(⇡), and x

0

� does not lie on
an infinite branch of ⇡. Then � is a homomorphism from D(�) to D(�) if and only if the following
conditions are satisfied:

(1) There is a finite branch  = [. . . v

0

. . . v

u

= y

t

] of ⇡ such that � maps [x

0

. . . x

u

] onto
[v

0

. . . v

u

];

(2) If ⌧ = [z

0

. . . z

p

= x

i

] is a branch of ⌘ with i � u, then exactly one of the following holds:

(a) � maps ⌧ onto [y

t+i�u�p

. . . y

t+i�u

]; or

(b) There is a branch (. . . w

q

. . . w

0

= y

t+i�u�p+q

] of ⇡ with 1  q  p such that � maps
[z

0

. . . z

q

] onto [w

q

. . . w

0

= y

t+i�u�p+q

] and if q < p then � maps [z

q

. . . z

p

= x

i

]

onto [y

t+i�u�p+q

. . . y

t+i�u

];

(3) If ⌧ = [z

0

. . . z

p

= x

i

] is a branch of ⌘ with i < u, then exactly one of the following holds:

(a) � maps ⌧ onto [v

i�p

. . . v

i

]; or

(b) There is a branch (. . . w

q

. . . w

1

w

0

= v

i�p+q

. . . v

u

= y

t

] of ⇡ with 1  q  p and
w

1

/2 dom() such that � maps [z
0

. . . z

q

] onto [w

q

. . . w

0

= v

i�p+q

] and if q < p then
� maps [z

q

. . . z

p

= x

i

] onto [v

i�p+q

. . . v

i

].

Proof. Suppose � is a homomorphism from D(�) to D(�). Then (1) is satisfied since x

0

� lies on
some finite branch of ⇡ (by Proposition 2.13 and the assumption about x

0

).
Let ⌧ = [z

0

. . . z

p

= x

i

] be a branch of ⌘ with i � u. Since � preserves edges, we have

z

0

� ! z

1

� ! · · · ! z

p

� = x

i

� = y

t+i�u

, (3.8)

where the last equality is true since x

u

� = y

t

and � maps [x
u

x

u+1

. . .i onto [y

t

y

t+1

. . .i. Suppose
z

0

� lies on ⇡. Then, by (3.8), z
0

� = y

t+i�u�p

and � maps ⌧ onto [y

t+i�u�p

. . . y

t+i�u

].
Suppose z

0

� does not lie on ⇡. Then, by Proposition 2.13, z
0

� lies on some branch µ =

(. . . w

2

w

1

w

0

= y

j

] of ⇡. Let z
0

� = w

q

. Then q � 1 (since z

0

� does not lie on ⇡) and

z

0

� = w

q

! · · · ! z

q

� = w

0

= y

j

! z

q+1

� = y

j+1

! · · · ! z

p

� = y

j+p�q

. (3.9)

Since y

j+p�q

= z

p

� = x

i

� = y

t+i�u

, we have j = t + i � u � p + q. Thus, by (3.9), �
maps [z

0

. . . z

q

] onto [w

q

. . . w

0

= y

t+i�u�p+q

], and if q < p then � maps [z

q

. . . z

p

= x

i

] onto
[y

t+i�u�p+q

. . . y

t+i�u

]. Hence (2a) or (2b) holds. Thus exactly one of them holds since (2a) and
(2b) are mutually exclusive. We have proved (2). The proof of (3) is similar.

Conversely, suppose (1)–(3) are satisfied. Then � is a homomorphism from D(�) to D(�) by
an argument similar to the one used in the proof of Lemma 3.6.

Figure 3.9 illustrates how the maximal right ray ⌘ = [x

0

x

1

x

2

. . .i from Lemma 3.13 and its
branch are mapped by a homomorphism, where we assume that ⌘ is the vertical maximal right ray
in the figure and i � u (see (2) of Lemma 3.13).
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Figure 3.9: A homomorphism acting on a maximal right ray and its branch in Lemma 3.13.

Lemma 3.14. Let � and � be connected components of ↵ 2 T (X) of type rro such that � has
a maximal right ray ⌘ = [x

0

x

1

x

2

. . .i and � has a maximal right ray ⇠ = [y

0

y

1

y

2

. . .i. Let
� : dom(�) ! dom(�) such that � maps ⌘ onto [y

t

y

t+1

. . .i for some t � 0. Then � is a
homomorphism from D(�) to D(�) if and only if for every branch ⌧ = [z

0

. . . z

p

= x

i

] of ⌘, exactly
one of the following holds:

(a) � maps ⌧ onto [y

t+i�p

. . . y

t+i

]; or

(b) There is a branch  = [. . . w

0

. . . w

q

= y

t+i�p+q

] of ⇠ with 1  q  p such that � maps
[z

0

. . . z

q

] onto [w

0

. . . w

q

= y

t+i�p+q

] and if q < p then � maps [z

q

. . . z

p

= x

i

] onto
[y

t+i�p+q

. . . y

t+i

].

Proof. Suppose � is a homomorphism from D(�) to D(�). Let ⌧ = [z

0

. . . z

p

= x

i

] be a branch of
⌘. Since � preserves edges, we have

z

0

� ! z

1

� ! · · · ! z

p

� = x

i

� = y

t+i

, (3.10)

where the last equality is true since x

0

� = y

t

and � maps ⌘ onto [y

t

y

t+1

. . .i. Suppose z

0

� lies on
⇠. Then, by (3.10), z

0

� = y

t+i�p

and � maps ⌧ onto [y

t+i�p

. . . y

t+i

].
Suppose z

0

� does not lie on ⇠. Then there exists a branch  = [. . . w

0

. . . w

q

= y

j

] of ⇠ (see
by Proposition 2.13) such that q � 1 and z

0

� = w

0

. Hence

z

0

� = w

0

! · · · ! z

q

� = w

q

= y

j

! z

q+1

� = y

j+1

! · · · ! z

p

� = y

j+p�q

. (3.11)

Since y

j+p�q

= z

p

� = x

i

� = y

t+i

, we have j = t+ i� p+ q. Thus, by (3.11), � maps [z
0

. . . z

q

]

onto [w

0

. . . w

q

= y

t+i�p+q

], and if q < p then � maps [z
q

. . . z

p

= x

i

] onto [y

t+i�p+q

. . . y

t+i

].
Hence (a) or (b) holds. Thus exactly one of them holds since (a) and (b) are mutually exclusive.
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The converse follows easily from the fact that � is the join of ⌘ and its (necessarily finite)
branches (see Proposition 2.13).

Figure 3.10 illustrates how the maximal right ray ⌘ = [x

0

x

1

x

2

. . .i from Lemma 3.14 and its
branch are mapped by a homomorphism, where we assume that ⌘ and � are the vertical maximal
right rays in the figure.
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Figure 3.10: A homomorphism acting on a maximal right ray and its branch in Lemma 3.14.

4 The Characterization Theorem

The description of the elements � 2 C(↵), where ↵ 2 T (X), reduces to the description of the
graph homomorphisms from D(�) to D(�), where � and � are connected components of ↵. This
follows from Proposition 4.1 below.

Proposition 4.1. Let ↵,� 2 T (X). Then � 2 C(↵) if and only if for every connected component �
of ↵, there exists a connected component � of ↵ such that �|

dom(�)

is a graph homomorphism from
D(�) to D(�).

Proof. Suppose � 2 C(↵). Then, by Proposition 3.1, � is a homomorphism from D(↵) to D(↵).
Let � be a connected component of ↵ and let x 2 dom(�). Then, by Proposition 2.5, x� 2 dom(�)

for some connected component � of ↵. We claim that (dom(�))� ✓ dom(�). Let z 2 dom(�).
Since � is connected, x↵k

= x�

k

= z�

m

= z↵

m for some integers k,m � 0. Since � 2 C(↵),
we have ↵� = �↵, and so (z�)↵

m

= (z↵

m

)� = (x↵

k

)� = (x�)↵

k, which implies that z� and
x� are in the domain of the same connected component of ↵, that is, z� 2 dom(�). The claim has
been proved. Then �|

dom(�)

is a homomorphism from D(�) to D(�) by the claim and the fact that
� is a homomorphism from D(↵) to D(↵).
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Conversely, suppose that the given condition is satisfied. Suppose y

↵! z. Then y, z 2 dom(�)

for some connected component � of ↵. It is given that � = �|
dom(�)

is a homomorphism from D(�)

to D(�) for some connected component � of ↵. Thus y� = y�

�! z� = z�, implying y�

↵! z�.
Hence � is a homomorphism from D(↵) to D(↵), and so � 2 C(↵) by Proposition 3.1.

In view of Proposition 4.1, we can now characterize the elements of C(↵) using the results of
Section 3.

Theorem 4.2. Let ↵,� 2 T (X), where X is an arbitrary set. Then � 2 C(↵) if and only if
for every connected component � of ↵, there exists a connected component � of ↵ such that the
following conditions are satisfied for � = �|

dom(�)

:

(1) im(�) ✓ dom(�);

(2) If � has a cycle � = (x

0

. . . x

k�1

), then � has a cycle ✓ = (y

0

. . . y

m�1

) and (1)–(4) of
Lemma 3.4 are satisfied;

(3) If � has a double ray ! = h. . . x�1

x

0

x

1

. . .i, then exactly one of the following holds:

(a) � has a cycle ✓ = (y

0

. . . y

m�1

), � double-wraps ! around ✓ at some y

t

, and (1) and
(2) of Lemma 3.6 are satisfied;

(b) � has a cycle ✓ = (y

0

. . . y

m�1

), there exists u such that � wraps [x
u

x

u+1

. . .i around
✓ at some y

t

and x

u�1

/2 dom(✓), and (1)–(5) of Lemma 3.7 are satisfied; or

(c) � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i such that � maps ! onto ⇡ at some y

t

and
(1) and (2) of Lemma 3.8 are satisfied;

(4) If � is of type rro and has a maximal right ray ⌘ = [x

0

x

1

x

2

. . .i, then exactly one of the
following holds:

(a) � has a cycle ✓ = (y

0

. . . y

m�1

), � wraps ⌘ around ✓ at some y

t

, and for every branch
⌧ = [z

0

. . . z

p

= x

i

] of ⌘, (a) or (b) of Lemma 3.10 holds;

(b) � has a cycle ✓ = (y

0

. . . y

m�1

), there exists u � 1 such that � wraps [x

u

x

u+1

. . .i
around ✓ at some y

t

and x

u�1

/2 dom(✓), and (1)–(3) of Lemma 3.11 are satisfied;

(c) � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i such that � maps ⌘ onto [y

t

y

t+1

. . .i for
some t and for every branch ⌧ = [z

0

. . . z

p

= x

i

] of ⌘, (a) or (b) of Lemma 3.12 holds;

(d) � has a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i such that for some t and u � 1, � maps
[x

u

x

u+1

. . .i onto [y

t

y

t+1

. . .i, x
u�1

/2 dom(⇡), x
0

does not lie on an infinite branch
of ⇡, and (1)–(3) of Lemma 3.13 are satisfied; or

(e) � is of type rro and has a maximal right ray ⇠ = [y

0

y

1

y

2

. . .i such that � maps ⌘ onto
[y

t

y

t+1

. . .i for some t � 0 and for every branch ⌧ = [z

0

. . . z

p

= x

i

] of ⌘, (a) or (b) of
Lemma 3.14 holds.

Proof. Suppose � 2 C(↵). Let � be a connected component of ↵ and let � = �|
dom(�)

. Then, by
Proposition 4.1, there is a connected component � of ↵ such that � is a homomorphism from D(�)

to D(�), and so (1) is satisfied. Further, (2) is satisfied by Lemma 3.4; (3) by Lemmas 3.6–3.8; and
(4) by Lemma 3.10–3.14.

Conversely, suppose that for every connected component � of ↵, there exists a connected com-
ponent � of ↵ such that (1)–(4) are satisfied for � = �|

dom(�)

. Let � be a connected component of
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↵. Then there is a connected component � of ↵ such that (1)–(4) are satisfied for � = �|
dom(�)

.
Then � : dom(�) ! dom(�) by (1). We want to prove that � is a homomorphism from D(�) to
D(�). If � has a cycle, then � is a homomorphism by (2) and Lemma 3.4. If � has a double ray, then
� is a homomorphism by (3) and Lemmas 3.5–3.8. Suppose � does not have a cycle or a double
ray. Then � is of type rro by Proposition 2.10 and Definition 2.11. Thus � is a homomorphism by
(3) and Lemmas 3.9–3.14. Hence � 2 C(↵) by Proposition 4.1.

5 Special Cases

Theorem 4.2 can be applied to the case when X is finite and to particular types of transformations
in T (X). In this section, we provide some examples of these applications.

The finite case.
Suppose X is finite and let ↵ 2 T (X). Then ↵ cannot have any rays, and so every connected

component of ↵ 2 T (X) is the join of its unique cycle and the finite branches of the cycle. This
gives the following corollary to Theorem 4.2 (see [31, Theorem 2]).

Corollary 5.1. Let ↵,� 2 T (X), where X is a finite set. Then � 2 C(↵) if and only if for every
connected component � of ↵ with cycle � = (x

0

. . . x

k�1

), there exists a connected component � of
↵ with cycle ✓ = (y

0

. . . y

m�1

) such that the following conditions are satisfied for � = �|
dom(�)

:

(1) im(�) ✓ dom(�);

(2) m divides k;

(3) � wraps � around ✓ at some y

t

;

(4) If ⌧ = [z

0

. . . z

p

= x

i

] is a finite branch of �, then exactly one of the following holds:

(a) � wraps ⌧ around ✓ at y
t+i�p

; or

(b) There is a finite branch µ = [. . . w

q

. . . w

0

= y

j

] of ✓ with 1  q  p and j + p� q ⌘
t + i (mod m) such that � maps [z

0

. . . z

q

] onto [w

q

. . . w

0

= y

j

] and if q < p then �

wraps [z
q

. . . z

p

= x

i

] around ✓ at y
j

.

Idempotents.
Let " 2 T (X) (where X is arbitrary) be an idempotent. Then for every x 2 X and y = x",

y" = (x")") = x("") = x" = y. It easily follows that if � is a connected component of ", then
im(�) = {y}, for some y 2 X , and � is the joint of the 1-cycle (y) and some (possibly none) finite
branches [x y] of length 2 (see Figure 5.1).

Let � and � be connected components of an idempotent ", with cycles (y) and (z), respectively.
If [x y] is a finite branch of (y), then � 2 T (X) satisfies (3b) of Lemma 3.4 if and only if y� = z

and x� 2 dom(�). Therefore, Theorem 4.2 applied to an idempotent " gives the following corollary
(see [5, Lemma 2.2] and [24, Theorem 2.1]).

Corollary 5.2. Let ",� 2 T (X), where " is an idempotent. Then � 2 C(") if and only if for every
connected component � of " with cycle (y), there exists a connected component � of " with cycle (z)
such that y� = z and (dom(�))� ✓ dom(�).
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•

• • . . . • •

Figure 5.1: A connected component of an idempotent.

Injective transformations.
Any connected component of an injective transformations ↵ 2 T (X) is a cycle, a double ray,

or a right ray (see Figure 5.2).

•

•• .

.

.

...
•

•

•

...
•

•

•
...

Figure 5.2: Connected components of an injective transformation.

Applying Theorem 4.2 to an injective transformation, we obtain the following corollary. (See
[26, Theorem 3.9] where the centralizer of an injective ↵ is described relative to the semigroup of
injective transformations on X .)

Corollary 5.3. Let ↵,� 2 T (X) such that ↵ is injective. Then � 2 C(↵) if and only if conditions
are satisfied:

(1) For every cycle � = (x

0

. . . x

k�1

) in ↵, there is a cycle ✓ = (y

0

. . . y

m�1

) in ↵ such that m
divides k and � wraps � around ✓ at some y

t

;

(2) For every a double ray ! = h. . . x�1

x

0

x

1

. . .i in ↵, exactly one of the following holds:

(a) There is a cycle ✓ = (y

0

. . . y

m�1

) in ↵ such that � double-wraps ! around ✓ at some y
t

;

(b) There is a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i in ↵ such that � maps ! onto ⇡ at some y
t

;

(3) For every maximal right ray ⌘ = [x

0

x

1

x

2

. . .i in ↵, exactly one of the following holds:

(a) There is a cycle ✓ = (y

0

. . . y

m�1

) in ↵ such that � wraps ⌘ around ✓ at some y

t

;

(b) There is a double ray ⇡ = h. . . y�1

y

0

y

1

. . .i in ↵ such that � maps ⌘ onto [y

t

y

t+1

. . .i
for some t;

(c) There is a maximal right ray ⇠ = [y

0

y

1

y

2

. . .i in ↵ such that � maps ⌘ onto [y

t

y

t+1

. . .i
for some t � 0.
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Permutations.
Since any connected component of a permutation ↵ on X is a cycle, Corollary 5.3 implies the

following result.

Corollary 5.4. Let ↵,� 2 T (X) such that ↵ is a permutation. Then � 2 C(↵) if and only if for
every cycle � = (x

0

. . . x

k�1

) in ↵, there is a cycle ✓ = (y

0

. . . y

m�1

) in ↵ such that m divides k
and � wraps � around ✓ at some y

t

.

6 Problems

In the previous sections, we described the centralizer of an arbitrary ↵ 2 T (X). Of course, this
is just the first step towards a description of the structure (from a semigroup theoretical point of
view) of C(↵). Given the complexity of Theorem 4.2, however, such a description in all generality
does not appear to be feasible. What can be done, though, is to provide such descriptions for
particular types of transformations. For various particular types, it should be possible to obtain
results similar to those contained in [4] and [5], and hence provide generalizations to C(↵) of
many results originally proved for the special case of T (X) = C(id

X

). More specifically, given a
transformation ↵ 2 T (X) of a certain pre-defined type, we would like to see the following program
fulfilled:

1. Describe the automorphisms of C(↵). (This has been done for the idempotents [4]; the most
natural candidates to consider next are the injective transformations [26].)

2. Describe Green’s relations in C(↵).

3. Let T be one of Green’s relations. Characterize the transformations ↵ 2 T (X) (of the given
type) such that if �, � 2 C(↵) and �, � are T -related in T (X), then �, � are T -related in
C(↵).

4. Characterize the transformations ↵ 2 T (X) (of the given type) such that D = J in C(↵).

5. Characterize the transformations ↵ 2 T (X) (of the given type) such that the partial order of
J-classes in C(↵) is a chain.

6. For ↵ 2 T (X) (of the given type), describe the regular elements in C(↵), and characterize
those ↵ for which C(↵) is regular.

7. For ↵ 2 T (X) (of the given type), describe the semigroup generated by the idempotents
of C(↵).

8. Repeat problems 1–7 for C
S

(↵), where ↵ 2 T (X) is a transformation of a given type, S is
a subsemigroup of T (X), and C

S

(↵) = {� 2 S : ↵� = �↵} is the centralizer of ↵ relative
to S.

The program outlined above has been carried out for the idempotents and, in part, for the in-
jective transformations [26]. We introduce some other types of transformations that appear to be
especially interesting and promising.

Howie’s transformations.
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Let X be an infinite set. For ↵ 2 T (X) define the following sets:

S(↵) = {x 2 X : x↵ 6= x}, Z(↵) = X \ im(↵), Cl(↵) =

[

n

t↵

�1
:

�

�

�

t↵

�1
�

�

�

� 2

o

.

By Howie’s celebrated result [15], we know that the semigroup generated by the idempotents of
T (X) consists of the identity of T (X) together with the elements of the following sets:

F (X) = {↵ 2 T (X) : |S(↵)| < @
0

and |Z(↵)| > 0},
Q(X) = {↵ 2 T (X) : |S(↵)| = |Z(↵)| = |Cl(↵)| � @

0

}.

Problem. Carry out (part of) the program outlined at the beginning of this section for the transfor-
mations in F (X) [Q(X)], where X is infinite [X = N].

Transformations with stabilizers.
Following [40], we define the stabilizer of ↵ 2 T (X) as the smallest integer s � 0 such that

im(↵

s

) = im(↵

s+1

). If such an s does not exist, we say that ↵ has no stabilizer. The transformations
that have the stabilizer have been described in terms of their digraphs in [8].
Problem. Carry out (part of) the program outlined at the beginning of this section for the transfor-
mations with stabilizer, for an infinite X [X = N].

Cayley functions.
A transformation ↵ 2 T (X) is called a Cayley function if there is a binary operation ⇤ on X

such that (X, ⇤) is a semigroup and ↵ is an inner translation of the semigroup; that is, there exists
a 2 X such that for every x 2 X , x↵ = x ⇤ a. The algebraic description of the Cayley functions
has been given in [40]. The digraphs of the Cayley functions have been characterized in [8].
Problem. Carry out (part of) the program outlined at the beginning of this section for the Cayley
functions [Cayley functions with stabilizer], for an infinite X [X = N].

Transformations with large contraction index and collapse.
Let X be an infinite set and let ↵ 2 T (X). The kernel of ↵ is the relation {(x, y) 2 X ⇥X :

x↵ = y↵}. By X/ker(↵) we denote the partition of X induced by ker(↵), that is, X/ker(↵) =

{x↵�1

: x 2 X}. The defect d(↵) of ↵ is the cardinal |X \ im(↵)|; the contraction index k(↵)

of ↵ is the number of classes in X/ker(↵) of size |X|; and the collapse c(↵) of ↵ is the cardinal
|X \ T

↵

|, where T

↵

is a cross-section of the partition X/ker(↵).
The importance of these parameters comes from the following two results proved in [17] (see

also [9]), where it has been established when the symmetric group Sym(X) [the set of idempotents
E(X) in T (X)], with two extra elements, generates T (X).

Theorem 6.1. ([17, Theorem 4.1]) Let X be an infinite set such that |X| is a regular cardinal.
Then, for all µ, ⌫ 2 T (X), hSym(X), µ, ⌫i = T (X) if and only if {µ, ⌫} consists of an injection of
defect |X| and a surjection of contraction index |X|.

Theorem 6.2. ([17, Theorem 6.1]) Let X be an infinite set and let E(X) denote the set of idempo-
tents of T (X). Then, for all µ, ⌫ 2 T (X), hE(X), µ, ⌫i = T (X) if and only if {µ, ⌫} consists of
an injection of defect |X| and a surjection of collapse |X|.

Problem. Carry out (part of) the program outlined at the beginning of this section for the surjective
transformations ↵ 2 T (X) such that every class in X/ker(↵) has size |X| [↵ has collapse |X|].
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Transformations associated with maximal subsemigroups of T (X)

We say that S  T (X) is a maximal subsemigroup of T (X) if S 6= T (X) and for all
↵ 2 T (X) \ S, S together with ↵ generate T (X). For ↵ 2 T (X), let d(↵), c(↵), and k(↵)

be, respectively, the defect, collapse, and contraction index of ↵ (as defined above). For an infinite
set X of regular cardinality, all maximal subsemigroups of T (X) containing Sym(X) have been
described in [12]:

Theorem 6.3. Let X be any infinite set such that |X| is a regular cardinal, and let M be a subsemi-
group of T (X) containing the symmetric group Sym(X). Then M is maximal if and only if M is
one of the following semigroups:

(1) {↵ 2 T (X) : c(↵) < µ or d(↵) � µ}, for some infinite cardinal µ  |X|;

(2) {↵ 2 T (X) : c(↵) = 0 or d(↵) > 0};

(3) {↵ 2 T (X) : k(↵) < |X|};

(4) {↵ 2 T (X) : c(↵) � µ or d(↵) < µ}, for some infinite cardinal µ  |X|;

(5) {↵ 2 T (X) : c(↵) > 0 or d(↵) = 0}.

Problem. Carry out (part of) the program outlined at the beginning of this section for the transfor-
mations in each one of the sets defined in Theorem 6.3.

Endomorphisms.
For a mathematical structure A with universe X , let End(A) denote the monoid of endo-

morphisms of A (see [6] and [7]). Then End(A) is a subsemigroup of T (X). For example, if
A = (X, ⇢, R), where X is a set, ⇢ is an equivalence relation on X , and R is a cross-section of X/⇢,
then the elements of End(A) are the maps in T (X) that commute with the unique idempotent in
T (X) that has image R and kernel ⇢ (see [4] and [5]).
Problem. (Suggested by J.D. Mitchell.) Carry out (part of) the program outlined at the beginning
of this section for the endomorphisms of various mathematical structures A with universe X , for
example for the endomorphisms of a given partial order on X or the endomorphisms of a given
graph with X as the set of vertices. (See [32].)

Surjective transformations.
It is easy to see that a transformation ↵ 2 T (X) is surjective if and only if it does not have any

maximal right rays or finite branches.
Problem. Carry out (part of) the program outlined at the beginning of this section for the surjective
transformations, for an infinite X [X = N]. (See also [33].
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