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Abstract—For many years it was thought that the function of RNA was limited to the process of producing
proteins. In recent years, scientific discoveries have been proving the multiple roles of different RNAs in dif-
ferent regulatory mechanisms. These RNA’s are collectively called non-coding RNA’s (ncRNA’s). This
review presents the latest advances on the different classes of non-coding RNA’s (ncRNA’s) from their func-
tion to mechanisms of action. Special emphasis is given to the long non-coding RNAs as new regulatory ele-
ments in eukaryote gene expression and in the processes of epigenetic regulation in plants. We believe that
increasing studies of regulatory non-coding RNAs in plants will provide a better understanding of the differ-
ent types of genes related to crop resistance.
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CENTRAL DOGMA OF MOLECULAR 
BIOLOGY

Genes are nucleotide segments responsible for
containing the information necessary for the synthesis
of biologically active and functional products such as
[1] for example proteins. The importance of under-
standing the functioning of the different types of rep-
resentative genomes of each species, led to the emer-
gence of a new science, genomics. According to the
National Human Genome Research Institute,
genomics is defined as the study of all the genes of a
species (its genome), including their gene interactions
and interactions with the environment.

The central dogma of molecular biology indicates
that a DNA molecule is transcribed into an RNA mol-
ecule, which in turn is translated into a protein [2].
Protein synthesis has two phases: (I) transcription;
and (II) translation. In transcription, the DNA mole-
cule is opened by breaking the hydrogen bonds that
unite the nucleotides to allow the enzyme RNA poly-
merase to copy the information and synthesize the
messenger RNA (mRNA) in the 5' to 3' direction. It is
also important to mention that it is during the tran-
scription phase that a very important process called
splicing occurs, in which the pre-mRNA can undergo
some modifications, namely with the removal of
introns but also, in some cases, of exons.

After transcription, translation begins, this process
takes place in the cytoplasm, more precisely in the
ribosomes. There, the codons of the mRNA are paired
with their corresponding anticodons of a molecule of
transfer RNA (tRNA), which carries the amino acids.
Each codon represents a three-nucleotide sequence
that depicts a single amino acid of the genetic code, or
a termination signal. Protein translation always starts
with the initiation codon (AUG) and ends with one of
the stop codons (UAG, UAA, or UGA). The result of
this whole process is the formation of a protein [3, 4].

In 1970, when the central dogma of molecular biol-
ogy was first presented, researchers thought that the
only function of RNA’s was to ensure the production
of proteins from DNA. They were convinced that
RNA’s had no other function besides this process. How-
ever, in recent years, new scientific discoveries have
proven that there is a variety of non-coding RNA mole-
cules capable of performing several important roles in the
cellular structure as a whole [5–8]. Next, we will present
some of the functions of non-coding RNAs.

CLASSES OF ncRNAs
The transcriptome is the set of RNA cells expressed

in a particular tissue [9]. According to some authors
[10–12], above than 90% of the human genome is
transcribed, but, only about 2% represent protein-
coding genes (Fig. 1). This indicates that most tran-
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Table 1. Small ncRNAs are classified according to their possible functions within the cell [20–25]

Name Meaning Function

miRNA MicroRNA Putative translational regulatory gene family
siRNA Small interfering RNA Active molecules in RNA interference
endo-siRNA Endogenous small interfering RNAs Acts as post-transcriptional regulator that target RNAs
snRNA Small nuclear RNA Includes spliceosomal RNAs
snoRNA Small nucleolar RNA Most known snoRNAs are involved in rRNA modification
stRNA Small temporal RNA Interrupt the translation of mRNAs
piRNA Piwi-interacting RNAs Acta in the regulation of translation and mRNA stabilization
rasiRNA Small interfering RNA Acts in the silencing of gene transcription through chromatin
vtRNA vault RNA Located at a conserved genomic locus linked to the protocad-

herin gene cluster
Y RNA Y RNA Associated with chromosomal DNA replication
scribed genes create non-functional RNAs (ncRNAs),
whose functions are characterized especially as main-
tenance or non-regulatory RNAs [10–12], whose
encodings are different in cellular metabolism [13].

In addition, ncRNAs have demonstrated import-
ant functions in cell structure, as well as in catalytic
and regulatory processes in the cell [14], such as regu-
lation of gene expression [15, 16], regulation of protein
synthesis or of other nucleic acids, including DNA
and other types of RNA [17–19].

Another important feature of ncRNAs is that the
fact that another protein is not produced from a tran-
script is not a sufficient requirement to characterize an
ncRNA, because in some, this transcript may end up
being translated once exposed to environmental or
physical conditions [5, 20]. This is one of the main
problems encountered by computational methods to
classify RNAs.
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NcRNAs are divided into two subclasses: NcRNAs
called small or short non-coding RNAs such as
miRNAs, siRNAs, snRNAs, endo-siRNAs, snoRNAs,
stRNAs, piRNAs, rasiRNAs, vtRNAs, Y RNAs
(Table 1) [21–26] and long non-coding RNAs
(lncRNAs) which include the Xist, Evf, Ar, CTN and
PINK [27–30]. The miRNAs, belonging to a subclass
of short non-coding RNAs, have become quite nota-
ble in research, mainly because they play important
roles in the regulation of various cellular processes,
being in some cases used as potential treatment targets
or biomarkers [31, 32]. RNA polymerase II is respon-
sible for transcribing miRNAs. The miRNAs are
endogenous molecules of ribonucleic acid (RNA),
non-coding, with about 22 nucleotides (nt), act as reg-
ulators of gene expression in plants and animals, at the
post-transcriptional level through the cleavage of a
messenger RNA (mRNA) target or translation repres-
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sion. Their main function is to act as post-transcrip-
tional silencers, as they pair with specific mRNAs and
regulate their stability and translation. Each miRNA
can have hundreds or thousands of targets, and an
mRNA can be inhibited by different miRNAs. Plant
miRNAs are a near perfect match to their mRNA tar-
gets and induce gene repression through cleavage of
target transcripts [33, 34].

MECHANISM OF ACTION OF miRNAs

The functional miRNA is related to the Argonaut 2
(Ago2) protein as it is part of the RNA-induced silenc-
ing complex (RISC). The miRNA directs the RISC
complex to interact with the target mRNA, aided by
the complementarity between the miRNA seed
sequence (nt 2–7) and the target mRNA sequences
that are usually located at the 3' UTR end [35]. How-
ever, these sequences can also be found at the 5' UTR
end and in the coding sequence itself. The interaction
between the miRNA and its target mRNA in the RISC
complex causes the silencing of mRNA expression
through two possible mechanisms: (I) If the comple-
mentarity between the miRNA and the mRNA is per-
fect, Ago2 endonucleolytically cuts the mRNA, caus-
ing the its degradation directly; (II) If the complemen-
tarity is imperfect, as is most often found in animal
cells, the mRNA is translationally repressed through
its destabilization by shortening the polyA at the 3' end
and the loss of its 5' cap structure [36]. According to
the authors O’Connell et al. [37], the synthesis of tar-
get mRNA proteins is repressed between 1.2 and
4 times, so that miRNAs are designated as fine regula-
tors of gene expression. Furthermore, the same
miRNA can have several target mRNAs and vice
versa, i.e., the same mRNA can be regulated through
several miRNAs [38], which normally belong to the
same family of miRNAs, creating networks complex
regulatory processes through which combinations of
miRNAs with mRNAs can occur. According to the
authors Ala et al. [39], the complexity of the regulatory
network mediated by miRNAs increases considerably
if we add the fact that miRNAs can be “steeled” by
endogenous competing RNAs (ceRNAs) to prevent
their function repressive.

LONG NON-CODING RNAs AS NEW 
REGULATORY ELEMENTS IN EUKARYOTE 

GENE EXPRESSION

One of the major changes caused by NGS (Next
Generation Sequencing) was the fact that it allowed to
obtain a huge volume of data at relatively low prices,
when compared to those initially practiced [40, 41].
Developments in sequencing techniques have shown
that, contrary to what was supposed, most eukaryotic
genomes are transcriptionally active [41].

Thanks to advances in sequencing platforms, it was
possible to identify numerous non-coding transcripts
(ncRNAs) with numerous biological functions hith-
MOLECULAR GENETICS, MICR
erto unknown [42, 43]. In general, lncRNAs can be
found both in the nucleus and in the cytoplasm and
their levels are lower than those of protein-coding
RNAs, moreover, their expression is usually tissue-
specific [44, 45]. According to some authors [46, 47],
lncRNAs are less conserved at the sequence level than
mRNAs, however, at the level of their secondary
structures, they appear to be highly conserved. Thanks
to the new sequencing technologies mentioned above,
it was also possible to build a database of Long non-
coding RNA in plants (PLncDB V2.0), using more
than 1246372 lncRNAs from 80 plant species [48].

lncRNAs are usually catalogued based on the loca-
tion they occupy in relation to nearby annotated genes.
Thanks to this, it is possible to distinguish between
lncRNAs located in intergenic regions (intergenic
lncRNAs) and lncRNAs that are overlapping with the
sequence of a nearby gene [49, 50] (Fig. 1). Still
regarding IncRNAs that overlap with the sequence of
a nearby gene, these may be located totally or partially
within an intron (intronic lncRNAs) or in some cases,
directly overlapping with the sequence of an exon. How-
ever, if the lncRNA is transcribed in the same direction as
the gene it is identified as sense lncRNA, and if it is in the
opposite direction, it is identified as natural antisense
lncRNA (NAT-AS) [51, 52]. In some situations, the
position of lncRNA in the genome is closely related to
the function it performs [51, 52].

LONG NON-CODING RNAs IN PLANTS

Plants do not have the ability to move around like
other living beings, however, they have developed
numerous molecular mechanisms that help them
adapt to the most varied stresses to which they are
constantly subjected. The stresses caused to plants are
mainly due to attacks by pathogens, but also to envi-
ronmental stresses such as drought and high and low
temperatures [53].

In recent years, several groups of researchers [54–
61] have carried out transcriptomic analyzes in more
than 38 plant species with the objective of identifying
lncRNAs,  as was the case of Zea mays, Oryza sativa,
Solanum lycopersicum, Solanum tuberosum, Glycine
max, Medicago truncatula or Arabidopsis thaliana.
Unlike mRNAs, lncRNAs do not have the ability to
encode proteins of their own, they usually act as struc-
tural, catalytic, or regulatory molecules [62].

Some studies carried out [63–72] showed that
IncRNAs were associated with essential biological
processes, such as the protection of genome integrity,
transport of auxins, response to pathogen attacks,
alternative splicing, photomorphogenesis, phosphate
homeostasis, response to abiotic stress situations or in
flowering. In Table 1 we can see a list of long non-cod-
ing RNAs (lncRNAs) identified in plants under fungal
pathogen stress.

IncRNAs can also interact with miRNAs, accord-
ing to the authors [73], sometimes the lncRNA can be
OBIOLOGY AND VIROLOGY  Vol. 38  No. 4  2023
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Fig. 2. lncRNAs used to “attract” the miRNA and pair with it, thereby preventing interaction between the miRNA and its target
genes allowing regulation of miRNA target gene function. Adapted from [53].
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Fig. 3. Some functions of various IncRNAs in plant. Adapted from [53].

Bacterial or fungal infection:

Vernalization:

Heavy metal: XLOC_066284 ...

Root development:

Leaf morphology and development: TI, ALEX1 ...
lncRNA33732, lncRNA16397, GhlncNAT  ...
ANX2, GhlncNAT-RLP7 ...

Element deficiency: MSTRG.85814.11 ...

Fruit ripening: lncRNA1459 ...COOLAIR, COLDWRAP, COLDA1R, MAS  ...

Flower formation: BcMFll ...

ASCO, ENOD40, APOLO ...

Cold: SVALKA ...

Salt: DRIR

Heat: TahlnRNA27 ...
used to “attract” the miRNA and pair with it, thus
preventing the interaction between the miRNA and its
downstream target genes, allowing the regulation of
the target gene function. of the miRNA (Fig. 2).

TRANSCRIPTIONAL REGULATORY 
PROCESSES MEDIATED BY lncRNAs 

IN PLANTS

In 2018, Kindgren and his collaborators [67] car-
ried out a study that allowed the analysis of an
MOLECULAR GENETICS, MICROBIOLOGY AND VIRO
IncRNA implicated in the control of the acclimatiza-
tion process of the Arabidopsis species at low tempera-
tures, this antisense IncRNA was called SVK. SVK
receives the designation of antisense because its
expression is induced after that of the CBF1 gene and
interrupts its transcription. Kindgren and colleagues
[67] proposed that CBF1 expression is being downreg-
ulated by SVK, thanks to a co-transcriptional collision
process of RNA polymerase II.

According to the authors Seo et al. [69], a lncRNA
designated by ELENA1 is implicated in the activation
LOGY  Vol. 38  No. 4  2023
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of the Arabidopsis immune response. That is, accord-
ing to the same authors, the expression of this
IncRNA is induced by the presence of elf18 and flg22
response elicitors to pathogens, which interact with
the 19a subunit of the mediator complex. This interac-
tion that occurs between elf18 and flg22 with the 19a
subunit is extremely important to be able to direct the
mediator complex to the promoter region of the PR1
gene. The PR1 gene is responsible for encoding a pro-
tein that aids in the immune response [69].

EPIGENETIC REGULATORY PROCESSES 
MEDIATED BY lncRNAs IN PLANTS

Some authors [74, 75] have described and charac-
terized the function of several IncRNAs (Fig. 3), func-
tions such as, namely, participating in the control of
gene expression at the epigenetic level. According to
Nejat and Mantri 2017 and Tian et al. [75, 76], the
IncRNAs COLDWRAP, COOLAIR and COLDAIR
are associated with the vernalization process of some
plants, a process that allows plants to transition to the
reproduction phase after being exposed to a long
period of cold (however, not all plants have this ability
to carry out the vernalization process). The IncRNAs
collaborate in the transcriptional repression of the
FLC gene, this gene was identified as being an inhibi-
tor of f loral transition throughout the vernalization
process [77–79].

Another lncRNA involved in the epigenetic control
of some plants, namely in gene expression is APOLO.
APOLO is a lncRNA transcribed by polymerases II
and V and is normally located in the promoter region
of the PID gene, which is responsible for regulating
auxin transport in Arabidopsis [65, 80]. The expres-
sion of PID and APOLO is activated by auxins [65].
That is, APOLO interacts with the LHP1 protein tak-
ing it to the PID promoter region [65]. In this region,
the interaction of LHP1 with chromatin promotes the
formation of a loop, which is responsible for the
decrease in the expression of PID and APOLO itself,
enabling the correct development of the root [65].

lncRNA33 732 and lncRNA16397 respond to infec-
tions caused by pathogens [81, 82]. GhlncNAT-ANX2
and GhlncNAT-RLP7 are a pair of lncNRAs that act in
the regulation of pathogenic infection but are also
associated with increased disease resistance in cotton
[83]. lncRNA1459 play a role in the fruit ripening pro-
cess [84]. ASCO alters root development [85]. enod40
acts in the formation of root nodules [86].
MSTRG.85814.11 intervenes  in  the  response   caused
by  iron  deficiency [87]. XLOC 086307, XLOC 086119
and XLOC 066284 act in response to the heavy metal
cadmium [88].

CONCLUDING REMARKS

The area of investigation of ncRNAs has under-
gone rapid and important changes over the last few
MOLECULAR GENETICS, MICR
years, demonstrating the importance that these
nucleic acids have in cell biology, thus contradicting
what was initially thought. It is expected that this new
field of knowledge will enable the development of new
drugs that will be used in personalized medicine for
the human being. However, it is important to mention
that further studies are needed, namely in terms of
pharmacokinetics or their use in terms of biomarkers,
as for example in the case of miRNAs in which they
are used as circulating biomarkers in body f luids.

Regarding the use of nRNAs in plants, these have
been used in the treatment of several phytopatholo-
gies, helping the development of several techniques
associated with a considerable improvement in the
agricultural sector. Unlike the animal kingdom, plants
obey systemic signals, signals that come from the sites
of infection and whose function is to trigger innate
immunity through resistance genes (R). However,
these genes are often overtaken by the existence of epi-
demic pathogens. In this sense, knowing better the
mechanisms of resistance can be fundamental in the
control of numerous diseases and in the reduction of
crop losses. Plant resistance mechanisms involve thou-
sands of genes, including lncRNAs. Characterization of
the function of lncRNAs in plants remains quite limited
and one of the reasons is the lack of sequence similarity
of homologous lncRNAs in cultures.

We believe that increasing studies of regulatory
non-coding RNAs in plants will provide a better
understanding of different types of genes related to
crop resistance. Furthermore, a better understanding
of ncRNAs may be beneficial for the development of
new tools that use resistance genes for the biotechno-
logical improvement of crops.
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