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Abstract

In [2] Molaei introduces generalized groups, a class of algebras of interest
to physics, and proves some results about them.

The aim of this note is to prove that Generalized Groups are the Com-
pletely Simple Semigroups.

Mathematics subject classification: 20M20.

1 The Main Theorem

Let G be a groupoid, that is, G = (G, f) where X is a non-empty set and f is a
binary operation f : G × G → G. As usual, for a, b ∈ G, we denote f(a, b) by ab.
Suppose that G satisfies the following axioms:

(M1) (∀x,y,z∈G) (xy)z = x(yz);

(M2) (∀x∈G)(∃
1
e(x)∈G) xe(x) = x = e(x)x;

(M3) (∀x∈G)(∃x−1∈G) xx
−1 = e(x) = x−1x.

In [2] Molaei introduces these groupoids and calls them Generalized Groups.
However, since the name Generalized Group already appears in literture defining
a different algebraic structure, we are going to call the groupoids satisfying (M1)-
(M3) Molaei’s Generalized groups. It is well known that a groupoid satisfying (M1)
is called a Semigroup.

We start by giving an example of a Molaei’s generalized group. Let I, L be two
nonempty sets and let G be a group. Moreover, let P = (pl,i)l∈L,i∈I be a L × I

matrix with entries in G. In I × G × L consider the following product: for all
(i, g, l), (j, h,m) ∈ I ×G× L,

(i, g, l)(j, h,m) = (i, gpm,jh,m).

It is easy to verify that I × G × L with this product is a semigroup which will be
denoted by M(G; I, L;P ).
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Now let (i, g, l) ∈ M(G; I, L;P ) and consider the element (i, p−1
l,i , l) ofM(G; I, L;P ).

We claim that (i, p−1
l,i , l) is the unique element e ∈ M(G; I, L;P ) such that (i, g, l)e =

e(i, g, l) = (i, g, l) and hence M(G; I, L;P ) satisfies (M1). In fact

(i, g, l)(i, p−1
l,i , l) = (i, gpl,ip

−1
l,i , l) = (i, g, l)

and

(i, p−1
l,i , l)(i, g, l) = (i, p−1

l,i pl,ig, l) = (i, g, l).

Now suppose that (i, g, l)(j, h,m) = (i, g, l). Then (i, gpl,jh,m) = (i, g, l) and hence
l = m, p−1

l,j = h. In the same way, (j, h,m)(i, g, l) = (i, g, l) implies j = i and

p−1
m,i = h. Thus l = m, i = j and p−1

l,j = p−1
l,i = p−1

m,j = h. Thus (j, h,m) = (i, p−1
l,i , l).

It is proved that (i, p−1
l,i , l) = e((i, g, l)) and hence M(G; I, L;P ) satisfies (M1).

To prove that M(G; I, L;P ) satisfies (M2), let (i, g, l) ∈ M(G; I, L;P ) and
consider the element (i, p−1

l,i g
−1p−1

l,i , l) of M(G; I, L;P ). It is obvious that

(i, p−1
l,i g

−1p−1
l,i , l)(i, g, p) = (i, g, p)(i, p−1

l,i g
−1p−1

l,i , l) = (i, p−1
l,i , l) = e((i, g, p))

and hence M(G; I, L;P ) is a generalized group. In the main theorem we prove that
every generalized group is isomorphic to some semigroup M(G; I, L;P ). But before
stating the main theorem we introduce a definition.

A semigroup S is said to be Completely Simple if

(C1) SaS = S, for all a ∈ S;

(C2) If e, f ∈ S are idempotents (that is, e2 = e and f 2 = f) and e = ef = fe,
then e = f .

Theorem 1.1 Let S be a semigroup. The following are equivalent:

(1) S is isomorphic to some M(G; I, L;P );

(2) S is completely simple;

(3) S is a Molaie’s generalized group.

Proof: We have proved above that every semigroup M(G; I, L;P ) is a Molaie’s
generalized group. Therefore (1) implies (3).

That (2) implies (1) follows from Rees Theorem, the most famous theorem in
Semigroup Theory. An account of this theorem can be found in [1] (Chapter 3).

It remains to prove that (3) implies (2). Observe first that for all idempotent
e ∈ S we have e(e) = e (because ee = ee = e). Now suppose that we have two
idempotents e, f ∈ S such that e = ef = fe. Then, by (M2), e(e) = f and hence
e = f (because e(e) = e, for all idempotents in S). Condition (C2) is proved.
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Now observe that Se(x)S = SxS, for all x ∈ S. In fact x = e(x)e(x)x (because,
by (M2), e(x)e(x)x = e(x)x = x) and hence SxS ⊆ Se(x)S. Conversely,

e(x)xx−1 = xx−1xx−1 = x(x−1x)x−1 = xe(x)x−1 = xx−1 = e(x).

Thus e(x) = e(x)xx−1 and hence Se(x)S ⊆ SxS. Thus, for all x ∈ S, we have
Se(x)S = SxS.

To prove (C1) we want to prove that S ⊆ SyS, for all y ∈ S. Thus let x, y ∈ S.
We claim that x ∈ SyS. In fact, let z = e(x)ye(x). It is obvious that ze(x) =
e(x)z = z and hence, by (M2), e(z) = e(x). Now

x ∈ Se(x)S = Se(z)S = SzS = Se(x)ye(x)S ⊆ SyS.

It is proved that S ⊆ SyS, for all y ∈ S, and hence S is completely simple. The
theorem follows.

Finally we observe that [2] there is a problem with the proof of Theorem 2.3.
Let S be a Molaei’s generalized group and x ∈ S. Then let R(X) = {y ∈ S | xy =
e(x) = yx}. In the referred theorem it is proved that |R(x)| = 1 but the proof uses
the unproved assumption that e(x)e(x−1) = e(x−1)e(x).

Lemma 1.2 Let S be a Molaei’s generalized group. Then the following are equiva-

lent

(a) e(x) = e(x−1), for every x ∈ S, x−1 ∈ R(x).

(b) (x−1)−1 = x, for every x ∈ S, x−1 ∈ R(x) and (x−1)−1 ∈ R(x−1).

(c) x−1xx−1 = x−1, for every x ∈ S, x−1 ∈ R(x).

(d) |R(x)| = 1, for every x ∈ S.

(e) e(x)e(x−1) = e(x−1)e(x), for every x ∈ S, x−1 ∈ R(x).

Proof: We start by proving that (a) implies (b). Let x ∈ S and x−1 ∈ R(x). Then

e(x−1) = x−1(x−1)−1 ⇒ xe(x−1) = xx−1(x−1)−1

⇒ xe(x−1) = e(x)(x−1)−1

⇒ xe(x) = e(x−1)(x−1)−1(by (a))
⇒ x = (x−1)−1

thus proving (b).
To prove that (b) implies (c), let x ∈ S, x−1 ∈ R(x) and (x−1)−1 ∈ R(x−1). Then

we have

x−1(x−1)−1 = e(x−1) ⇒ x−1(x−1)−1x−1 = e(x−1)x−1

⇒ x−1(x−1)−1x−1 = x−1

⇒ x−1xx−1 = x−1 (by (b))
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and (c) follows.
To prove that (c) implies (d), let y, z ∈ R(x). Then we have

y = yxy = y(xy) = ye(x) = y(xz) = (yx)z = e(x)z = (zx)z = z,

where the first and last equality follow from (c). It is proved that |R(x)| = 1.
Conversely, (d) implies (c). In fact, let x−1 ∈ R(x). Then

x(x−1xx−1) = (xx−1)(xx−1) = e(x)xx−1 = xx−1 = e(x)

and

(x−1xx−1)x = x−1xe(x) = x−1x = e(x).

Thus x−1xx−1 ∈ R(x) and hence, by (d), x−1xx−1 = x−1.
We prove now that (c) implies (a). In fact, for all x ∈ S and x−1 ∈ R(x), we

have e(x)x−1 = x−1xx−1 = x−1 and x−1e(x) = x−1xx−1 = x−1. Thus e(x) = e(x−1).
Thus the first four conditions are all equivalent.

Finally, it is obvious that (a) implies (e). Conversely, let x ∈ S and x ∈ R(x).
Then

e(x)e(x−1) = e(x−1)e(x) ⇒ e(x)e(x−1)x−1 = e(x−1)e(x)x−1

⇒ e(x)x−1 = e(x−1)e(x)x−1

⇒ e(x)x−1x = e(x−1)e(x)x−1x

⇒ e(x)e(x) = e(x−1)e(x)e(x)
⇒ e(x) = e(x−1)e(x).

Now

e(x) = e(x−1)e(x) ⇒ e(x)x = e(x−1)e(x)x ⇒ x = e(x−1)x.

Similarly,

e(x) = e(x)e(x−1) = e(x−1)e(x) ⇒ xe(x) = xe(x−1)e(x) ⇒ x = xe(x−1).

It is proved that e(x) = e(x−1). The lemma follows.

It is easy to prove, using Theorem 1.1, that each one of the equivalent conditions
in the previous lemma hold in a Molaei’s generalized group. However, we provide a
direct proof for (a).

Lemma 1.3 Let x ∈ S and x ∈ R(x). Then e(x) = e(x−1).

Proof: Let x ∈ S. Then

e(x)e(x−1) = (xx−1)((x−1)−1x−1)
= x(x−1(x−1)−1)x−1

= xe(x−1)x−1

= x(e(x−1)x−1)
= xx−1

= e(x).
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Similarly we prove that e(x−1)e(x) = e(x). Thus it is proved that

e(x)e(x−1) = e(x) = e(x−1)e(x). (1)

On the other hand

e(x)e(x) = (xx−1)(xx−1) = x(x−1x)x−1 = xe(x)x−1 = (xe(x))x−1 = xx−1 = e(x).
(2)

Thus, by (M2) together with (1) and (2), it follows that e(x) = e(x−1). The lemma
follows.
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