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Molaie’s Generalized Groups are Completely
Simple Semigroups

Joao Aratjo Janusz Konieczny

Abstract

In [2] Molaei introduces generalized groups, a class of algebras of interest
to physics, and proves some results about them.

The aim of this note is to prove that Generalized Groups are the Com-
pletely Simple Semigroups.

Mathematics subject classification: 20M20.

1 The Main Theorem

Let G be a groupoid, that is, G = (G, f) where X is a non-empty set and f is a
binary operation f : G x G — G. As usual, for a,b € G, we denote f(a,b) by ab.
Suppose that G satisfies the following axioms:

(M1) (Vay..ca) (zy)z = 2(yz);
(M2) (%) (3 ) w6(e) = 7 = e(0)s;
(M3) (Vaeq)(Fo-1eg) zx7t =e(z) = 27 '

In [2] Molaei introduces these groupoids and calls them Generalized Groups.
However, since the name Generalized Group already appears in literture defining
a different algebraic structure, we are going to call the groupoids satisfying (M1)-
(M3) Molaei’s Generalized groups. 1t is well known that a groupoid satisfying (M1)
is called a Semigroup.

We start by giving an example of a Molaei’s generalized group. Let I, L be two
nonempty sets and let G be a group. Moreover, let P = (p;;)iepier be a L x I
matrix with entries in G. In I x G x L consider the following product: for all
(1,9,0),(j,h,m) € I x G X L,

(ia g, l)(]v h7 m) = ('La gpm,jha m)

It is easy to verify that I x G x L with this product is a semigroup which will be
denoted by M(G; I, L; P).
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Now let (i, g,1) € M(G; I, L; P) and consider the element (i,p;il, ) of M(G; 1, L; P).
We claim that (z’,pl_j, [) is the unique element e € M(G; I, L; P) such that (i,g,l)e =
e(i,g,0) = (i,9,1) and hence M(G; I, L; P) satisfies (M1). In fact

(Z.a g, l)(zapl_ﬂla l) = (Za gpl,ipl_;’ l) - (Za g, l)

and

(iapZilal)(iagv l) = (i’pZilpl,igal) = (iaga l)

Now suppose that (i, g,1)(j, h,m) = (i,9,1). Then (i, gp; ;h,m) = (i, ¢,1) and hence
I = m, plfjl = h. In the same way, (j,h,m)(i,9,1) = (i,g,0) implies j = i and
p;b = h. Thus [ = m,i = j and pljjl = pl_j = p;;j = h. Thus (j,h,m) = (z’,pl_j, ).
It is proved that (i,p,},1) = e((4,g,1)) and hence M(G; I, L; P) satisfies (M1).

To prove that ./\/lv(G; I, L; P) satisfies (M2), let (i,9,1) € M(G;I,L;P) and
consider the element (z’,plfilg_lplfil, ) of M(G; I, L; P). It is obvious that

(i, 9 o D (i g.p) = (,9.0) (6o 97 o 1) = (6o 1) = e((i, 9,p)

and hence M(G; I, L; P) is a generalized group. In the main theorem we prove that
every generalized group is isomorphic to some semigroup M(G; I, L; P). But before
stating the main theorem we introduce a definition.

A semigroup S is said to be Completely Simple if

(C1) SaS =S, foralacs;

(C2) If e, f € S are idempotents (that is, e = e and f2 = f) and e = ef = fe,
then e = f.

Theorem 1.1 Let S be a semigroup. The following are equivalent:
(1) S is isomorphic to some M(G; I, L; P);

(2) S is completely simple;

(3) S is a Molaie’s generalized group.

Proof: We have proved above that every semigroup M(G; 1, L; P) is a Molaie’s
generalized group. Therefore (1) implies (3).

That (2) implies (1) follows from Rees Theorem, the most famous theorem in
Semigroup Theory. An account of this theorem can be found in [1] (Chapter 3).

It remains to prove that (3) implies (2). Observe first that for all idempotent
e € S we have e(e) = e (because ee = ee = e). Now suppose that we have two
idempotents e, f € S such that e = ef = fe. Then, by (M2), e(e) = f and hence
e = f (because e(e) = e, for all idempotents in S). Condition (C2) is proved.



Now observe that Se(z)S = SzS, for all z € S. In fact z = e(x)e(z)x (because,
by (M2), e(z)e(x)r = e(x)x = x) and hence SzS C Se(z)S. Conversely,

1 1 1
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e(z)rx™ =2z 'r)z 7 = ze(x)r! = vt = e(n).

Thus e(x) = e(z)zx~' and hence Se(x)S C SzS. Thus, for all z € S, we have
Se(x)S = SzS.

To prove (C'1) we want to prove that S C SyS, for all y € S. Thus let z,y € S.
We claim that x € SyS. In fact, let z = e(z)ye(x). It is obvious that ze(x) =
e(x)z = z and hence, by (M2), e(z) = e(z). Now

x € Se(x)S = Se(z)S = S5z5 = Se(z)ye(x)S C SyS.

It is proved that S C SyS, for all y € S, and hence S is completely simple. The
theorem follows. W

Finally we observe that [2] there is a problem with the proof of Theorem 2.3.
Let S be a Molaei’s generalized group and = € S. Then let R(X) ={y € S | zy =
e(r) = yx}. In the referred theorem it is proved that |R(x)| = 1 but the proof uses
the unproved assumption that e(x)e(z™1) = e(x™1e(z).

Lemma 1.2 Let S be a Molaei’s generalized group. Then the following are equiva-
lent

(a) e(zx) = e(z), for every x € S,2~' € R(x).

(b) (27! =z, for everyx € S,2~" € R(z) and (zx~)"" € R(z™1).
(c) z'wz~' = 27, for every x € S,2' € R(z).

(d) |R(z)| = 1, for everyz € S.

(e) e(@)e(z™!) = e(zV)e(z), for every x € S, 2" € R(x).

Proof: We start by proving that (a) implies (b). Let x € S and 27! € R(x). Then

e(z )=zt = ze(a™!) =gz (z)!
= ze(x ') =e(z)(z7!)!
= xe(z) =e(z7 ) (x71)"L(by (a))
= x=(z1)7!

thus proving (b).
To prove that (b) implies (c), let z € S,z7! € R(z) and (z')~! € R(z™'). Then
we have

r iz ) =elz™) = iz H e =e(zt)z?
e A € I e
= z lza~t =271 (by (b))



and (c) follows.
To prove that (c) implies (d), let y, z € R(z). Then we have

y = yry = ylry) = ye(r) = y(vz) = (yr)z = e(r)z = (22)2 = 2,

where the first and last equality follow from (c). It is proved that |R(x)| = 1.
Conversely, (d) implies (c). In fact, let 27 € R(z). Then

r(z o) = (227 (2! = e(z)zr™ = 227! = e(x)

and

(7 ez Do = 27 'ze(z) = 2712 = e(2).
Thus x 'zz~! € R(x) and hence, by (d), z7lzx™! = 271
We prove now that (c) implies (a). In fact, for all z € S and 27! € R(z), w
have e(x)z™! =z lza™t = 271 and v te(x) = 27z~ = 271, Thus e(z) = e(x *1)
Thus the first four conditions are all equivalent.
Finally, it is obvious that (a) implies (e). Conversely, let z € S and = € R(z).

Then

e(x)e(z™!) = e(z71e(x)
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Now

Similarly,
e(r) = e(x)e(z™h) = e(z7Ve(z) = xe(x) = ve(r Ve(z) = x = ve(x ™).
It is proved that e(x) = e(z™1). The lemma follows. W
It is easy to prove, using Theorem 1.1, that each one of the equivalent conditions

in the previous lemma hold in a Molaei’s generalized group. However, we provide a
direct proof for (a).

Lemma 1.3 Let z € S and x € R(x). Then e(x) = e(z™").
Proof: Let x € S. Then

e(r)e(z™) = (za H)((z7 1) tz™t
= z(z N (z7H)Hz!
= ze(z )zt
= e(x).



Similarly we prove that e(x~1)e(x) = e(x). Thus it is proved that

e(z)e(z™h) = e(z) = e(x V)e(n). (1)
On the other hand

e(z)e(z) = (zz M) (zz™!) = w(z o)™ = ze(x)z ™ = (ze(2))r ™ =227 = e(2).

Thus, by (M2) together with (1) and (2), it follows that e(x) = e(z™!). The lemma
follows. W
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