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Abstract Quasi arithmetic and Archimedean functionals

are used to build new classes of spectral densities for

processes defined on any d-dimensional lattice Z
d and

random fields defined on the d-dimensional Euclidean

space R
d, given simple margins. We discuss the mathe-

matical features of the proposed constructions, and show

rigorously as well as through examples, that these new

classes of spectra generalize celebrated classes introduced

in the literature. Additionally, we obtain permissible

spectral densities as linear combinations of quasi arithmetic

or Archimedean functionals, whose associated correlation

functions may attain negative values or oscillate between

positive and negative ones. We finally show that these new

classes of spectral densities can be used for nonseparable

processes that are not necessarily diagonally symmetric.

Keywords Archimedeanity � Lattice processes �
Nonseparability � Quasi arithmetic functionals � Random

fields � Spectral densities

1 Introduction

Modern mechanics of materials is largely driven by multiscale

problems. The label under which much is done is called

homogenization, where a deterministic approach is tacitly

adopted. This absence of statistics stands in stark contrast to

the recognition that most of heterogeneous matter is disor-

dered and does not display any spatial periodicity. As a result,

homogenization has to be stochastic in character, whereby one

is interested in resolution of phenomena on length scales

smaller than the so-called representative volume element

(RVE) and/or problems lacking a separation of scales, e.g.

(Ostoja-Starzewski 2002, 2008). The RVE should then be

replaced by a statistical volume element (SVE) and a deter-

ministic (usually homogeneous) field of material properties is

replaced by a random field (RF). The SVE plays the role of a

mathematical point in a macroscale problem. What follows

next is either a strict-sense stationary (SSS) or a wide-sense

stationary (WSS) model, the actual choice being dictated by

the extent of available information. In the second case, one

needs to set up a correlation function. A separate area of

continuum physics where such functions are needed is tur-

bulence, where the velocity field is also represented by WSS

models, e.g. (Rytov et al. 1989). Another setting of RFs than

the continuum-type models is offered by lattice-type systems,

where the lattice is a set of inclusions in a composite material

with a square-type micro-geometry but material randomness

occurring on each lattice site. These are so-called lattice

processes (LPs). Also here the first model one would consider

is a WSS LP, for which a correlation function is required. It

may well happen that in both cases—the continuum and the

discrete one—the geometry of microstructure is not only

random but also fractal. An extension of continuum ther-

momechanics in that direction has been taken in (Ostoja-

Starzewski 2007). The correlation functions developed in this
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paper could be used to formulate thermomechanics on LPs.

The construction of new classes of correlation functions and

spectral densities for LPs or RFs is also crucial to geostatistics

(Matheron 1989), and early literature has persistently

emphasized the need for new models that allow for generality

and desirable mathematical and statistical properties. In geo-

statistics the lattice is typically defined by the observer as a

square grid on the surface being analyzed. Clearly, in both the

lattice and the continuum case, having a good library from

which to choose such functions is crucial, and further devel-

oping such a library is the task undertaken in this article.

As pointed out in Whittle (1954), a lattice or RF model

can be built by starting from either a simple stochastic

representation, a simple correlation structure or even a

simple spectral density function. Considerable difficulties

arise whenever the modeling approach is oriented to a

global picture, that is, specifying all the three structures.

This is confirmed for instance, by the literature on planar

lattices, that finds a taxonomy in the celebrated categories

of SAR (simultaneous autoregressive), CAR (conditional

autoregressive; see Besag 1974) and unilateral ARMA

models, and all these models, with exception to Martin

(1996), have been proposed for the bidimensional case

only. There are problems with CAR (and SAR) processes,

as their covariance structures, as well as the elements of

their inverse variance matrices corresponding to both sites

on the boundary, are very difficult to obtain.

In the light of these difficulties, it seems reasonable to

choose one of the three possible modeling strategies indicated

before, knowing the tradeoff between them. In this article, we

propose new classes of nonseparable spectral densities for

either processes defined on infinite regular lattices of Zd or

RFs defined on R
d. We shall show that our approach allows

for building nonseparable spectral structures starting from

simple margins, and sometimes permits to specify the corre-

sponding correlation function, although the associated

stochastic representation is all but trivial.

Our choice is motivated by the fact that a nonnegligible part

of the (spatial) statistical community is interested in the spec-

ification of new models of spectral densities for nonseparable

processes (Gneiting et al. 2007). Spectral techniques have been

increasingly used, mainly in the last 10 years, for modeling

LPs as well as RFs, for several reasons and advantages that both

mathematical and statistical communities have persistently

emphasized. Working in the spectral domain may simplify

estimating procedures when using specified classes of corre-

lation functions (Stein 1999). It also allows for testing for

nonstationarity (Fuentes 2005), axial or diagonal symmetry

(Scaccia and Martin 2005), space-time separability (Fuentes

2006), and for establishing important results on infill asymp-

totics with respect to the equivalence of kriging interpolators

(Yadrenko 1983; Stein 1999; Zhang 2004). Some recent

theoretical results strongly encourage the use of spectral tech-

niques for spatial data: in his tour de force, Stein (1999)

emphasizes the importance of the Matérn model for both spatial

and spectral analysis, and justifies the effects of miss-specifi-

cation of the spectral density, working on infill asymptotics. On

the other hand, Fuentes (2002) studies the asymptotic properties

of the periodogram via shrinking asymptotics, under the

assumptions of either stationarity or nonstationarity. Working

on fixed-domain asymptotics, Stein (1995) showed that stan-

dard asymptotic results for the periodograms do not apply, and

the use of the raw data may yield misleading results, so that data

tapers are needed.

Nonseparability is a crucial aspect for spatial modeling and

several authors, in the Geostatistical context (Christakos 1991,

1992; Gneiting 2002; Stein 2005), as well as in the lattice

framework (see Martin 1996, and references therein) have

emphasized the limit of separable models in terms of behavior

of the associated Best Linear Unbiased Predictor. At the same

time, separable models have been very popular for their

simplicity of construction, and for the considerable compu-

tational gains when dealing with large spatial datasets.

A natural question is then: given d univariate margins, is

there a nontrivial way to use them in order to build a

nonseparable spectral density for LPs or RFs?

In this article, we propose quasi arithmetic (Kolmogorov

1930) and Archimedean functionals and use them to build

new models of nonseparable spectral densities defined on any

d-dimensional regular lattice or Euclidean space, given a

number of margins. We show that this procedure allows for a

wide class of spectral densities that admit as a special case the

separable one. Also, we establish the mathematical properties

of these constructions and discuss several examples that

generalize existing classes of spectral densities or integrate the

literature with new ones. In particular, both constructions give

rise to families that are in general nonseparable and, addi-

tionally, quasi arithmetic functionals allow for building

spectral densities that are not diagonally symmetric.

A first idea of using given margins to create a nonsep-

arable structure can be found in Ma (2004), where a very

simple model is obtained through the linear combination of

the product of univariate correlation functions, that is

qðs; aÞ ¼ h
Yd

i¼1

qiðsi; aiÞ þ ð1� hÞ
Yd

i¼1

qiðsi; biÞ; s 2 S;

ð1Þ

with a ¼ ðaiÞdi¼1;S either the infinite rectangular lattice Z
d

or the Euclidean space R
d, and where the univariate cor-

relation functions can be selected from univariate para-

metric families qð�; aÞ having desirable properties, such as

the ARMA correlation functions for the lattice case or the

Whittle–Matérn one (Matérn 1960) for the continuous one.

Observe that the nonseparability of this model is solely
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determined by the parameter h, for which the author shows

that this parameter can preserve the permissibility of the

correlation structure even if belonging to a specified

interval that is larger than the convex interval [0,1].

This approach is important for several reasons. First, it

allows for constructing models on any d-dimensional lattice or

Euclidean space. Second, it is a very simple model for both

correlation functions and associated spectral densities, viz.

f ðx; aÞ ¼ h
Yd

i¼1

fiðxi; aiÞ þ ð1� hÞ
Yd

i¼1

fiðxi; biÞ; x 2 Xd;

ð2Þ

where X is either [0,p] or the Euclidean space R. Another

general case, similar to this one, is treated in Gregori et al.

(2008).

This construction gives an additional, important moti-

vation to this paper. Ma’s (2004) construction finds an

intimate connection with the problem of negative correla-

tion functions. As pointed out in Janauer (2001), there is a

strong interaction between biology and hydrology in the

establishment, fluctuation and limitation of the aquatic

environment in space and time. For instance, the analysis

of the spatio-temporal distribution of flow is strongly

related to the study of current velocities and turbulences. In

the spatial framework, Shkarofsky (1968) emphasized the

fact that, in the study of turbulences it is often desirable to

have covariance models allowing for negative values or

oscillations from positive to negative values as the

Euclidean distance tends to infinite. Unfortunately, most of

previously proposed spatial covariance models in literature

are positive in the whole domain, so they are not useful for

this purpose.

The model in Eq. 1 allows to build correlation functions

that may be negative or oscillate between negative and

positive values. Thus, it seems natural to build models that

generalize this construction and allow for establishing

desirable mathematical-statistical properties and that can

be used in many problems of physical, biological or

environmental nature for which space time analysis is

needed, such as in Pomeroy et al. (2003).

We shall show throughout the article that quasi arith-

metic and Archimedean functionals allow for a nontrivial

generalization of the model in Eq. 2), and thus allow for

nonseparable structures whose Fourier pair may attain

negative values.

In summary, our paper focuses on second-order sto-

chastic models for geostatistical processes (see for example

Yu, H-L. et al. 2006), expressed through the spectrum

density instead of the direct covariance function. We can

build nonseparable structures under this methodology [see

for example Porcu et al. (2006, (2008) ], starting from

well-known margin models that we can assemble through

some simple and easily interpretable link functions. Data

from many environmental geostatistical processes show

thoroughly the need of simple and flexible nonseparable

models. We propose these models for their simplicity in the

way the model is built up, and the flexibility provided by

the many choices of margins and link functions. These

combinations of marginal functions to provide multivariate

versions have been used in spatio-temporal wavelet anal-

ysis (Ruiz-Medina and Angulo 2002).

The remainder of the article is organized as follows: in

Sect. 2 basic facts about RFs or LPs, correlation functions

and spectral densities are presented. Section 3 introduces

the new classes of spectral densities and discusses its fea-

tures, the associated permissibility criteria and some

instructive examples. In Sect. 4, some special permissi-

bility criteria are deduced for linear combinations of these

new classes of spectra, when the parameters in the linear

combinations are set to be negative. Section 5 concludes

the article with some discussion.

2 Preliminaries

Consider a zero mean weakly stationary real-valued pro-

cess fZðxÞ; x 2 Sg, for S either the lattice Z
d or the con-

tinuum R
d. For convenience, it is assumed that the process

is Gaussian, although usually only second-order properties

are used. For x; y 2 S, let x� y ¼ s ¼ ðs1; � � � ; sdÞ 2 S be

a vector of lags; the corresponding correlation function

q : S ! R is defined as

qðsÞ ¼ EðZðsÞZð0ÞÞ
EZð0Þ2

; s 2 S:

Recall that, by Bochner’s theorem (1933), correlation

functions are positive definite, that is, the class of corre-

lation functions coincides with that of Fourier transforms

of probability measures. Assuming that the corresponding

measure is Lebesgue-absolutely continuous, the Fourier

pair associated to qð�Þ, called spectral density, is defined as

f ðxÞ ¼
P1

s1¼�1 . . .
P1

sd¼�1 qðsÞcos
Pd

k skxk

� �
; x 2 ½0; p�d for s 2 Z

d;
R
R

d qðsÞcos
Pd

k skxk

� �
ds; x 2 R

d; for s 2 R
d:

8
<

:
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with x ¼ ðx1; . . .;xdÞ and s ¼ ðs1; . . .; sdÞ. For construc-

tion, f must be nonnegative and absolutely integrable on its

domain Xd (denoted with f 2 L1
þðXdÞ ), with X either [0,p]

or R.

A spectral density is called axially symmetric if

f ðx1; . . .;xi; . . .;xdÞ ¼ f ðx1; . . .;�xi; . . .;xdÞ for every

i ¼ 1; . . .; d. It is diagonally symmetric if it is invariant

under permutation of the arguments, that is f ðx1; . . .;

xi; . . .;xj; . . .;xdÞ ¼ f ðx1; . . .;xj; . . .;xi; . . .;xdÞ, for

every i; j ¼ 1; . . .; d. Spectra that are both axially and

diagonally symmetric are called fully symmetric. In the

Geostatistical framework, it is very popular to set spectral

densities as functions of the Euclidean norm, that is

f ðxÞ :¼ ef ðkxkÞ. In this case, spectral densities are

invariant under rotation, and are commonly called

isotropic.

Several models of spectral densities can be found in the

literature. In the following, we list some models that we use

in the examples throughout the article. As for the lattice

case, consider fZðtÞ; t 2 Zg a stationary ARMA(p, q) pro-

cess generated from the stochastic difference equation

1� a1Bð Þ � � � 1� apB
� �

ZðtÞ ¼ 1� apþ1B
� �

� � �
� 1� apþqB
� �

�ðtÞ;

for �1\ak\1; k ¼ 1; � � � ; pþ q, constants, B the

backwards shift operator, and f�ðtÞ; t 2 Zg a standard

white noise. The corresponding spectral density is

fARMAðx; aÞ ¼
Qq

k¼1 1� 2apþkcosxþ a2
pþk

� �

Qp
k¼1 1� 2akcosxþ a2

k

� � ;

x 2 ½0; p�:
ð3Þ

A separable ARMA LP is simply built through the tensorial

product of univariate ARMA spectral densities or correla-

tion functions. This technique was first proposed by

Martin (1996). Observe that an ARMA (1,0) is simply an

autoregressive process of the first order (AR(1)), and

AR(1) 9 AR(1) models have been widely used in the lit-

erature (cfr. Scaccia and Martin 2005, and references

therein).

For the continuous case, an interesting class is that of

continuous AR(p) models, satisfying the stochastic differ-

ential equation

ZðtÞ þ /1Z 0ðtÞ þ � � � þ /pZðpÞðtÞ ¼ e0ðtÞ;

whose spectral density factorizes as

fARðx; aÞ ¼
Yp

i¼1

ai

a2
i þ x2

; ð4Þ

for distinct constants ai [ 0 and feðtÞ; t 2 Rg a standard

Brownian motion. Another spectral density that can be

useful in this context is the one associated to the isotropic

Matérn covariance function on R
d, having expression

fMatðx; a; mÞ / a2m a2 þ kxk2
� ��m�d=2

; x 2 R
d ð5Þ

for constants a,m[ 0. The associated process is [m] - 1

times mean-square differentiable, where [m] is the largest

integer less than or equal to m.

3 Archimedean and quasi arithmetic constructions

3.1 Axiomatica

Let ðX; lÞ be the Lebesgue measure space where X can be

chosen to be either [0, p] or R. For an integer k [ 1, let

(di)i=1
k be k positive integers, and d =

P
i=1
k di. For sim-

plicity, let us denote F :¼
Qk

i¼1 L1
þðXdiÞ the space of

vectors of k nonnegative integrable functions defined

in the corresponding spaces, and its elements denoted as

f ¼ ðfiÞki¼1, with
P

i di = d,d C 2. Observe that a vector of

k spectral densities belong to F . Finally, let us express each

vector x 2 Xd as x ¼ ðx1; . . .;xkÞ where xi 2 Xdi for

i ¼ 1; . . .; k. Let U be the class

U ¼ fu : ð0;1Þ ! R : u
strictly monotonic and continuousg:

For u 2 U, the functional equations

u f ðxÞð Þ ¼
Xk

i¼1

u fiðxiÞð Þ; x 2 Xd;

and

u f ðxÞð Þ ¼
Xk

i¼1

wiu fiðxiÞð Þ; x 2 Xd;

with
P

i wi = 1, wi C 0, have been proposed for different

purposes and in several fields of mathematics and statistics.

Their solutions are, respectively,

f ðxÞ ¼ u�1
Xk

i¼1

u fiðxiÞð Þ
 !

:¼ Auðf ÞðxÞ; ð6Þ

and

f ðxÞ ¼ u�1
Xk

i¼1

wiu fiðxiÞð Þ
 !

:¼ MuðfÞðxÞ: ð7Þ

Although these solutions seem to be very similar, we shall see

in the sequel that they have different impacts on the conditions

for the function u in order to ensure permissibility (viz.,

absolute integrability) of the resulting structures in Eqs. 6 and
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7, as well as for the mathematical properties of these com-

positions, as it is shown subsequently.

Remark 3.1 Let I � R be an interval, and let u : I ! R

belong to U. Then Aw ¼ Au and Mw ¼ Mu if and only if

wðxÞ ¼ a1uðxÞ þ a2; x 2 I;

for some a1; a2 2 R; a1 6¼ 0: Thus, we can characterize u 2
U in terms of monotonically decreasing functions.

This remark allows us to restrict, for the remainder of

the paper, to the class of continuous strictly decreasing

functions without loss of generality.

The functionalAu is called Archimedean and the solution

of the functional equation in (6), Archimedean composition.

These compositions are familiar to those working with cop-

ulas (Genest 1987; Genest and MacKay 1986), that is, mul-

tivariate distributions with fixed margins. The construction of

nonstationary covariance functions by the original technique

of spatial adaption of spectra (Pintore and Holmes 2004) has

been extended using a similar Archimedean composition

(Porcu et al. 2009). These authors first use the concept of

Archimedean composition in a different framework, oriented

to the construction of nonstationary covariances for spatial

data and under the restrictive assumption of isotropy. The

framework proposed herein is completely general and a

characterization of Archimedean composition is given. One

can notice that these results are independent of those presented

in Porcu et al. (2009). It is worth remarking that permissibility

conditions are clearly different if the composition is either

Archimedean or quasi arithmetic, and this is the aspect we are

stressing repeatedly throughout this article.

Let us call u (or equivalently its proper inverse) the

generator of the Archimedean composition. Archimedean

compositions admit as a special case the tensorial product

of spectral densities, that is APðf ÞðxÞ ¼
Qk

i¼1 fiðxiÞ, that

corresponds to the case of separability as discussed in

Martin (1996). In this case the generator is the completely

monotonic mapping t 7!u�1ðtÞ ¼ expð�tÞ.
The functional Mu is called quasi arithmetic, and thus

Eq. 7 defines a weighted quasi arithmetic mean of the

involved spectral densities, called margins. The function u,

or its proper inverse is commonly known as generator of

the quasi arithmetic mean. Quasi arithmetic operators have

been extensively treated in Hardy et al. (1934) even if

Kolmogorov (1930) and Nagumo (1930) derived first, and

independently of each other, necessary and sufficient

conditions for the quasi arithmeticity of a mean. Using this

result, they partially modified the classical Cauchy (1821)

internality and Chisini’s (1929) invariance properties. As

pointed out by Marichal (2000), the Kolmogorov reflexive

property is equivalent to the Cauchy internality, and both

are accepted by statisticians as requisites for means. Here,

our main idea is to use the properties of this class of

operators in order to create permissible classes of spectral

densities that attain desirable mathematical features. For a

vector of real numbers n ¼ ðniÞki¼1, well known properties

of quasi arithmetic operators are:

1. Internality, that is miniðniÞ�MuðnÞ� maxiðniÞ;
2. u convex implies MuðnÞ�

Pk
i¼1 wini;

3. The class generated by urðtÞ ¼ tr; r 2 Rnf0g, includes

the harmonic mean (dubbed MH,r = - 1), the arith-

metic mean (dubbed MR; r ¼ 1), and the degenerated

cases: ‘‘minimum’’ value (r ! �1), the geometric

mean (dubbed MP; r ! 0), and the ‘‘maximum’’ value

(r ! þ1). This class of means is called homoge-

neous, as MuðanÞ ¼ aMuðnÞ; 8a 2 R.

4. The following pointwise orderings can be deduced

(Hardy et al. 1934): for u1;u2 2 U,

(a) If u1 � u�1
2 is convex (resp. concave), then

Mu1
ðnÞ�Mu2

ðnÞ (resp. C );

(b) Additionally, for u convex,

miniðniÞ�MHðnÞ�MuðnÞ�MPðnÞ�MRðnÞ�maxiðniÞ:

It is worth mentioning that Archimedean functionals do not

possess the properties of mean operators, as they do not

satisfy the internality property in the sense of Chisini

(1929). However, we can present in the next result the

ordering relations for the quasi arithmetic mean operators

with some other ones that can be stated for the Archime-

dean ones. For simplicity of notation, let us use the order

relation symbols, B and C , among functions, whenever

the corresponding order relation holds for all x 2 Xd (and

taking into account the convention 1�1).

Corollary 3.2 Let u1;u2 2 U; f 2 F . Let Aui
and Mui

as defined in Eqs. 6 and 7, respectively. Then:

(i) If u1 � u�1
2 is subadditive (resp. superadditive), then

Au1
ðf Þ�Au2

ðf Þð resp. C ).

(ii) In particular, if u � exp is subadditive (resp. super-

additive), then Auðf Þ�APðfÞð resp C ).

(iii) If u1 � u�1
2 is convex (resp. concave), then Mu1

ðf Þ�
Mu2
ðf Þð resp. C ).

(iv) For u convex on ½0;1Þ,
minðf Þ�MHðf Þ�Muðf Þ�MPðf Þ�MRðf Þ�maxðfÞ:

where minðf ÞðxÞ ¼ miniðfiðxiÞÞ and maxðf ÞðxÞ ¼ maxi

ðfiðxiÞÞ.

Some comments are in order. Corollary 3.2 gives important

information on the LP or RF in terms of variances. For

instance, the variance of the associated RF will be

r2 ¼ Cð0Þ ¼
R

x2Rd Muðf ÞðxÞdx. Thus, under the relevant
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conditions in Corollary 3.2, we know the corresponding

ordering, in terms of variances, of either the associated LPs

or the RFs. Additionally, in the last case, some more infor-

mation can be obtained with respect to the mean square (m.s.)

differentiability of the associated RF, that is linked to the

spectral density by the following well-known identity: Z is

m.s. differentiable of order m if and only if the spectral

moments of order 2 m exist and are finite. Thus, finite spectral

moment of the margins fi, ensures the finite spectral moment

of associated composition MuðfÞ and this has an immediate

consequence on the m.s. differentiability of the associated

RF.

3.2 Permissibility criteria for Auðf Þ and Muðf Þ

As far as the integrability of these functions is not trivial,

for each f 2 F we denote with UAf (resp. UM
f ), the subset of

U of functions u for which Auðf Þ (resp. Muðf Þ) is inte-

grable in Xd. For each G � F we write UAG ¼
T

f2G UAf
(resp. UM

G ¼
T

f2G UM
f ).

3.2.1 The lattice case

Here, integrability of quasi arithmetic and Archimedean

compositions is ensured by construction, hence UAF ¼ UM
F ¼

U. Being u decreasing on the positive real line, it is, auto-

matically, subadditive. Thus, for X ¼ ½0; p�,
Z

Xd

AuðfÞðxÞdx�
Z

Xd

Xk

i¼1

fiðxiÞdx ¼
Xk

i¼1

Y

j6¼i

lðXdjÞ
" #

Z

Xdi

jfiðxiÞjdxi¼
Xk

i¼1

lðXÞd�di

Z

Xdi

jfiðxiÞjdxi:

On the other hand, under the assumption of weak

stationarity, spectral densities are always bounded (by the

integral of the absolute value of the covariance function).

Thus, we get
Z

Xd

Muf ðxÞdx�
Z

Xd

max
i

fiðxiÞdx�lðXdÞmax
i

max
xi2Xi

jfiðxiÞj:

3.2.2 The RF case

Here, much more caution is needed depending either on the

generator or on the spectral densities involved in the quasi

arithmetic or Archimedean compositions. To this purpose,

we shall restrict ourselves to FðAÞ the subset of F of

vectors of functions f satisfying the following condition:

3.2.3 Condition (A)

There exists some ci 2 R
þ for i ¼ 1; . . .; k such that

fiðxiÞ ¼ Oðkxik�ciÞ for kxik ! 1 and all i ¼ 1; 2; . . .; k,

and there exists at least one j 2 f1; . . .; kg such that

fjðxjÞ ¼ Oð1Þ for xj ! 0.

Obviously, spectral densities are bounded at the origin,

and many well known examples fulfill condition (A). Now

we show the following result, useful for obtaining inter-

esting examples.

Proposition 3.3 For X ¼ R, we have that:

(i) t 7! � logðtÞ 2 UAF .

(ii) t 7! ð1� tÞþ 2 UAF .

(iii) t 7! t�1=e 2 UAFðAÞ for any e [ 0, whenever
Pk

i¼1
di

ci
\

1.

(iv) u 2 UM
FðAÞ whenever u is convex and di

ci
\wi for each

i ¼ 1; . . .; k.

Proof (i) and (ii) are easy to prove. For (iii) and (iv) we

use the sign * to express ‘‘the same character of integra-

bility’’ among the integrals in the following lines, and use

typical changes of variables to proceed along the proof. For

the point (iii), notice that

Z

R
d

Auðf ÞðxÞdx¼
Z

R
d1

���
Z

R
dk

Xk

i¼1

fiðxiÞ�1=e

 !�e

dx1 ���dxk

	
Z

kx1k[1

���
Z

kxkk[1

Xk

i¼1

kxikci=e

 !�e

dx1 ���dxk

	
Z

r1 [1

���
Z

rk [1

Xk

i¼1

r
ci=e
i

 !�e Yk

i¼1

rdi�1
i

 !
dr1 ���drk

	
Z

t1 [1

���
Z

tk [1

Xk

i¼1

t2
i

 !�e Yk

i¼1

t
2edi
ci

i �1

 !
dt1 ���dtk

	
Z

q[1

q�2e�1þ
Pk

i¼1

2edi
ci dq:

Therefore the inequality of (iii) follows directly from

integrability of the last expression.

Point (iv) is simpler since any convex u implies the

boundedness MuðfÞðxÞ�
Qk

i¼1 fiðxiÞwi (the geometric

mean), hence the separate inequalities of (iv) are obtained

from the last of the following integrals:
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Z

R
d1

� � �
Z

R
dk

Yk

i¼1

fiðxiÞwi dx1 � � � dxk ¼
Yk

i¼1

Z

R
di

fiðxiÞwi dxi

	
Yk

i¼1

Z

kxik[ 1

kxik�wici dxi

	
Yk

i¼1

Z

ri [ 1

r
�wiciþdi�1
i dri:

h

Remark 3.4 The nonnegativity of the quasi arithmetic and

Archimedean spectral densities is ensured by contruction,

but this aspect will be a crucial point for Sect. 4, where we

discuss the case of linear combinations of quasi arithmetic

or Archimedean spectra with negative weights.

Example 3.5 Let us give examples for (a) the lattice case

and (b) the continuous one.

(a) For LPs, we can take any decreasing u 2 U, inde-

pendently of the vector of functions f representing the

margins. For instance, both the expressions

Auðf ÞðxÞ ¼
Xk

i¼1

fiðxiÞ�e

 !�1=e

; ð8Þ

and

MuðfÞðxÞ ¼
Xk

i¼1

wifiðxiÞ�e

 !�1=e

; ð9Þ

for (wi)i=1
k nonnegative weights summing up to one, can be

seen as either parametric or semiparametric families of

spectral densities indexed by the parameter e [ 0, where

the semiparametric construction would derive from the

choice of nonparametric margins. Otherwise, the structure

would be fully parametric. Thus, the margins can be

selected among the ones listed in Sect. 2, such as those of

ARMA(p, q) type and in any case the permissibility of the

resulting structure would be preserved.

(b) The continuous case needs caution in the choice of

both generators and margins. In the case of Archi-

medean compositions, let the generator be the func-

tion t 7!uðtÞ ¼ t�1=e; e [ 0, and let the margins of the

Matérn type as in Eq. 5. One can verify that the

conditions needed on the margins in order to ensure

the integrability of the resulting structure are
Pk

i¼1
di

2miþdi
\1. We thus get that, for gi ¼

ðmi þ di=2Þ=e,

Auðf ÞðxÞ ¼
Xk

i¼1

a�2mi=e
i ða2

i þ kxik2Þgi

 !�e

;

is permissible.

In the case of quasi arithmetic operators, if di

2
ð1

wi
þ

1Þ\mi for each i ¼ 1; . . .; k, one can easily verify that the

integrability of the geometric mean over Xd is ensured, and

thus the class

MuðfÞðxÞ ¼
Xk

i¼1

wia
�2mi=e
i ða2

i þ kxik2Þgi

 !�e

;

for gi ¼ ðmi þ di=2Þ=e, is permissible for any positive e.
A counterexample of not-permissibility can be obtained

by taking a composition of continuous AR(p) processes as

defined in Eq. 4. Under the setting previously described, we

get that the composition

MuðfÞðxÞ ¼
Xk

i¼1

wi

Yp

j¼1

a2
ji þ kxik2

aji

 !1=e
0

@

1

A
�e

is not permissible, as can be easily verified from Proposi-

tion 3.3.

4 Linear combinations of Archimedean and quasi

arithmetic spectra related to negative-valued

covariance functions

In the light of what has been shown in the previous section,

we can now analyze the construction in Eq. 2, that is based

on linear combinations of the product of univariate and

parametric spectral densities. According to the notation

used throughout the paper, this construction can now be

rephrased as

hAPðf ÞðxÞ þ ð1� hÞAPðgÞðxÞ; x 2 Xd;

where X is either [0,p] or the Euclidean space R, and where

f ð�Þ ¼ ðf1ð�; a1Þ; � � � ; fkð�; akÞÞ0 and gð�Þ ¼ ðg1ð�Þ; � � � ; gk

ð�ÞÞ0 ¼ ðf1ð�; b1Þ; � � � ; fkð�; bkÞÞ0 are vectors of spectral

densities belonging to specified parametric families. It is

quite evident that this construction can be generalized in

two directions that can be sketched as follows: let us

consider two vectors of (parametric or not) k spectral

densities f ; g 2 F , and set two generators u1;u2 2 U.

The following linear combinations

fAðxÞ ¼ hAu1
fðxÞ þ ð1� hÞAu2

gðxÞ; ð10Þ

and

fMðxÞ ¼ hMu1
fðxÞ þ ð1� hÞMu2

gðxÞ; ð11Þ

for h 2 R, give a wider scenario that constitutes the natural

generalization of (1.2) to the case of different generators,

different operators, and to the margins that are not
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necessarily belonging to a parametric family as in Ma

(2004). In this section, we are seeking the conditions for fA
and fM to be permissible. The integrability of both linear

combinations depends on the assumptions on the sets of

spectral densities and on the generating functions, as shown

in previous section. Now let us denote

qiðxiÞ ¼
fiðxiÞ
giðxiÞ

; Mi ¼ sup
xi2Xdi

qiðxiÞ;

mi ¼ inf
xi2Xdi

qiðxiÞ;
ð12Þ

for i ¼ 1; 2; . . .; k, and let qðxÞ be either

Mu1
ðf ÞðxÞ

Mu2
ðgÞðxÞ or

Au1
ðf ÞðxÞ

Au2
ðgÞðxÞ ; ð13Þ

depending on the considered linear combination. Finally,

let us denote its extreme values by M
 ¼ supx2Xd qðxÞ and

m
 ¼ infx2Xd qðxÞ. We are now able to state the more

general, abstract result, and then give some necessary

comments on it.

Proposition 4.1 Provided that the functions fA and fM
defined in Eqs. 10–11 are integrable, they are, respectively,

valid spectral densities if and only if

½1�maxð1;M
Þ��1� h� ½1�minð1;m
Þ��1; ð14Þ

where conventions 0�1 ¼ �1 and ð�1Þ�1 ¼ 0 for the

left hand side, and 0�1 ¼ þ1 for the right hand side, are

adopted.

Proof Being the two terms of the combination separately

nonnegative, their linear combination is nonnegative if and

only if hqðxÞ þ ð1� hÞ� 0, hence if and only if hð1�
qðxÞÞ� 1 for all x 2 R

d. The set of values of h satisfying

the previous inequality for all x 2 Xd can be written as

A \ B :

¼
\

fx:qðxÞ\1g
ð�1; ð1� qðxÞÞ�1�

0
@

1
A

\
\

fx:qðxÞ[ 1g
½ð1� qðxÞÞ�1;þ1Þ

0

@

1

A

where A (resp. B) can be the trivial set R in case qðxÞ[ 1

(resp. qðxÞ\1) for all x 2 Xd.

Let us assume, without loss of generality, that A and B

are both nontrivial (therefore that 0�m
\1\
M
 � þ1). Take two respective sequences fxm

k g
1
k¼1 and

fxM
k g
1
k¼1 such that qðxm

k Þ\1 for all k; fqðxm
k Þgk is

decreasing and limk!1 qðxm
k Þ ¼ m
, and similarly,

qðxM
k Þ[ 1 for all k; fqðxM

k Þgk is increasing and

limk!1 qðxM
k Þ ¼ M
. Then

A \ B ¼
\1

k¼1

ð�1; ð1� qðxm
k ÞÞ
�1�

 !

\
\1

k¼1

½ð1� qðxM
k ÞÞ

�1;þ1Þ
 !

¼ ð�1; ð1� m
Þ�1� \ ½ð1�M
Þ�1;þ1Þ
¼ ½ð1�M
Þ�1; ð1� m
Þ�1�:

Obviously, for each case of trivial set (A or B equal to R)

the interval is unbounded by the respective side, leaving

the notation of the interval used in the claim of the prop-

osition rather compact. h

Remark 4.2 Only if M
 ¼ þ1 and m* = 0, a valid

spectral density of the form (10) or (11) must have both

coefficients h and 1 - h nonnegative. Otherwise, (10) and

(11) may be spectral densities with a negative weight, and

hence with eventually negative values of the associated

covariance functions.

This result, as it will be explained subsequently, is of dif-

ficult application, but it puts the basis for some special results

that are of interest for spectral modeling. For practical appli-

cations, calculations of M* and m*, which not only depend on

the pair of sets of functions, but also on the way the Archi-

medean compositions or quasi arithmetic means combine

such functions, are intractable: the analytic expression of the

quotient qðxÞ expands without cancellations (except in the

case of the tensor product, as will be shown in Remark 4.8)

and makes the analytic calculation of M* and m* unfeasible,

even when generally, qðxÞ depends on x through the norm

kxk2
.

In the following, we show that under some special

choices of either the generators or the spectral margins

involved in (10) or (11), some interesting intervals for the

parameter h can be obtained, preserving the permissibility

of the resulting structure.

Proposition 4.3 Let g ¼ f ;ui 2 UAf ð resp. ui 2 UM
f Þ for

i = 1, 2, and fAð resp. fM) as defined in Eq. 10 (resp.(11)).

Then:

(i) If u1 � u�1
2 is subadditive (resp. convex), we have that

fAð resp. fM) is a valid spectral density for any

h 2 ð�1; 1�.
(ii) If u1 � u�1

2 is superadditive (resp. concave), we have

that fAð resp. fM) is a valid spectral density for any

h 2 ½0;1Þ.

Proof Applying Corollary 3.2, for (i), the ordering

Au1
�Au2

implies 0 B m* B M* B 1. Therefore, the

optimal interval of Proposition 4.1 contains at least the

interval ð�1; 1�. For (ii), the reversed ordering leads to
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1�m
 �M
 �1, which shows that the optimal interval

contains at least the interval ½0;1Þ. h

Example 4.4 LPs. Let di ¼ 1; i ¼ 1; . . .; d. For LPs, we

can take any decreasing u 2 U, independently of the vector

of functions f representing the univariate margins. For

instance, both the expressions

fAðxÞ ¼ h
Xd

i¼1

fiðxiÞ�e1

 !�1=e1

þ ð1� hÞ
Xd

i¼1

fiðxiÞ�e2

 !�1=e2

ð15Þ

and

fMðxÞ ¼ h
Xd

i¼1

wifiðxiÞ�e1

 !�1=e1

þ ð1� hÞ
Xd

i¼1

wifiðxiÞ�e2

 !�1=e2

; ð16Þ

for wið Þdi¼1 nonnegative weights summing up to one, can be

seen as either parametric or semiparametric families of

spectral densities indexed by the set H ¼ fðh; e1; e2Þ :

h� 1; 0\e1� e2g, where the semiparametric construction

would derive from the choice of nonparametric margins.

Otherwise, the structure would be fully parametric. Similar

comments apply to the structures

fAðxÞ ¼ h
Yd

i¼1

fiðxiÞ þ ð1� hÞ
Xd

i¼1

fiðxiÞ�e

 !�1=e

ð17Þ

and

fMðxÞ ¼ h
Yd

i¼1

fiðxiÞwi þ ð1� hÞ
Xd

i¼1

wifiðxiÞ�e

 !�1=e

;

ð18Þ

indexed by the parameter set H ¼ fðh; eÞ : h� 0; e [ 0g,
plus eventually the parameter set indexing the margins,

whenever they are set to belong to a specified parametric

family. The vector of functions (fi)i=1
d can be taken to be a

vector of different ARMA(p, q) spectral densities as pre-

sented in Sect. 2.

Remark 4.5 For the RF case, similar examples are valid,

provided that the vector of spectral densities (fi)i=1
d fulfills

condition (A). For instance, taking each fi to be a univariate

Matérn or a AR(p) spectral density. We show in Fig. 1 the

plot of the resulting covariance function in R
2;Cðu1; u2Þ,

and the two margins C(u1, 0) and C(0, u2), for the partic-

ular choice of f1ðxÞ ¼ fMatðx; 1; 5Þ; f2ðxÞ ¼ fMatðx; 3; 10Þ;
u1ðtÞ ¼ t�1 and u2ðtÞ ¼ t�1=1:5. The covariance function

has been computed by direct discretization of the integral

given by the Fourier transform as a Riemann sum.

Proposition 4.6 Let u1 ¼ u2 ¼ u 2 UAf \ UAg (resp.

u 2 UM
f \ UM

g ) such that Au (resp. Mu) is a homogeneous

operator. Then fA (resp. fM ) as defined in Eq. 10 (resp.

(11)) is a valid spectral density if

1�max 1;max
i
ðMiÞ

� �� 	�1

�h� 1�min 1;min
i
ðmiÞ

� �� 	�1

:

ð19Þ

Proof Let us show the result for the Archimedean case

only, as the other case can be proved with the same

arguments. Put k1 = mini mi and k2 = maxi Mi. By the

properties of u,

u1

u2

C
(u1,u2)

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

u1
C

(u
1,

 0
) 

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

u2

C
(0

, u
2) 

Fig. 1 Example of covariance function of Remark 4.5 obtained from the spectral density given by the linear combination

f ðx1;x2Þ ¼ 5Au1
ðf1; f2Þðx1;x2Þ � 4Au1

ðf1; f2Þðx1;x2Þ, where f1ðxÞ ¼ fMatðx; 1; 5Þ; f2ðxÞ ¼ fMatðx; 3; 10Þ;u1ðtÞ ¼ t�1 and u2ðtÞ ¼ t�1=1:5
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Thus, the interval defined in Eq. 19 is a subinterval of the

optimal interval (14), and f shall be a valid spectral density

whenever h belongs to it. h

Remark 4.7 If all mi and Mi are, respectively, equal, the

result is the complete characterization of the interval (i.e.

necessary and sufficient condition for f to be a valid

spectrum).

Remark 4.8 When uðtÞ ¼ � logðtÞ, i.e. in the tensor

product case, the simple relations m
 ¼
Qk

i¼1 mi;M

 ¼

Qk
i¼1 Mi, allow to give the exact interval characterizing the

valid spectral densities

1�max 1;
Yk

i¼1

Mi

 !" #�1

� h� 1�min 1;
Yk

i¼1

mi

 !" #�1

:

As a corollary of the previous results, we get the main

results in Ma (2004) in a unified way, as it is stated

subsequently.

Corollary 4.9 [Ma (2004), Thms. 1 and 2] For each

i ¼ 1; 2; . . .; d, let fið�; aiÞ be a parametric family of uni-

variate spectral densities all defined on either [0,p] or R,

let ðaiÞdi¼1 and ðbiÞdi¼1 some fixed parameter vectors and let

f ðxÞ;x 2 Xd be the function defined in Eq. 2. Then:

(i) For X ¼ ½0; p�, under the assumption

fið0; aiÞ
fið0; biÞ

� fiðx; aiÞ
fiðx; biÞ

� f ðp; aiÞ
f ðp; biÞ

; x 2 ½0; p�;

i ¼ 1; 2; . . .; d

f ð�Þ is a valid spectral density if and only if

1�max 1;
Yd

i¼1

fiðp; aiÞ
fiðp; biÞ

 ! !�1

� h� 1�min 1;
Yd

i¼1

fið0; aiÞ
fið0; biÞ

 ! !�1

:

(ii) For X ¼ R, under the assumptions

lim
x!1

x2pi fiðx; aiÞ ¼
1

fið0; aiÞ
; lim
x!1

x2pi fiðx; biÞ ¼
1

fið0; biÞ

for some pi [ 0, and

fið0; biÞ
fið0; aiÞ

� f ðx; aiÞ
f ðx; biÞ

� fið0; aiÞ
fið0; biÞ

; x 2 ½0;1Þ;

i ¼ 1; 2; . . .; d;

f ð�Þ is a valid spectral density if and only if

1�
Yd

i¼1

fið0; aiÞ
fið0; biÞ

 !�1

� h� 1�
Yd

i¼1

fið0; biÞ
fið0; aiÞ

 !�1

:

Proof Obviously, the assumptions in each case imply, on

the one hand, that mi = qi(0) and Mi = qi(p), and on the

other hand, that mi ¼ limkxk!1 qiðxÞ and Mi = qi(0). Also

notice that the assumptions on the RF case imply

mi B 1 B Mi = mi
-1 for each i.

Remark 4.10 Property (i) is satisfied, for instance, by the

class of spectra associated to AR processes on the real line

as in Eq. 3, whilst property (ii) is satisfied for instance by

the Matérn class, as shown by Ma (2004).

Example 4.11 LPs The expressions

fAðxÞ ¼ h
Xk

i¼1

fiðxiÞ�e

 !�1=e

þð1

� hÞ
Xk

i¼1

giðxiÞ�e

 !�1=e

ð20Þ

and

fMðxÞ ¼ h
Xk

i¼1

wifiðxiÞ�e

 !�1=e

þð1

� hÞ
Xk

i¼1

wigiðxiÞ�e

 !�1=e

ð21Þ

can be seen as parametric families of spectral densities for

k1 � qiðxiÞ � k2

k1giðxiÞ � fiðxiÞ � k2giðxiÞ
uðk1giðxiÞÞ � uðfiðxiÞÞ � uðk2giðxiÞÞPk
i¼1 uðk1giðxiÞÞ �

Pk
i¼1 uðfiðxiÞÞ �

Pk
i¼1 uðk2giðxiÞÞ

u�1
Pk

i¼1 uðk1giðxiÞÞ
� �

� u�1
Pk

i¼1 uðfiðxiÞÞ
� �

� u�1
Pk

i¼1 uðk2giðxiÞÞ
� �

Auðk1gÞðxÞ � Auf ðxÞ � Auk2ðgÞðxÞ
k1AugðxÞ � Auf ðxÞ � k2AugðxÞ

k1 � qðxÞ � k2

k1 � m
 �M
 � k2
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LPs indexed by the set H ¼ fðh; eÞ : hm� h� hM; e [ 0g,
where

hm ¼ 1�max 1;max
i
ðMiÞ

� �� 	�1

;

hM ¼ 1�min 1;min
i
ðmiÞ

� �� 	�1

:

Based on the fact that the maximum, minimum and

geometric means are limiting cases of u-means, we can

also state that the expressions

fAðxÞ ¼ h
Yk

i¼1

fiðxiÞ þ ð1� hÞ
Yk

i¼1

giðxiÞ; ð22Þ

and

fMðxÞ ¼ h
Yk

i¼1

wifiðxiÞ þ ð1� hÞ
Yk

i¼1

wigiðxiÞ; ð23Þ

fMðxÞ ¼ h min
i

fiðxiÞ þ ð1� hÞmin
i

giðxiÞ; ð24Þ

fMðxÞ ¼ h max
i

fiðxiÞ þ ð1� hÞmax
i

giðxiÞ; ð25Þ

can be seen as parametric families of spectral densities of

LPs indexed by the set H ¼ fh : hm� h� hMg.

Consider univariate margins of the type fið�Þ ¼
fARMAð�; aiÞ and gið�Þ ¼ gARMAð�; biÞ;�1\ai; bi\1; i ¼
1; . . .; k. One can show that

hm ¼ 1�max
1� bi

1� ai
;
1þ bi

1þ ai

� �2
" #�1

;

and

hM ¼ 1�min
1� bi

1� ai
;
1þ bi

1þ ai

� �2
" #�1

:

RFs Let fið�Þ ¼ fMatð�; ai; mÞ and gið�Þ ¼ fMatð�; bi; mÞ,
with m[ 0 and ai, bi [ 0 for each i ¼ 1; . . .; d, we get

hm ¼ 1� maxiðai; biÞ
miniðai; biÞ

� �di=2
" #�1

;

hM ¼ 1� miniðai; biÞ
maxiðai; biÞ

� �2m
" #�1

:

Another interesting case is obtained by setting fið�Þ ¼
fARð�; aiÞ and gið�Þ ¼ fARð�; biÞ, with ai ¼ ðajiÞpj¼1; bi ¼
ðbjiÞ

p
j¼1; ai; bi � ð0;1Þp where, for each i 2 f1; . . .; dg,

either the order aji B bji or aji [bji holds for all

j 2 f1; . . .; pg. In this case we obtain

hm ¼ 1�max
i

Yp

j¼1

maxjðaji; bjiÞ
minjðaji; bjiÞ

 !" #�1

;

hM ¼ 1�min
i

Yp

j¼1

minjðaji; bjiÞ
maxjðaji; bjiÞ

 !" #�1

:

5 Conclusions

The main novelty of this work is the construction of new d-

dimensional lattice and RF models based on a special

mixing of models in lower dimensions (simple models),

being the d-dimensional domain of the new model the

product of the domains of the simple models.

The actual literature on nonseparable covariance func-

tions is rather limited in terms of flexible functions. In data

fitting practice, one first tests for separability (space vs time

or within spatial coordinates). If this hypothesis is rejected

then looks for a particular function within the family of

nonseparable functions. To our knowledge, the existing

functions are quite rigid and complicated for the practical

analysis. A positive point of our proposal is that we start

from simple marginals (simple in both the analytical

expression and the way to use in practice), and more

complicated structures are built upon them. These new

structures are in general more flexible and clearly enlarge

the current number of families. For instance, we propose to

perform data fitting in R
2 by using the Matérn bivariate

family. If the resulting function satisfies a good fit the work

is done. Otherwise, we propose the use of an Archimedean

composition and/or a quasi-arithmetic mean of two mem-

bers of the univariate Matérn family, with a simple para-

metric family of u. The techniques described herein are

also useful for building new classes of d-dimensional

models starting from models on a common d-dimensional

domain. Let us make an abuse of notation and write

Auf ðxÞ ¼ u�1
Xk

i¼1

uðfiðxÞÞ
 !

;

MufðxÞ ¼ u�1
Xk

i¼1

wiuðfiðxÞÞ
 !

for f 2 F . Permissibility conditions are rather trivial now:

the upper bounds
P

i fi (for the Archimedean composition

whenever u�1 is superadditive) and maxi fi (for the quasi

arithmetic mean) are now integrable in Xd for both the

lattice and the RF case. In the study of the linear combi-

nations with eventually negative weights, similar results

are obtained, leading to (non simple but) potentially

applicable examples based on combinations of d-dimen-

sional Matérn or tensor products of AR(p) or ARMA(p, q)

spectral densities. In this spirit, Porcu et al. (2008) made
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Archimedean compositions of two spectral densities,

through exclusively completely monotone generators, as a

tool in order to enlarge the family of nonstationary

covariance functions created by Pintore and Holmes (2010)

using the spatial adaption technique. In this paper, we have

set the solid background for that work and others, either

theoretical or practical ones, that will be developed in the

time to come in the field of lattice processes and RFs.

Acknowledgements This study was initiated when Emilio Porcu

was research fellow at the Universitat Jaume I, department of

Mathematics. He also acknowledges the support of the research fund

FOR-916 Statistical Regularization. Jorge Mateu and Pablo Gregori

acknowledge the support of MTM2010-14961 from the Spanish

Ministry of Science and Education.

References

Besag JE (1974) Spatial interaction and the statistical analysis of

lattice systems (with discussion). J R Stat Soc B 36:192–236

Bochner S (1933) Monotone funktionen, stiltjes integrale und

harmonische analyse. Math Ann 108:378–410

Cauchy AL (1821) Cours d’analyse de l’Ecole Royale Polytechnique,
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