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Abstract

Classification problems of functional data arise naturally in many applications. Several
approaches have been considered for solving the problem of finding groups based on func-
tional data. In this paper we are interested in detecting groups when the functional data
are spatially correlated. Our methodology allows to find spatially homogeneous groups
of sites when the observations at each sampling location consist of samples of random
functions. In univariable and multivariable geostatistics various methods of incorporating
spatial information into the clustering analysis have been considered. Here we extend these
methods to the functional context in order to fulfill the task of clustering spatially corre-
lated curves. In our approach we initially use basis functions to smooth the observed data
and then we weight the dissimilarity matrix among curves by either the trace-variogram
or the multivariable variogram calculated with the coefficients of the basis functions. As
an illustration the methodology is applied to a real data set corresponding to average daily
temperatures measured at 35 Canadian weather stations.
Keywords: Basis functions; Dissimilarity; Functional clustering; Geostatistics; Multi-
variable variogram; Trace-variogram.
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Barcelona, Spain. J. Mateu is Professor of Statistics, Department of Mathematics, Universitat
Jaume I, E-12071 Castellón, Spain .

1



Hierarchical cluster of spatially correlated functional data 2

1. Introduction

Cluster analysis (unsupervised classification) provides an analytical technique for finding
meaningful subgroups of individuals or objects. Specifically, the objective is to classify
a sample of entities (individuals or objects) into a small number of mutually exclusive
groups based on the similarities among the entities. In cluster analysis, unlike discriminant
analysis, the groups are not predefined. Instead, the technique is used to identify the
groups. There are two major methods of clustering: hierarchical clustering and K -means
clustering. The first one involves the construction of a hierarchy of a treelike structure
using agglomerative or divisive procedures. In contrast, K -means methods assign objects
into clusters once the number of clusters to be formed is specified (Hair, Anderson, Tatham,
and Black 1995).

Classification methods have been adapted to the case of geographically referenced
samples in order to delineate relatively contiguous zones with similar attribute values
(Bourgault, Journel, Rhoades, Corwin, and Lesch 1997). Oliver and Webster (1989), the
first paper in this context, propose the use of the variogram (in a univariate case) or the
variogram of the first principal component (in the multivariate case) to weight the dissim-
ilarities between samples. In the same sense Bourgault, Marcotte, and Legendre (1992)
propose using the multivariate variogram as a weighting function to increase dissimilarities
among distant samples. In that paper the authors classify 147 rock samples according to
six chemical variables and conclude that including spatial information into the analysis
allows to obtain better results in agreement with known geology. An overview about clas-
sification for geographically referenced data is given in Atkinson and Lewis (2006), where
an example for remote sensing is shown.

Functional data refer to data which consist of observed functions or curves evaluated
at a finite subset of some interval. Functional versions for many branches of statistics have
been given. An overview of statistical methods for analyzing functional data is shown in
Ramsay and Silverman (2005), and recent developments in this field are given in special
issues of several journals (González-Manteiga and Vieu 2007; Valderrama 2007). Cluster
analysis has also been considered from a functional point of view. Approaches based on
hierarchical, K -means and more formal model-based procedures have been studied in this
setting. In the analysis of functional data, the vectors observed are usually converted
into curves via a smoothing method. In clustering functional data, it is useful to smooth
the observations and cluster smoothed curves rather than the observed data (Hitchcock,
Booth, and Casella 2007). In the case of hierarchical clustering, standard methods can
be invoked using the coefficients of basis functions as input (Hitchcock et al. 2007).
Henderson (2006) shows an application of hierarchical clustering for functional data in a
water quality study. Clarkson, Fraley, Gu, and Ramsay (2005) illustrate the use of this
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technique classifying Canadian weather stations based on precipitation and temperature
curves. Abraham, Cornillon, Matzner-Llober, and Mollinary (2003) and Tarpey and Ki-
nateder (2003) consider K -means algorithms for functional data based on B-splines and
Fourier basis, respectively. Garćıa-Escudero and Gordaliza (2005) and Cuesta-Albertos
and Fraiman (2007) propose the use of trimmed K -means as a robust alternative to K -
means. Other model-based approaches for clustering functional data are given in James
and Sugar (2003), Lee (2004) and Chiou and Lee (2007), respectively.

The above mentioned statistical techniques for clustering functional data are focused
on independent functions. However, in several disciplines of applied sciences there exists
an increasing interest for modeling correlated functional data: it is the case when samples
of functions are observed over a discrete set of time points (temporally correlated functional
data) or when these functions are observed in different sites of a region (spatially correlated
functional data). In this paper we combine hierarchical clustering methods for both geo-
graphically referenced data and functional data in order to give a solution to the problem
of classifying spatially correlated curves. Our methodology allows to find groups of curves
which are spatially homogeneous. We propose to weight the dissimilarities between curves
by the trace-variogram (Giraldo, Delicado, and Mateu 2007) and by the multivariate vari-
ogram (Bourgault and Marcotte 1991) of the coefficients of basis functions used to smooth
the observed data.

The paper is organized as follows. Section presents an overview on hierarchical clus-
tering for both functional data and georeferenced data. We show how these methodologies
can be joined together to carry out classification of spatially correlated curves. An appli-
cation of the proposed method is given is Section . The paper ends with a brief discussion
and suggestions for further research.

2. Hierarchical clustering of spatially correlated functional data

When considering the hierarchical clustering approach, a series of partitions takes place
running from a single cluster containing all objects to n clusters each containing a single
object. The simplest method to apply hierarchical clustering to real data is calculating a
distance (dissimilarity) matrix between individuals and applying some agglomerative (or
divisive) criterium (such as single, complete or average linkage) for finding groups of indi-
viduals (see for instance Everitt, Landau, and Leese 2001). The agglomerative techniques
proceed by series of fusions of the n objects into groups, while the divisive methods sepa-
rate the n objects successively into finer groupings. The results may be represented by a
two dimensional diagram known as dendrogram which illustrates the fusions or divisions
made at each successive stage of analysis. In this section we describe how this procedure
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is extended to functional data, and how it can be adapted to a geostatistical setting.
Then we show how these methods can be combined together for carrying out hierarchical
classification of spatially correlated functional data.

Let us begin by considering first the case of clustering functional data. Hitchcock,
Casella, and Booth (2006) show that in this context it is advantageous to use not the
observed data, but rather a pre-smoothed version of the data. Suppose we have a sample
of curves X1(t), · · · , Xn(t) defined for t ∈ [a, b] ⊂ R. It is assumed that these curves
belong to the separable Hilbert space H of square integrable functions defined on [a, b].
We assume that the functions are expanded in terms of some basis functions by

Xi(t) =
K∑

l=1

ailBl(t) = aT
i B(t), i = 1, · · · , n. (1)

A functional hierarchical cluster analysis is then developed as in the classical setting but
considering instead the distance between curves Xi(t) and Xj(t) through the L2 norm

dij =

√∫

[a,b]

(Xi(t)−Xj(t))2dt.

Using the expansion (1) we have

dij =

√∫

[a,b]

(ai − aj)T B(t)B(t)T (ai − aj)dt

=
√

(ai − aj)TW(ai − aj), (2)

where

W =

∫

[a,b]

B(t)B(t)T dt,

and ai and aj are vectors of basis coefficients for the ith and j th individuals. For any
orthonormal basis such as the Fourier basis, the Gram matrix W is the identity matrix. For
other basis functions such as B-Splines, W must be calculated by numerical integration.
Once calculated the dissimilarity matrix, a standard agglomerative or divisive hierarchical
clustering procedure can be applied.

In the case of geostatistical setting, clustering allows to find groups of contiguous
sites with similar variable values. An overview of classification methods (supervised and
unsupervised) in geostatistics is given in Atkinson and Lewis (2006).

Let {Z(x) = (Z1(x), · · · , Zm(x)) : x ∈ D} be a m multivariable spatial process defined
over a domain D ⊂ Rd. The first method for clustering in geostatistics was proposed
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by Oliver and Webster (1989). Their solution in the case of m = 1 was to weight the
dissimilarities dij between samples by

dw
ij = dijγ(h), (3)

where γ(h) corresponds to the variogram calculated for the distance between sites i, j. For
m > 1, these authors propose using the variogram of the first principal component or a
sum of variograms of the first few principal components. On the other hand Bourgault et
al. (1992) generalize this idea by using

dw
ij = dijΓ(h), (4)

where Γ(h) is the multivariate variogram defined by

Γ(h) =
1

2
E (Z(x)− Z(x + h))T M (Z(x)− Z(x + h)) , (5)

with M a symmetric positive definite matrix used as a metric. In the particular case of
M = I, the multivariate variogram defined in equation (5) is given by

Γ(h) =
m∑

l=1

1

2
E (Zl(x)− Zl(x + h))2

=
m∑

l=1

γll(h), (6)

where γll(h) is the variogram for the l-th variable. Another alternative for the matrix
M in (5) is the inverse of the variance-covariance matrix Σ−1. In that case the mul-
tivariate variogram in equation (5) is a weighted sum of direct (single) variograms and
cross-variograms.

Our aim is extending the approaches of Oliver and Webster (1992) and Bourgault et al.
(1992) to the context of spatially correlated functional data. Let {Xs(t) : s ∈ D ⊂ Rd, t ∈
[a, b] ⊂ R} be a stationary isotropic functional random process. Let X1(t), · · · , Xn(t)
be a realization of this random process observed at n sites with coordinates x1, · · · , xn,
respectively. We assume that these curves belong to the separable Hilbert space H of
square integrable functions defined on [a, b]. We propose two alternatives for performing
cluster analysis with this type of information. The first one consists in replacing the
variogram in equation (3) by the trace-variogram function defined by Giraldo et al. (2007)

γ(h) =
1

2
E

[∫

[a,b]

(Xi(t)−Xj(t))
2dt

]
, with h = ‖xi − xj‖. (7)
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The function given in equation (7) can be estimated by using the classical method-of-
moments by means of

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

∫

[a,b]

(Xi(t)−Xj(t))
2dt, (8)

where N(h) = {(xi, xj) : ‖xi − xj‖ = h}, and |N(h)| is the number of distinct elements in
N(h). For irregularly spaced data there are generally not enough observations separated
by exactly h. Then N(h) is modified to {(xi, xj) : ‖xi − xj‖ ∈ (h − ε, h + ε)}, with
ε > 0 being a small value. Once we have estimated the trace-variogram for a sequence
of K values hk, we fit a parametric model γα(h) (any of the classical and widely used
models such as spherical, Gaussian, exponential or Matérn could well be used) to the
points (hk, γ̂(hk)), k = 1, . . . , K, as if they were obtained under the classical geostatistical
setting. Usually, this type of fitting is done by ordinary least squares (OLS) or weighted
least squares (WLS) (see, for instance, Cressie, 1993). Note that the fitted parametric
trace-variogram γα̂(h) is always a valid variogram because its properties are those of a
parametric variogram fitted from a univariate geostatistical data set.

From equation (2) it is clear that the distance between two curves can be calculated
from the distance between the coefficients of the basis functions. Consequently a second
alternative for clustering spatially correlated functional data is estimating variograms and
cross-variograms of coefficients of basis functions used for smoothing the observed data
and applying the approach by Bourgault et al. (1992). Assuming that the curve for each
sampling site i, i = 1, · · · , n, is expanded by using (1), the coefficients in matrix

A =




a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
. . .

...
an1 an2 · · · anK




(n×K)

form a realization of a K multivariable random field {A(x) = (A1(x), · · · , AK(x)) : x ∈
D ⊂ Rd} with E(Ai(x)) = υi, and variograms and cross-variograms matrix

Υ(h) =




γ11(h) γ12(h) · · · γ1K(h)
γ21(h) γ22(h) · · · γ2K(h)

...
...

. . .
...

γK1(h) γK2(h) · · · γKK(h)




(K×K)

, (9)

where γlq(h) = 1
2
E (Al(xi)− Aq(xj))

2 , l, q = 1, · · · , K, h = ‖xi − xj‖. We propose using
multivariable geostatistics (Wackernagel 1995) and specifically a linear model of coregion-
alization (LMC) for estimating the matrix (9). Based on this estimation we can calculate
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the multivariate variogram of the coefficients of basis functions taking the trace of matrix
(9), that is, calculating

Γ(h) =
K∑

l=1

1

2
E (Al(x)− Al(x + h))2

=
K∑

l=1

γll(h). (10)

Note that equation (10) coincides with equation (6) replacing the multivariable random
field {Z(x)} by {A(x)}. Thus applying the Bourgault et al. (1992) method, the spatial
weighted distance between two sites is given by equation (4) with dij calculated with
equation (2) and Γ(h) obtained from equation (10).

3. Application: Temperature curves in Canada

The methodology is illustrated through an analysis of a well-known meteorological data set
in FDA consisting of daily average (over the years 1960 to 1994) temperature measurements
recorded at 35 weather stations of Canada (Figure 1, right panel). The data were obtained
from Ramsay and Silverman’s home page (http://www.functionaldata.org/). The geo-
graphical coordinates of weather stations (Figure 1, left panel) were obtained from the Me-
teorological Service of Canada (http://www.climate.weatheroffice.ec.gc.ca/climateData/).
Following Ramsay and Silverman (2005) and Giraldo (2009) a Fourier basis with 65 func-
tions is used to smooth the discrete temperature values observed at each weather station.
The very large spatial area covered by this data set makes it difficult to apply statistical
spatial tools based on the assumption of stationarity. For instance, distances (in order of
thousands of kilometers) in latitude imply bigger weather differences than similar distances
in longitude. Taking into account that we assume stationarity and isotropy in the models
we introduce in this paper, we remove the spatial trend in a first step of the analysis.
The smoothed data were detrended by using a functional regression model (Ramsay and
Silverman 2005) with functional response (smoothed temperature curves) and two scalar
covariates (longitude and latitude coordinates in decimal degrees), that is, we considered
the functional linear model

Xi(t) = α̂(t) + β̂1(t)Longitudei + β̂2(t)Latitudei + ei(t). (11)

Then, a Fourier basis with 65 functions was used for smoothing the functional residuals
given in equation (11). Based on the smoothed residual functions and by using the estima-
tor in equation (8), the trace-variogram was calculated for several spatial lags. A spherical
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Figure 1: Averages (over 30 years) of mean daily temperature curves (right panel) recorded
at 35 Canadian weather stations (left panel).

model (Cressie 1993) was fitted to the estimated trace-variogram by using the ordinary
least square technique. The spherical model has been widely used in the literature, and
was chosen in terms of its flexibility, simplicity and interpretability of its parameters. The
estimated spherical model for the trace-variogram, was as follows: the nugget was equal to
0, the partial sill equal to σ2 = 7769, and the range was φ = 2184. So the estimated trace-
variogram was γ̂(h) = 7769(1.5h/2184− 0.5(h/2184)3) for h ≤ 2184, and γ̂(h) = 7769 for
h > 2184. Interpreting the range of the fitted model as in a classic geostatistical setting,
we can say that sites separated up to 2184 kilometers are still correlated.

A LMC was fitted to the multivariable random field consisting of coefficients of the
Fourier basis functions used for smoothing the residuals in equation (11). All single (direct)
variograms and cross-variograms were modeled as a linear combination of nugget and
exponential models. Based on the fitted LMC, we estimated the multivariate variogram
by means of equation (5).

We performed three hierarchical functional cluster analysis. The first one was based
on the matrix of Euclidean distances among the coefficients of the Fourier basis functions
used for smoothing the temperature data (using equation 2), and the remaining ones by
weighting this dissimilarity matrix by the trace-variogram and by the multivariate vari-
ogram obtained with the coefficients of the Fourier basis used for smoothing the residuals
in equation (11). We used complete linkage as the agglomeration method. Complete link-
age was also used by Clarkson et al. (2005) for clustering the same data set as considered
here. Two threshold values were considered to obtain the clusters in each case. The first
one (the largest threshold value) was obtained when applying the cluster quality measures
of Davies-Bouldin, Calinsky-Harabasz, Hubert-Levine and Silhouette, respectively (Davies
and Bouldin 1979; Milligan and Cooper 1985). In all cases these measures suggested two
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Figure 2: Left panel: Hierarchical clustering of temperature curves recorded at 35 weather
stations of Canada. Right panel: Spatial distribution of stations according to the division
into 9 groups.
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Figure 3: Left panel: Hierarchical clustering by weighting the distance matrix by the
trace-variogram. Right panel: Spatial distribution of stations according to the division
into 9 groups.
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Figure 4: Left panel: Hierarchical clustering obtained by weighting the distance matrix
by the multivariate variogram. Right panel: Spatial distribution of stations according to
the division into 9 groups.

clusters. Cutting the dendrograms into two groups we could not identify clearly the effect
of spatial correlation into the classification. For this reason in each case we chose visually
a second threshold (the lowest threshold value) in order to obtain a more detailed partition
(9 groups in all cases).

The dendrograms obtained are shown in Figures 2, 3 and 4. When we cut the den-
drograms at the largest threshold, we can observe that in the classical functional cluster
analysis (left panel in Figure 2) the stations Resolute, Inuvik and Iqaluit (the far norther
stations) are very separated from the remaining ones. If we consider spatial weighting
(left panel in Figures 3 and 4) these stations are clustered with other relatively closer sta-
tions such as Scheferville (911 kilometers to Iqaluit) or Dawson (705 kilometers to Inuvik).
These results reflect the effect of including the spatial weighting into the analysis.

To check if the clustering results make sense from a spatial point of view, we show
the spatial distribution of clusters (right panels of Figures 2, 3 and 4), when we cut the
dendrograms at the lowest threshold. We can observe that in general the clusters consist
of stations that are located in the same region. However some exceptions to this rule are
obtained when the classification is obtained by classical functional cluster (right panel in
Figure 2). For instance if we compare the map in Figure 1 with the labels in the right panel
of Figure 2 we note that Whitehorse (label 7 in Figure 2) in western Canada is assigned
to the same cluster of other very separated stations (more than 4500 kilometers) such as
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Thunder Bay in norther Ontario or Arvida and Bagotville in northeastern Quebec. In the
same sense, Kamloops (label 4 in Figure 2) in the Pacific region (south central British
Columbia) is assigned to the same cluster of stations separated more than 4000 kilometers
as London and Toronto in southwestern Ontario. In summary, the comparison of the
three analysis allows to conclude that the use of a spatial weighting is reflected in more
spatially homogeneous groups. Clarkson et al. (2005) defined 7 groups of stations. These
authors conclude that some cluster assignment makes sense (e.g., Pr Rupert, Vancouver
and Victoria in the same cluster), as well as clusters which are difficult to interpret (e.g,
Dawson in Western Canada in the same cluster of Regina or Winnipeg). In our analysis
the use of a spatial weighting allows to give a solution to this problem.

We can also observe from Figures 3 and 4 that there are few differences between the
clusters obtained with the two methods based on spatial weighting. When we weight the
dissimilarity matrix by the trace-variogram, the station Churchill (see Figure 1) with label
7 in right panel of Figure 3 is assigned to the same cluster of Uranium City and Yellowknife
(see Figures 1 and 3), whereas this station is assigned to the same cluster of Schefferville
and Iqaluit when we use the multivariate variogram as weighting function (see Figures
1 and 4). Taking into account that Churchill is closer to Uranium City (around 1400
kilometers) than to Schefferville (2753 kilometers) or Iqaluit (4059 kilometers) it could be
more reasonable to assign this station to its cluster in Figure 3. However a discussion
from a meteorological point of view is obviously important in this case in order to make
an appropriate assignment.

Another way of detrending the mean in FDA is by using a functional analysis of vari-
ance (FANOVA). In Chapter 13 of Ramsay and Silverman (2005), a FANOVA is performed
with the Canadian temperature data set where a factor is defined by dividing Canada into
Atlantic, Continental, Pacific and Artic meteorological zones and assigning each station
to some of these zones. We also applied our proposal but considering the residuals of the
FANOVA instead of those obtained with the functional regression model given in equation
(11). The results in this case are completely analogous to those shown above, that is, we
achieve to define groups of stations with similar temperature curves and located in zones
relatively contiguos.

4. Conclusions and further research

A methodology for clustering spatially correlated functional data has been proposed. Our
proposal combines both geostatistical cluster analysis and functional cluster analysis in
order to give a solution to the problem of detecting spatially homogeneous clusters of
curves. Our approach has been applied to a climatological data set. The results show a
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good performance of the proposed methodology, indicating from a descriptive point of view
that this one can be used as a classification method when we need to take into account
spatial correlation in cluster analysis of spatially referenced samples of curves.

We have only considered hierarchical clustering analysis. Alternative clustering tech-
niques for spatially correlated functional data should also be considered. In addition, the
use of other basis functions such as B-splines could also be considered.
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