
Complex network approaches for epidemic
modeling: a case study of COVID-19

Akhil Kumar Srivastav1⋆, Vizda Anam1,2, Rubén Blasco-Aguado1,
Carlo Delfin S. Estadilla1,5, Bruno V. Guerrero1, Amira Kebir3,4, Lúıs Mateus1,
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Abstract. Since the SARS-CoV-2 outbreak, the importance of math-
ematical modeling as a tool for comprehending disease dynamics has
been highlighted, with several mathematical modeling techniques being
applied and developed to simulate and measure the impact of interven-
tions aimed at controlling the spread of the disease and minimizing its
burden. In this work, we applied complex network techniques to analyze
a Susceptible-Exposed-Asymptomatic-Hospitalized-Recovered (SEAHR)
model to describe COVID-19 transmission dynamics, using the Basque
Country region of Spain as a case study. We compared two network
modeling approaches: the Watts-Strogatz network and the Barabasi-
Albert scale-free network. By applying immunization strategies on both
networks, we demonstrate that targeted immunization yields superior
results within a scale-free network due to its increased heterogeneity.
Moreover, the basic reproduction number of the model is calculated and
sensitivity analysis is performed to determine the influence of the model
parameters on the disease dynamics.

Keywords: Complex Network, Watts-Strogatz network, Scale-free network, COVID-
19, Disease modeling, Targeted immunization policies.

1 Introduction

The spread of infectious diseases in animal and human populations is a con-
tinuous process that dates back to ancient times probably following the rise of
agriculture [32]. Although there has been enormous progress in the understand-
ing, prevention, and control of infectious diseases over the past century, the
global burden remains high [7]. The SARS-CoV-2 pandemic raised awareness of
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the importance of mathematical models as a tool to understand disease dynam-
ics better. Models were used successfully for forecasting the pandemic evolution,
particularly hospital demand, and evaluating the impact of vaccines and non-
pharmaceutical interventions [1–3,18]. The majority of epidemic models found in
the literature are formulated as compartmental models based on the traditional
Susceptible-Infectious-Recovered (SIR) model first proposed by Kermack and
McKendrick [20]. Furthermore, it is usually assumed that host contact patterns
follow the so-called mass action law or homogeneous mixing, so all hosts have
identical contact rates within the population [25]. The homogeneous mixing of
the entire population can be appropriate for outbreaks within small to medium
size communities. Nevertheless, at a higher scale, for example, in multi-country
epidemic outbreaks, there can be important heterogeneity in travel patterns and
population distribution that can affect epidemic spread [14]. In other words,
heterogeneity in host contact patterns can play a key role in disease dynamics
and therefore it is important to develop models that include more details about
individual-level interactions [5].

Recently, network-based models have been proposed to explicitly account for
heterogeneity in host contact rates. Several studies have argued that contacts
among individuals that allow the spread of an infectious disease naturally define
a network and hence this network provides insight into the underlying epidemi-
ological dynamics [5, 12, 31]. For instance, a compartmental network model was
proposed in [33] to study COVID-19 in Wuhan and in the Great Toronto Area.
The model was used to project new infections and the effect of the measures
against the spread. Within network epidemic models, individuals are represented
as nodes, and an edge between two nodes represents a contact with the poten-
tial to transmit the disease. Depending on the number of connections and their
distribution among the nodes, different networks can be defined. In [13], the
authors simulate the COVID-19 expansion in various regions with an extended
SIR model adding a quarantine compartment, in order to try to find later the
network that better fits that number of infections. Epidemiological models on
networks have the potential to improve over mean-field descriptions of popula-
tion dynamics with a better description of interactions among individuals. For
example, while in standard compartmental models, the set of contacts is continu-
ally changing, network epidemic models usually assign to each individual a finite
set of permanent contacts that can lead to infection [5, 12, 15, 31]. Furthermore,
even if individuals have the same number of connections in both homogeneous
mixing and network models, the permanence of interactions in networks might
cause a fast, localized outbreak, followed by a decreasing incidence once the sus-
ceptible class reduces locally [15]. Even though disease extinction often occurs
in network models, if an outbreak arises, it is usually explosive [21].

A network is typically represented by a graph. A finite graph can be de-
fined in terms of its adjacency matrix that describes the contacts among the
individuals in the network. The graph can be undirected, directed, weighted,
time-dependent, or combinations of these in order to reflect the biological or
physical characteristics of the system under study [5,12,15,31]. Several network
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formulations have been used to study the epidemic spreading process including
random, lattice, small-world, and scale-free networks [15]. As the name suggests,
in random networks the contacts among individuals are assigned at random. In
lattice networks, individuals are the nodes in a regular grid, and contacts are
established among adjacent individuals. So, lattice models are spatially localized
and highly clustered. Small-world networks, also known as Watt-Strogatz (WS)
networks [31], integrate characteristics from random and lattice networks by
adding a certain number of random connections to a lattice [15, 31]. Barabasi-
Albert (BA) scale-free networks, in turn, are a type of network in which the
degree distribution follows a power law. The power law implies that the great
majority of nodes have few connections, while a few important nodes (so-called
hubs) have a huge number of connections [5, 12, 15, 31]. These differences may
imply the necessity of using different vaccination strategies, as studied in [28],
where they simulated a SAIRV model of COVID-19 in Italy with two vaccination
methods in a random and in a BA scale-free network

Using differential equations, we present in this chapter a complex network
model as a theoretical framework to investigate the epidemic spreading process of
COVID-19 infection in the Basque Country, a region of Spain, as a case study.
To this end, we employ a complex network technique to analyze a proposed
Kermack-McKendrick-type model with a Susceptible-Exposed-Asymptomatic-
Hospitalized-Recovered (SEAHR) structure. The SEAHR model is an extension
of the well-known SIR framework in which the I class is divided into two groups
labeled H and A: H stands for individuals developing a severe form of the dis-
ease and likely being hospitalized, while A refers to infected individuals who are
asymptomatic or have a mild form of the disease. In this study, we focus on two
network modeling approaches: the WS network and the BA scale-free network.
In the next section, the underlying assumptions of the model are explained in
detail. The mathematical properties of the model and the basic reproduction
number are discussed in Section 3. Furthermore, a sensitivity analysis is imple-
mented to determine the influence of various parameters on disease dynamics.
The theoretical aspects of the network structure are discussed in Section 4. In
Section 5, we analyze a number of immunization strategies under both WS and
BA scale-free networks, aiming to better understand the trade-off between pop-
ulation heterogeneity and the effectiveness of targeted vaccination programs. A
complete discussion of our results is given in Section 6.

2 Formulation of the complex network model

A compartmental complex network differential equation model focused on de-
scribing COVID-19 spreading features is formulated and analyzed. In contrast to
classical compartmental models, here it is necessary to consider the interaction
of each individual with their contact in the network. In this way, each individual
in the community can be regarded as a vertex (node) in the network, and each
contact between two individuals represented as an edge (line) connecting the
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vertices. The number of edges originating from a vertex, that is the number of
contacts a person has, is called the degree of the vertex.

In this work, we assume that the total population is divided into n distinct
groups of sizes Nk, k = 1, 2, ..., n, such that each individual in the group k has
exactly k contacts per day. Sk, Ek, Ak, Hk and Rk denote the number of suscep-
tible, exposed, asymptotically infectious, symptomatically-infectious (hospital-
ized) and recovered nodes at time t and with degree k. LetNk(t) = Sk(t)+Ek(t)+
Ak(t)+Hk(t)+Rk(t) represent the subtotal population with degree k at time t.
Then, the total population is denoted by N = N1+N2+...+Nn =

∑n
k=1 Nk, and

the probability that a uniformly chosen individual has k contacts is P (k) = Nk

N .
thus Nk(t) = NP (k) . We also assume that the total human population N is
constant.

The proposed model is formulated considering the following assumptions:

1. Susceptible individuals, through their contacts get exposed to the infection,
and move to the exposed class at rates β and ϕβ if the effective contact
was with a symptomatic/hospitalized or asymptomatic human individual,
respectively. The factor ϕ > 1, differentiates the force of infection among
asymptomatic and symptomatic infections, meaning that asymptomatic in-
dividuals contribute more to the force of infection.

2. After the exposure period to the infection 1
ζ , a fraction η develops severe

symptoms and moves to the hospitalized class, while the remaining fraction
(1− η) of exposed individuals that do not show any clinical symptoms move
to the asymptomatic class.

3. Symptomatic/hospitalized individuals will get treatment and they will re-
cover at a rate γ1. However, due to some complications of the infection, some
individuals will eventually die at a rate δ.

4. We assume that asymptomatic individuals recover and they will move to the
recovered class with a rate γ2.

5. We will also assume, initially, that the recovery rate for symptomatic/hospi-
talized and asymptomatic will be the same, that is, γ1 = γ2, in order to sim-
plify the assumptions and guarantee the symmetry between classes. However,
biologically speaking, those rates can be different [10], and thus, this effect
will be considered in the numerical simulations in the following sections.

6. Note that in the SARS-CoV-2 epidemic, asymptomatic people play a criti-
cal role in the spread of disease since they have no symptoms, have greater
mobile, and encounter more people with a higher probability of infection
compared to symptomatic individuals, who are possibly hospitalized or quar-
antined. Therefore, the symptomatic class and the asymptomatic class are
differentiated in our model.

Considering these assumptions detailed before, the model can be represented
by the following graph, (depicted in Figure 1), for each group k, of size Nk,
having k contacts:
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Fig. 1. Flow diagram of the model for a group k, proposed to represent the dynamic
for COVID-19 infection via an SEAHR compartmental model.

And the ODE complex network model reads:

dSk(t)

dt
= −βϕkSkθ1(t)− βkSkθ2(t)

dEk(t)

dt
= βkSk[ϕθ1(t) + θ2(t)]− ζEk(t)

dHk(t)

dt
= ηζEk − γ1Hk(t)− δHk(t) (1)

dAk(t)

dt
= (1− η)ζEk(t)− γ2Ak(t)

dRk(t)

dt
= γ1Hk(t) + γ2Ak(t)

where θ1 and θ2 are defined as follows:

θ1(t) =
1

⟨k⟩

n∑
k′=1

k′P (k′)Ak′(t), θ2(t) =
1

⟨k⟩

n∑
k′=1

k′P (k′)Hk′(t),

and

⟨k⟩ =
n∑

k′=1

k′P (k′).

For the convenience of the reader, Table 1 depicts the parameters and their
descriptions, as well as the baseline values used for the numerical simulations.
The values were obtained from [1], where the data of COVID-19 from the Basque
Country region of Spain was fitted to a modified SIR model, showing good
agreement with the data and the model.
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Parameters Description Baseline values

β : infection rate 3.25× γ1 = 0.1625
ζ : rate of becoming infectious after latency 0.5 [2-5 days]
η : rate of becoming symptomatic/hospitalized infected 0.45 [0-1]
(1− η) : rate of becoming asymptomatic infected 0.55 [0-1]
γ1 : recovery rate for symptomatic/hospitalized individuals 0.05d−1

γ2 : recovery rate for asymptomatic individuals 0.05d−1

δ : disease-related death for symptomatic/hospitalized individuals 0.025d−1[0.02− 0.03]
ϕ : ratio of mild/asymptomatic infections contributing to force of infection 1.6 [1-2]

Constants

N : population size 2.2× 106

E(0) : exposed initial population 110
H(0) : hospitalized initial population 50
A(0) : mild disease and asymptomatic initial population 80
R(0) : recover initial population 1.0

Table 1. Baseline parameter values used for simulations. The baseline values were
obtained from [1].

3 Analysis of the network model

3.1 Positivity of the solutions

For the proposed network model (1), we proved the positivity of the solutions.

Theorem 1. The solutions Sk(t), Ek(t), Ak(t), Hk(t) and Rk(t) of system (1)
with initial conditions Sk(0) > 0, Ek(0) ≥ 0, Ak(0) ≥ 0, Hk(0) ≥ 0, Rk(0) ≥ 0,
are positive for all t > 0.

Proof. If Sk(0) > 0, according to the first equation of system (1), we have,

dSk(t)

dt
+ βϕkSk(t)θ1(t) + βkSk(t)θ2(t) = 0.

This can be rewritten as

dSk(t)

dt
exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}
+Sk(t)(βϕkθ1(τ) + βkθ2(τ))exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}
= 0.

That implies that

d

dt

[
Sk(t)exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}]
= 0,

and then,

Sk(t)exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}
− Sk(0) = C
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with C = constant.

As Sk(0) > 0 is a constant, we get

Sk(t)exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}
=: C1 (C1 = constant).

Therefore, at t = 0 in the last equation, we get Sk(0) = C1. Thus,

Sk(t)exp

{∫ t

0

(βϕkθ1(τ) + βkθ2(τ))dτ

}
= Sk(0) > 0.

Hence,

Sk(t) = Sk(0)exp

{
−
∫ t

0

(β1kθ1(τ) + β2kθ2(τ))dτ

}
> 0.

Similarly, we can prove that Ek(t) > 0, Ak(t) > 0, Hk(t) > 0, Rk(t) > 0.
Therefore, the solutions of system (1) with initial conditions Sk(0) > 0, Ek(0) ≥
0, Ak(0) ≥ 0, Hk(0) ≥ 0, Rk(0) ≥ 0, are positive for all t > 0.

This completes the proof of Theorem 1.

Throughout this chapter, we will focus on the dynamics of the system (1) in
the following bounded region:

Ω = {(S1.....Sk, E1......Ek, A1......Ak, H1.....Hk, R1......Rk) : Sk > 0, Ek ≥ 0, Ak ≥ 0,

Hk ≥ 0, Rk ≥ 0, Sk + Ek +Ak +Hk +Rk = Nk, }, where 0 ≤ k ≤ n}.

Also, all parameters are assumed to be positive. Their descriptions and baseline
values are provided in Table 1.

3.2 The basic reproduction number

The system (1) has a unique disease-free equilibrium

E0 = (N0
1 , ..., N

0
k , 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0).

Following the theory stated in [26,29], we note that only the infectious compart-
ments Ek, Hk and Ak are involved in the calculation of R0. In the disease-free
state, E0, the matrix whose entries are the rate of appearance of new infections,
F , and the matrix whose entries are the rate of transfer of individuals out of the
compartments, V , are given by

F =

0 Fn×n
12 Fn×n

13

0 0 0
0 0 0
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where

Fn×n
12 =

βS0
k

⟨k⟩


1P (1) 2P (2) · · · nP (n)
2P (1) 2 · 2P (2) · · · 2nP (n)

...
...

...
nP (1) 2nP (2) · · · n · nP (n)

 ,

Fn×n
13 =

ϕβS0
k

⟨k⟩


1P (1) 2P (2) · · · nP (n)
2P (1) 2 · 2P (2) · · · 2nP (n)

...
...

...
nP (1) 2nP (2) · · · n · nP (n)

 ,

and

V =



ζ 0 · · · 0 0 · · · 0 0 · · · 0
0 ζ · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · ζ 0 · · · 0 0 · · · 0
−ζη 0 · · · 0 γ1 + δ · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · −ζη 0 · · · γ1 + δ 0 · · · 0
−(1− η)ζ 0 · · · 0 0 · · · 0 γ2 · · · 0

...
...

...
...

...
...

...
0 0 · · · −(1− η)ζ 0 · · · 0 0 · · · γ2



.

Therefore,

D = FV −1 =

Dn×n
11 Dn×n

12 Dn×n
13

0 0 0
0 0 0

 ,

where

Dn×n
11 =

1

⟨k⟩

[
ηβS0

k

γ1 + δ
+

βϕ(1− η)S0
k

γ2

]
1P (1) 2P (2) · · · nP (n)
2P (1) 2 · 2P (2) · · · 2nP (n)

...
...

...
nP (1) 2nP (2) · · · n · nP (n)

 ,
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Dn×n
12 =

1

⟨k⟩

[
βS0

k

γ1 + δ

]
1P (1) 2P (2) · · · nP (n)
2P (1) 2 · 2P (2) · · · 2nP (n)

...
...

...
nP (1) 2nP (2) · · · n · nP (n)

 ,

and,

Dn×n
13 =

1

⟨k⟩

[
ϕβS0

k

γ2

]
1P (1) 2P (2) · · · nP (n)
2P (1) 2 · 2P (2) · · · 2nP (n)

...
...

...
nP (1) 2nP (2) · · · n · nP (n)

 ,

According to [26, 29], the basic reproduction number can be defined math-
ematically as the spectral radius of the matrix FV −1. Therefore, we need to
compute the eigenvalues of FV −1. Note that the matrices D and Dn×n

11 have the
same spectral radius, since D is an upper triangular matrix.

Observe that the last n − 1 rows in the matrix Dn×n
11 can be obtained as

a linear combination of the first row. Hence, Dn×n
11 has rank 1 and only one

non-zero eigenvalue. Consequently, the spectral radius ρ(Dn×n
11 ), is equal to the

absolute value of the trace of Dn×n
11 .

Note that,

trace(Dn×n
11 ) =

⟨k2⟩
⟨k⟩

[
ηβ

γ1 + δ
+

βϕ(1− η)

γ2

]
S0
k.

Therefore, the basic reproduction number is given by

R0 =
⟨k2⟩
⟨k⟩

[
ηβ

γ1 + δ
+

βϕ(1− η)

γ2

]
S0
k.

The term
⟨k2⟩
⟨k⟩

denotes the average number of contacts. The term
ϕβ(1− η)

γ2
S0
k

denotes the expected number of asymptomatic individuals generated by a single

asymptomatic infected human, and
βη

(γ2 + δ)
S0
k denotes the expected number

of symptomatic / hospitalized individuals generated by a single symptomatic
infected human. In this model, the basic reproduction number R0 denotes the
number of secondary infected cases generated by a single infected case, in a
region where the whole population under consideration is susceptible.

Impacts of parameters on the basic reproduction number. In order to
visualize the impact of each parameter on the basic reproduction number, we
apply the normalized forward sensitivity analysis technique. For that, we analyze
the parameters affecting the basic reproduction number R0. The ratio of the
relative change in the variable to the relative change in the parameter is indicated
by the normalized forward sensitivity index of a variable to a parameter. Thus,
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the forward sensitivity index is differentiable with regard to the parameter p̄,
which is defined by

ξp̄R0
=

∂R0

∂p̄
· p̄

R0
. (2)

This analytical expression for each parameter of the model can be easily
calculated using the above equation, and thus, the sensitivity of R0 with respect
to each parameter can be computed. The aim of this analysis is to find the key
parameter that impacts the basic reproduction number the most, thus being the
main driver in producing new infections and therefore, likely an outbreak. By
finding the key parameter, it is possible to analyze which control measure is
needed to decrease R0, and thus the spread of the disease.

Figure 2 shows the results of this analysis, taking into account the baseline
values for the parameters set in Table 1. The transmission rate β and the average
size of the connection have a direct impact on the value of R0, and are also the
key parameters that increase it. Additionally, the hospitalization rate, η, and
the difference ratio between symptomatic and asymptomatic, ϕ, are also directly
correlated, albeit with a comparatively lower impact on R0.

Furthermore, the recovery rates γ1 and γ2 and the death rate δ exhibit an
inverse relationship with R0. Thus, enhancing healthcare environments would
significantly contribute to disease mitigation. Nevertheless, the size of connec-
tions remains to be the primary parameter exerting the most substantial impact.
Hence, for respiratory diseases like COVID-19, effective disease control needs a
reduction in both the number of contacts and the transmission rate.

1 2  k
 

 k
2  

-1

-0.5

0

0.5

1

Fig. 2. Normalized forward sensitivity indices of R0 with respect to the parameters of
the model. The baseline values of the model parameters are shown in Table 1.



Srivastav et al. 11

Overall, the result shows that by adopting the above measures, the disease
can be controlled. In Figure 3 we show the impact of combined control measures
on R0. Figure 3(a) shows that if the transmission rate β increases and the
recovery rate γ1 is kept at its lowest value (longer recovery time for symptomatic
individuals), then the reproduction number R0 will increase, resulting in a very
high number of infected individuals and an eventual outbreak.

Figure 3(b) meanwhile shows the impact of a combined strategy that includes
the reduction of the transmission rate and control of the ratio of mild/asymptomatic
infections contributing to the force of infection ϕ. Our results suggest that disease
mitigation can also be achieved, for instance, by increasing the detection rate
among asymptomatic individuals or implementing curfew measures to curtail
mobility.

(a) (b)

Fig. 3. Effect of applying different control measures on infection spread, via parameter
analysis impact on R0. The baseline values of the model parameters are shown in Table
1. Here, β and γ1 vary from [0, 0.2] and [0, 0.1], respectively. The cyan plane represents
R0 = 1.

Therefore, the threshold R0 is crucial in an epidemiological context for as-
sessing the magnitude of an epidemic. This significance is further evidenced
theoretically in the network model, as demonstrated in the next section (3.3),
where we establish that the disease dies out when R0 < 1.

3.3 Stability analysis of the model

As a consequence of the results from [29], we can establish the local stability of
the disease-free equilibrium:

Theorem 2. If R0 < 1, the disease-free equilibrium

E0 = (N0
1 ...N

0
k , 0..0, 0..0, 0..0, 0..0).

of the system (1) is locally asymptotically stable, and if R0 > 1, the disease-free
equilibrium E0 is unstable.
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Furthermore, we prove a more general result of global stability.

Theorem 3. If R0 < 1, the disease-free equilibrium

E0 = (N0
1 ...N

0
k , 0..0, 0..0, 0..0, 0..0).

of the system (1) is globally asymptotically stable whenever the eigenvalues of
the matrix F − V have a negative real part. And, if R0 > 1, the disease-free
equilibrium E0 is unstable.

Proof. This theorem is proved using the comparison theorem [16]. Using the
same notation as in [26], and re-writing the equations for the exposed and in-
fected compartments of the system (1) we get

E1

E2

...
En

H1

H2

...
Hn

A1

A2

...
An



= (F − V )



E1

E2

...
En

H1

H2

...
Hn

A1

A2

...
An



−



ϕβS1θ1(t) + βS1θ2(t)
2ϕβS2θ1(t) + 2βS2θ2(t)

...
kϕβSkθ1(t) + kβSkθ2(t)

0
0
...
0
0
0
...
0



.

If all the eigenvalues of the matrix F −V have negative real parts, the system
is stable for R0 < 1. By the comparison theorem [16], it follows that

(E1, E2.......Ek, H1, H2.......Hk, A1, A2.......Ak, ) → (0, 0.....0, 0, 0....0, 0, 0....0)

as t → ∞. Then (E1, E2.......Ek, H1, H2.......Hk, A1, A2.......Ak, ) → E0 as t →
∞. Therefore, E0 is globally asymptotically stable for R0 < 1.

4 Network model dynamics

Network models have been useful in describing dynamics in real-world contexts
such as social networks [23], neuroscience [6], and metabolism [34]. In this chap-
ter, we aim to apply approaches in network modeling to the epidemiological
model proposed herein. Specifically, we will create a WS network [31] and ana-
lyze the role that this network structure plays in the model structure. Moreover,
we will connect the nodes via a BA scale-free network [5] and compare the two
complex structures.
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4.1 A WS network

A WS network is characterized by a small-world graph with random features,
such as clustering and a low average path length. The following steps describe
how a small-world network with N nodes can be built:

1. Create a regular lattice with N nodes of average degree 2K. Each node is
connected to its K nearest neighbors, K vertices clockwise and K counter-
clockwise.

2. Each edge in the graph, with independent and uniform probability p̂, is
removed and replaced by a new edge between two nodes that are chosen
uniformly, at random, from the N nodes, without duplicating or self-looping
edges.

For instance, when p̂ = 0, a ring graph in which each node is coupled to
its K nearest neighbors is obtained as shown in Figure 4(a). While, when
p̂ = 0.1, the result is a random graph, as shown in Figure 4(b). The topology
of a small-world network is illustrated in Figure 4, for N = 20, K = 2 and
two different wiring probabilities.

1

2

3 4
5

6

7

8

9

10

11

12

1314
15

16

17
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19

20

(a) p̂ = 0

1

2

3

4

5

6

7
8

9

10

11

12

1314

15

16

17
18

1920

(b) p̂ = 0.1

Fig. 4. WS small-world network with N = 20, K = 2 (the average degree is 4) and the
wiring probabilities are, in (a) p̂ = 0, and in (b) p̂ = 0.1.

4.2 A BA scale-free network

The BA scale-free networks are represented by the scenario of a few hubs with
high connection and most nodes with low connectivity, as shown in Figure 5.
The following algorithm produces an undirected BA scale-free network of size
N :

1. Start with an initial network of size m0. Then N −m0 nodes are introduced
sequentially into the network, where each node connects with m∗ ≤ m0

existing nodes.



14 Srivastav et al.

Note that it is typical to choose m∗ = m0 and it is not possible to choose
m∗ > m0 since the first new node introduced cannot be assigned m∗ edges.
Thus, the initial network with size m0, will determine the maximum average
degree of the network.

2. The m∗ connections of the new node with the existing ones are chosen with
a probability that is proportional to their current degree. More than one
edge between two nodes is not allowed. Thus, the combination of network
growth with this preferential attachment is what leads to a power-law degree
distribution.

In this chapter, we adapted the algorithm described in [27], according to the
study described in [24]. The topology of a BA scale-free network is illustrated
in Figure 5 for N = 20,m0 = 3 and two different preferential attachment values
m = 1 and m = 3, in Figure 5 (a) and (b), respectively.
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Fig. 5. BA scale-free network, with N = 20,m0 = 3, and in (a) m = 1 and in (b)
m = 3.

4.3 Comparison of the two network structures

Here, we compare the results of applying both networks to the model (1). For
that, we define degree distribution for each of the networks. The “degree dis-
tribution” is defined as the probability distribution of the number of nodes and
connections across the network. When the probability distribution resembles a
“Power Law”, then the network is called “scale-free”, or a “power law” network,
where P (k) = k−η and 2 < η < 3.

The WS structure starts with a ring of N vertices in which each vertex is con-
nected to its 2m1 nearest neighbors. Afterwards, each edge can be reconnected
to a different node with probability p̂, and preserved with probability 1 − p̂.
Consequently, the degree distribution is the following expression approximated
by a Poisson distribution:
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P (k) =

min(k−m1,m1)∑
k=0

(
m1

n

)
(1− p̂)np̂m1−n p̂mk−m1−n

1

(k −m1 − n)!
e−p̂m1 (3)

and as p̂ → 1,

P (k) =
mk−m1

1

(k −m1)!
e−m1 .

We now compare the behavior of model (1) for both the WS network with de-
gree distribution described in equation (3) and for the BA scale-free network with
a power law distribution. The numbers for the total asymptomatic,

∑n
k=0 Ak,

total hospitalized
∑n

k=0 Hk, and total infected population,
∑n

k=0(Ak +Hk) are
shown in Figure 6. The results show that applying the WS network to represent
the contact in each group will produce a higher number of infected individu-
als than applying the BA scale-free network to represent the contact between
individuals of the same group.
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Fig. 6. Comparison of the solution of the model (1) by applying two network structures
to represent the contacts. The baseline values of the model parameters are shown in
Table 1.
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5 Control and immunization

5.1 Uniform immunization strategy

The uniform immunization strategy is the simplest immunization scheme [22].
In order to get a uniform immunization density, it is assumed that immune
nodes cannot become infected and, thus, do not transmit the infection to their
neighbors. In this case, for a fixed infection rate β, the fraction of immune
nodes present in the network denoted p can be a relevant quantity to take as
a control parameter. At the mean-field level, the presence of uniform immunity
will effectively reduce the spreading rate β by a factor (1− p). Considering the
existence of the immunized fraction (0 < p < 1), the model (1) now reads as

dSk(t)

dt
= −(1− p)βϕkSkθ1(t)− (1− p)βkSkθ2(t)

dEk(t)

dt
= (1− p)βkSk[ϕθ1(t) + θ2(t)]− ζEk(t)

dHk(t)

dt
= ηζEk − γ1Hk(t)− δHk(t) (4)

dAk(t)

dt
= (1− η)ζEk(t)− γ2Ak(t)

dRk(t)

dt
= γ1Hk(t) + γ2Ak(t).

The effect of the control parameter p, on total infected cases
∑n

k=0 Ak+Hk, it
is shown in Figure 7. In homogeneous networks, such as the WS model, the effect
of uniform immunization strategy has a great impact in decreasing infection, see
Figure 7(a). That is, a public policy of immunization of individuals, that allows
total protection against infection and therefore against spreading, implies that
in this kind of network, individuals have less chance of getting infected, allowing
the protection of the network and reducing the spread of the infection.

On the other hand, the uniform immunization program is not so effective in
reducing infections in a context where contacts resemble a BA scale-free network.
The BA scale-free network is a heterogeneous network and a uniform immuniza-
tion strategy cannot protect higher-order degree infected nodes, see Figure 7(b).
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Fig. 7. Effect of the control parameter p on total infected cases
∑n

k=0(Ak + Hk).
Contacts are described by the WS model in (a) and the BA scale-free network in (b).
The baseline values of the model parameters are shown in Table 1.

5.2 Optimized immunization strategies

When fighting an epidemic in a heterogeneous population with a uniform vac-
cination scheme, it is necessary to vaccinate a fraction of the population larger
than the estimate given by a simple (homogeneous) assumption. In this case,
it can be proved that optimal vaccination programs can eradicate the disease
by vaccinating a smaller number of individuals. BA scale-free networks can be
considered as a limiting case for heterogeneous systems, and it is natural for
this case to apply another specifically devised immunization strategy. In the fol-
lowing, we describe another type of immunization that can be applied to BA
scale-free networks.

Targeted immunization Another effective strategy is targeted immunization
[22]. The very peculiar nature of the BA scale-free networks allows us to define
more efficient strategies based on the nodes’ hierarchy. In particular, it has been
shown that BA scale-free networks possess a noticeable resilience to random
connection failures, which implies that the network can resist a high level of
damage to disconnected links, without losing its global connectivity properties.

In our network model (1), we introduce a lower and an upper threshold,
k1 and k2, respectively, such that, if k > k2, all nodes with connectivity k
are immunized, while if k1 < k < k2, then, mk (0 < mk ≤ 1) portion will be
immunized. Therefore, defining ηk as the fraction of individuals to be immunized,
we have

ηk =


1, if k > k2.

mk, if k1 < k < k2.

0, if k < k1.

(5)
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where η̂ =
∑

k ηkP (k) is the average immunization rate. Applying this target
immunization to the epidemic model (1) we have

dSk(t)

dt
= −(1− ηk)βϕkSkθ1(t)− (1− ηk)βkSkθ2(t)

dEk(t)

dt
= (1− ηk)βkSk[ϕθ1(t) + θ2(t)]− ζEk(t)

dHk(t)

dt
= ηζEk − γ1Hk(t)− δHk(t) (6)

dAk(t)

dt
= (1− η)ζEk(t)− γ2Ak(t)

dRk(t)

dt
= γ1Hk(t) + γ2Ak(t)

The analysis of this model is now performed. The basic reproduction number
for this model is

R̂0 =
⟨k2(1− ηk)⟩

⟨k⟩

[
ηβ

γ1 + δ
+

βϕ(1− η)

γ2

]
.

Rewriting it in terms of the basic reproduction number for the model without
immunization (1), we get

R̂0 = R0 −
[

ηβ

γ1 + δ
+

βϕ(1− η)

γ2

]
⟨k2ηk⟩
⟨k⟩

,

which means that the number of new infections is reduced by a fraction of
individuals who were immunized.

It is known that if a few of the most connected nodes are removed, in the
context of BA scale-free networks, the network suffers a dramatic reduction of its
ability to carry information [4,8]. Applying this strategy to the case of epidemic
models, the targeted immunization scheme is the recommended immunization
strategy in the case where the transmission resembles BA scale-free networks.
Therefore, by applying this scheme, the immunization control affects the most
highly connected nodes, i.e., the ones more likely to spread the disease.

Figure 8 shows that BA scale-free networks are strongly affected by the strat-
egy of target immunization when selective damage on disconnected links occurs.
In contrast, the WS network remains unaffected, indicating that target immu-
nization does not exert control over the disease spread in this network type,
unlike the uniform immunization strategy.

In Figure 8(b), the effect of control parametermk can be seen, i.e., the portion
of the node to be immunized, on the total infected cases,

∑n
k=0(Ak + Hk), on

the BA scale-free network. The strategy is very effective in reducing the number
of infected cases when mk is increasing. On the other hand, the number of
infected cases in the WS network is not so effective in reducing spreading (see
Figure 8(a)), since that network has the same number of connections with each
infected node, and, in this case, the most highly connected nodes cannot be
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Fig. 8. Effect of the control parameter ηk, the proportion of individuals that will be
immunized, on total the infected cases,

∑n
k=0(Ak+Hk). In (a) for WS network, in (b),

for BA scale-free network. The baseline values of the model parameters are shown in
Table 1.

found. Therefore, the above strategy is very beneficial in a BA scale-free network
reducing infection in the population.

5.3 Impact of recovery rates on disease prevalence

In this section, we explore the impact of recovery rates, γ1 and γ2, on infected
populations

∑n
k=0 Hk,

∑n
k=0 Ak and on the overall infections

∑n
k=0(Ak +Hk),

using both WS and BA scale-free networks. The effects will be analyzed numer-
ically, and the results are presented in Figure 9.

In Figure 9(a) and (b), we vary the value of γ1 value in both network models.
The result shows that by increasing the recovery rate γ1, the total hospitalized
population decreases. A parallel analysis was conducted for the parameter γ2.
Here, we can also see that by increasing the value of γ2, the total asymptomatic
population decreased, see Figure 9(c) and (d).

Finally, Figure 9(e) and (f) shows the combined effect of varying both recov-
ery rates, γ1 and γ2, on the total infected population,

∑n
k=0(Ak +Hk). Consis-

tently, higher values of the recovery rate lead to a decrease in the total number
of infections. Notably, there are no discernible differences in the impact of these
values when evaluating the WS (left-side figures) and BA scale-free networks
(right-side figures).

Certainly, augmenting medical facilities and treatments, and other actions
that contribute to an increased recovery rate among individuals, will result in a
reduction in disease spread. This approach has been used as an extension of the
analysis of the difference in impact depending on the network applied.
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Fig. 9. Effect of the recovery rates in the numbers of infected population
∑n

k=0 Ak,∑n
k=0 Hk and

∑n
k=0(Ak +Hk), in the WS model (left-side panels), and the BA scale-

free network model (right-side panels). The baseline values of the model parameters
are shown in Table 1.
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6 Discussion and conclusion

Mathematical models played a critical role in understanding the epidemiologi-
cal dynamics of the spread and prevention measures of COVID-19 around the
world [35]. However, many of these models assume homogeneous mixing in the
population, implying that all individuals have the same number of contacts.
This assumption may hold for smaller or more local areas, but using approaches
that assume heterogeneity may allow for more realistic descriptions of disease
dynamics in larger settings [30].

In this work, complex network techniques were used to propose and an-
alyze a susceptible-exposed-hospitalized/symptomatic-asymptomatic-recovered
(SEAHR) mathematical model for COVID-19 transmission specific to the Basque
Country region of Spain. Our findings shed light on the effectiveness of different
immunization strategies within the context of two network assumptions: the WS
network and the BA scale-free network.

The results demonstrate that a uniform immunization strategy is more effec-
tive in a WS network, characterized by increased homogeneity, while a targeted
immunization strategy performs better in a BA scale-free network, which ex-
hibits greater heterogeneity. This difference underlines the impact of population
heterogeneity on the effectiveness of vaccination programs. In the context of dis-
eases with a notably heterogeneous spread, as observed in COVID-19 due to the
presence of superspreaders [19], our results suggest that a targeted vaccination
would be more effective in curtailing infections and hospitalizations.

Additionally, we calculated the basic reproduction number, R0, and analyzed
the disease-free equilibrium of the SEAHR model. Through sensitivity analysis,
we identified key parameters that significantly aid disease containment. Primar-
ily, the results support the implementation of interventions that will decrease
the transmission rate, β, hospitalization rate, η, and the relative infectiousness
of mild/asymptomatic individuals, ϕ. On the other hand, increasing the recovery
rates, γ1, and γ2, possibly through improved treatment methods, will also reduce
the disease impact.

It is important to note that our study focused on a specific complex network
(mean field equation). Various approaches to network modeling exist, as demon-
strated by previous works (e.g., [9, 11, 17]). While we focused on two specific
approaches, the BA scale-free network is considered one of the more practical
and tractable methods in network modeling [5, 28]. Future research could ex-
plore alternative network generation methods generalizing the quite restrictive
generic networks due to their analytical tractability which we consider here and
refine the COVID-19 model to incorporate additional factors such as reinfection
dynamics, stratification by comorbidity and age, and immunity waning from
vaccination, among others.

In conclusion, this work contributes to the understanding of COVID-19 dy-
namics through network modeling. Our analysis of immunization strategies un-
der different network assumptions highlights the impact of population hetero-
geneity on the effectiveness of targeted vaccination programs. By using param-
eter values specific to the Basque Country region, we reinforce the significance
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of interventions such as social distancing and use of mask in controlling disease
transmission.
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