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Abstract
A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a
rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape
of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a
fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new
algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on
a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a
benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm
to study the effect of the number of teeth on the cavity area of a gerotor.

CCS Concepts
• Computing methodologies → Modeling methodologies; • Mathematics of computing → Mathematical optimization; •
Applied computing → Computer-aided design;

1. Introduction

Curved geometries appear in various industries, automobile sec-
tor being a prime example, where compact yet strong and efficient
components are of a major importance. These object are, for exam-
ple, components of car engines or gearboxes, and their performance
affects the efficiency of the whole machine. An example of such a
mechanical component, a gerotor pump, is shown in Fig. 1.

The gerotor pump, or gerotor in short, consists of two major
components, the interior and the exterior parts, that are extrusions
of 2D profiles in the direction of a common rotational axis. Both
profiles are rotationally symmetric, however, their axis do not co-
incide but differ by the so called eccentricity distance. This axial
deviation causes that, when properly designed, the internal com-
ponent enrolls along the external counterpart in a hypocycloidal
motion. The cavity between the two parts is filled by a fluid and, as
the two parts engage each other, the fluid is pumped in a direction
parallel to their rotational axes, as in Fig. 2.

Current trends in high-tech industry point towards new designs
that allow using less material for components without compromis-
ing their quality or performance specifications. To make the man-
ufacturing process as efficient as possible, one typically aims to
maximize performance of the workpiece under constraints of the
total material being used. In the context of gerotors, one may natu-

Figure 1: Left: A gerotor pump consists of two major components,
the interior and exterior part, that are extrusions of 2D profiles (yel-
low and blue) in the direction of the rotational axes (red). The two
parts engage each other via a hypocycloidal motion which pushes
the fluid through the cavities. Right: A real-life workpiece.

rally ask about the optimal shape of the two components, as well as
the optimal number of teeth that maximize fluid transfer under the
weight and size constraints typical for this particular workpiece.

The proposed research studies this type of problem and pro-
poses an optimization-based pipeline that looks for the most effi-
cient gerotor. Our algorithm is based on several ingredients, namely
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Figure 2: Tracking of a single chamber (red) for the rotation of the pump by an angle φ. By rotating the internal part, the volume of the
chamber compresses and pushes the fluid outwards in the direction of the rotational axis, recall Fig. 1.

an efficient computation of the external profile of the pump (i.e. en-
velope of the internal profile), followed by the construction of the
constraint manifold that corresponds to a fixed amount of material
used for the internal profile, and finalized by a non-linear optimiza-
tion. The main technical contributions of this paper are:

• An efficient algorithm to calculate the internal profile’s enve-
lope is proposed. We show that envelope points correspond to
local extrema of a distance function from the instantaneous cen-
ter of rotation, which simplifies considerably the outer profile
construction and speeds up the whole gerotor design cycle.

• The search for the best shape of the gerotor is formulated as
a constrained optimization problem, the physical feasibility of
the gerotor being a pair of hypersurfaces, that delimit a search
space in 3D, in which gerotors of constant material form a cer-
tain manifold. We build these manifolds in an efficient manner
and explore them to find gerotors with maximum flowrate.

• The proposed algorithm is applied on an existing benchmark
workpiece and increases its simulated flowrate by 16% while
keeping the area (and weight) of the pump constant.

• Our optimization pipeline is run for several values of the num-
ber of teeth and confirms the engineering experience on the de-
sign of gerotor pumps, namely that the maximum eccentricity is
strongly correlated with the maximum flowrate.

2. Related works

Gear sets that move fluids around have been studied and used
for centuries: from the so called Archimedes pump [SH03] used
in the ancient Nile, over the hydraulic gear sets used by Baron
Armstrong in the bridges over the river Tyne in Victorian Eng-
land [McN74], to the ever-smaller and ever-lighter gear pumps
and engines of modern high-tech automotive [KPJ00,RN15], med-
ical [LSTS∗14, KGS15], and aerospace [IB12] industries. Given
that gerotor pumps are relatively simple (only two moving parts),
compact and robust, they have attracted a lot of attention in the
past decade for industrial applications, see review papers on gero-
tor applications by Gamez-Montero et al. [GMCC19] and Rundo
[Run17]. The related studies address mainly three major areas: de-
sign, simulation, and optimization.

Design. In theory any smooth, closed, and non-self-intersecting
curve could define the internal profile of a gerotor pump. However,
three main types are identified: epitrochoidal [PBS89], hypotro-
choidal [HH07] and cycloidal [CKL∗12]. All three are, however,
based on the same principle: a moving circle rolls without slipping

on the inside/outside of a static circle and a point on the moving cir-
cle traces the curve of the profile. See Robison and Vacca [RV21]
for a comprehensive comparison and parametric expressions for all
three types. Litvin and Feng [LF96] present the necessary condi-
tions for the internal profile to be cusp-free and therefore usable for
practical applications.

Once the internal profile has been defined, the external pro-
file can be calculated in one of two ways: by a set of Z circular
arcs linked together in a central symmetric pattern, see Fabiani
et al. [FMN∗99]; or by the outermost envelope to the family of
curves generated by the motion of the internal profile, see Yan et
al. [YYT09]. The algorithms presented in this paper are developed
using an hypotrochoidal (aka hypocycloidal) profile but are suitable
for other types of profiles.

Simulation. Recent approaches to gerotor simulation use com-
putational fluid dynamics to assess the performance of a particu-
lar design, see Altare et al. [AR16], Castilla et al. [CGMRC17],
Pellegri et al. [PVF∗17]. However, due to the high computational
cost of CFD simulations, analytical methods have been developed
to evaluate certain aspects of gerotor pumps without the need to
resort to CFD-based models. These aspects include: flow estima-
tion, see Lingeswaramurthy et al. [LJEK11]; forces and moments,
see Ivanovic et al. [IDMC10]; and wear on profiles, see Kwon et
al. [KKS08]. These analytical models respond to an constantly-
growing trend in gerotor design and analysis, and in fact industry as
a whole: the reduction of design, simulation, and fabrication time
of to-be-manufactured components. Our paper addresses this very
same issue from the perspective of geometrical optimization.

Optimization. Optimization techniques for gerotors have gained
popularity in recent years. Several authors have contributed on op-
timization studies for gerotor shapes on hypocycloidal, see Kwon
et al. [KKS11]; epitrochoidal, see Karamooz et al. [KRFM12];
or some rare assymetric profiles, see De Martin et al. [DMJS19].
These profiles are mostly optimized to reduce wear, flow irregular-
ity and noise, see Robison et al. [RV18, RV19]. These approaches,
however, are mainly focused on circular-based external profiles.
We intend to maximize the flowrate by optimizing the shape of the
gerotor using the envelope-based external profile.

Another related family of research deals with matching gears
and/or screw rotors, see e.g. [KSS06, LF97, SSKM11, LF04] and
other relevant references cited therein. A frequently used approach
to design these pair mechanism is to design one part (male or fe-
male part in the case of screw rotors) and consider its relative mo-



J.C. Pareja-Corcho et al. / On shape design and optimization of gerotor pumps 3 of 13

tion with respect to the other, yet unknown part. This boils down
to a 2D gearing problem. The other part is then defined as an enve-
lope of the one-parameter family of positions of the first part under
a cycloidal motion [SSKM11]. This approach has also been used
recently for design of 2D gears [MSE20]. For two given 2D shapes
to form a pair of non-circular gears, an optimization-based frame-
work that looks for position of rotational centers that admit gearing
configuration is presented in [XFS∗20]. An algorithm to efficiently
compute envelopes of moving solids is proposed in [SAJ21].

The rest of the paper is organized as follows. The modeling of
gerotor pumps using cycloidal movements of circles is introduced
in Section 3. The calculation of the external envelope is discussed
in Section 4 and the shape optimization pipeline is presented in
Section 5. The optimization results and benchmark comparison are
presented in Section 6 and the limitations and concluding remarks
are drawn in Section 7.

3. Geometric modeling of a gerotor pump

The internal profile of the gerotor is defined by a epicycloidal curve
(i.e. the locus of a fixed point on a circle that rolls around another
circle), see Robison and Vacca [RV21]; and the external profile can
be constructed in one of two ways: by a set of circular arcs linked
together in a central symmetric pattern, see Fig. 3(a); or by the
envelope of the family of curves produced by the movement of the
internal profile, see Fig. 3(b).

(a) (b)
Figure 3: Two types of external profiles are common in industrial
gerotors: circular arc-based profile (left) and envelope-based pro-
file (right). In this paper we focus on the envelope type profile.

3.1. A hypocycloidal gerotor profile

The gerotor internal profile is formed by a hypocycloidal motion
of two circles, see Fig. 4. The motion is determined by a movable
circle C2 rolling along a fixed circle C1 without slipping. Circle Ci
(i = 1,2) is defined by its center Oi and radius ri. The centers of the
circles are at all times separated by a constant distance e, known as
the eccentricity, i.e., ∥O1−O2∥= e. Since the instantaneous center
of rotation, I, is the contact point of C1 and C2, it lies on the line
O1O2.

Consider now a third circle Cs lying in the moving frame, with a
fixed position with respect to the movalble circle C2. Let Ps be its
center and S its radius, recall Fig. 4. Consider the intersection point
of the cirlce Cs and the line PsI, i.e., r =Cs ∩PsI. The motion of r,
as the C1 and C2 engage in a hypocycloidal motion, forms a curve,
r(θ), θ ∈ [0,2π].

When closing one turn of the hypocycloidal motion (θ ∈ [0,2π]),

O1

O2

C1

C2

Cs

I

r

Ps

|O2Ps|= R2

α

θ

Figure 4: The gerotor inter-
nal profile is generated by
a locus of points r as a
movable circle C2 engages a
fixed circle C1 in a hypocy-
cloidal motion. Points O1
and O2 are separated by a
fixed distance e (eccentric-
ity).

(a)

(1.2,3.55,13)

(b)

(0.7,0.4,13)

(c)

(1,3.5,14.5)

Figure 5: Effect of the shape parameters. Three different designs of
the internal profile are shown. The framed triplets are the particu-
lar values of the free design parameters (e,S,R2). The number of
teeth is Z −1 = 8 in all three cases.

the internal profile curve r(θ) is required to be a closed curve, with
a specfic number of teeth. Let Z−1 be this number, then radii r1, r2,
and S have to satisfy certain constraints (otherwise r(0) ̸= r(2π)),
namely r1 = e (Z − 1) and r2 = r1 + e [MMRN00]. The choice of
Z−1 as the number of teeth of the internal gerotor profile is, as we
will see later, in accordance with the fact that the external profile
consists of Z teeth.

Since the rolling without slipping is a composition of two rota-
tions, two angles are needed to define the motion. Angle α defines
the pure rotation of O2 around O1 and angle θ defines the rota-
tion of circle C2 around O2. The relationship between these two
angles is given by θ = α/Z and is set by the velocity condition for
no-slipping rolling between the two circles.

Parametrizing the moving point r, recall Fig. 4, one obtains

rx (θ) = cos(Z θ)

(
e− Sr2

m

)
−R2 cos(θ)

(
S
m
−1

)
ry (θ) = R2 sin(θ)

(
S
m
−1

)
− sin(Z θ)

(
e− Sr2

m

) (1)

where

m =

√
R2

2 +2 cos(θ (Z −1)) R2 r2 + r22

and θ ∈ [0,2π]. After replacing the definition of r2 into Equation 1,
we notice that the shape of the internal profile r(θ) depends only on
the eccentricity value e, length R2, radius S and the desired number
of teeth Z of the external profile. These shape parameters affect
how the profile looks like, see Fig. 5, and consequently affect the
performace of the whole pump. We aim to optimize the triplet of
these shape parameters to find a profile that maximizes the perfor-
mance of the pump. Before we get to the optimization, we need to
describe how the external profile is generated, which we do next.
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3.2. Planar kinematics of gerotors

As the gerotor operates, the internal profile defined by r(θ) engages
in epicycloidal motion with an external profile, see Fig. 6. To de-
scribe this movement we consider the curve r(θ) as moving guided
by the rolling without slipping of circle C1 inside circle C2, thus
generating a one-parameter family of curves.

r(θ,φ)

O1
O2C1

C2

O1
O2

Figure 6: Left: Five
discrete samples
(φ = 0, 30, 60, 90, 120)
from the family of internal
profiles r(θ,φ) is shown.
Right: The corresponding
poisitions of circle C1. For
the whole (smooth) motion,
C1 moves along C2 in a
epicycloidal motion. The
trajectory of O is a circle
centered at O2 and with
radius e.

The rolling without slipping is defined as a composition of two
rigid transformation M = M2 (φ)M1 (φ). As the motion depends
on one parameter (φ) and the internal profile is parametrized by
another (θ), the family of curves generated by the motion of r(θ)
can be interpreted as a bivariate vector function

r(θ,φ) = Tφ

2(T
φ

1(r(θ))) (2)

that is a composition of two transformations Tφ

1 and Tφ

2 (dependent
on φ) applied to r(θ). The first transformation Tφ

1 is a rotation of
r(θ) around O1 followed by a translation by a vector c, and the
second transformation Tφ

2 is a rotation around the coordinate sys-
tem of O2, that is,

Tφ

1(x) = Mφ

1x+ c Tφ

2(x) = Mφ

2x (3)

where

Mφ

1 =
(

cos(−φ) − sin(−φ)

sin(−φ) cos(−φ)

)
, Mφ

2 =

(
cos( φ(Z−1)

Z ) − sin( φ(Z−1)
Z )

sin( φ(Z−1)
Z ) cos( φ(Z−1)

Z )

)
(4)

and c is the vector from O2 to O1, i.e., c = O1 −O2.

3.3. Envelope of a family of curves

Consider a closed curve in r embedded in the two-dimensional Eu-
clidean plane E2, r : I → E2, that undergoes a rigid body motion,
parametrized by the motion parameter φ. This motion can be inter-
preted as a bivariate vector-valued function r(θ,φ), recall Eq. (2).

A curve e that touches this one-parameter system of curves is
called the envelope (of the system) [PP00]. Algebraically, this curve
is one entity, however, in our applied problem, we should distin-
guish the branch that contains all the curves from the system. That
is, we say that the eo is the outermost envelope of r(θ,φ), iff r(θ,φ)
is fully contained by eo, for all φ. The inclusion is the classical in-
clusion in the context of two closed sets. To be well-defined, one
needs to assume that the curve is closed and the motion also creates

a closed loop (and these assumptions are met in our gerotor pump
case).

As a simple example of an envelope, one can think of an ellipse
being rotated around a point that lies outside the ellipse. The enve-
lope e is a pair of cocentric circles, and the outermost envelope eo is
the circle with the larger radius. For more complicated curves, the
envelope can naturally have several branches (disconnected com-
ponents), however, in our gerotor case, the envelope has only two
branches, the internal and the external, see Fig. 7.

eo
Figure 7: Projection to the xy plane
of r(θ,φ) (sampled by φ-curves). The
borders of the projected region are part
of the envelope, but we are only inter-
ested in the outermost envelope e0.

An interesting insight on construction of envelopes of 2D curves
is as follows [PP00]: Consider the xy-plane that contains the in-
ternal profile, and the time φ as the third, vertical, axis. Then the
motion of the curve can be visualized as a one-parameter family of
curves in planes parallel to the xy-plane and the r(θ,φ) defines a
surface, each horizontal slice of the surface being the position of
the curve in the particular time instant φ, see Fig. 8.

Angle φ = 0 defines the initial position of the internal gerotor
and φ = 2π

Z
Z−1 defines the next engaged position for the internal

rotor. Setting θ = const retrieves a curve that corresponds to the
trace of a single point in the gerotor profile as it moves under the
rigid body motion.

r(θ,φ)φ

x

y

Figure 8: Spatial interpretation of the function r(θ,φ). The hori-
zontal φ-curves represent gerotor profiles at a particular time φ; we
show φ = 0,2π

Z
Z−1 (red). The θ-curve (green) represents the trace

of a single point of the gerotor profile under the gerotor’s motion.

The tangent plane T at any point of r(θ,φ) is spanned by the
derivative vectors ∂r/∂φ and ∂r/∂θ, i.e., its normal vector is nnnT =
∂r/∂φ× ∂r/∂θ. For any point of r(θ,φ) to lie on the envelope, its
tangent plane T must project as a line into the xy plane [PP00],
which is equivalent to nnnT being parallel to the xy plane. This is
true when the orthogonal complement of the motion derivative vec-
tor (∂r/∂φ)⊥ is orthogonal to the angular derivative vector ∂r/∂θ

(their dot product is zero), i.e,〈
∂r(θ,φ)

∂θ
,

∂r⊥ (θ,φ)

∂φ

〉
= 0. (5)



J.C. Pareja-Corcho et al. / On shape design and optimization of gerotor pumps 5 of 13

However, the envelope given by (5) may have several branches,
recall Fig. 7, and we are only interested in the points on the outer-
most branch eo of the envelope e. This outermost envelope forms
the conjugated (matching) profile to the internal profile curve r(θ),
under the motion of the gerotor pump.

Since there is not a closed-form expression to retrieve this out-
ermost envelope, we propose a numerical algorithm that calculates
e0 efficiently.

4. Calculation of the external profile

In this section, we discuss the computation of the external part of
the gerotor. As our objective is to optimize the shape of the whole
gerotor, we need to calculate the external profile rather efficiently
as it will be called in our optimization routine many times.

First of all, we exploit the fact that the object is rotationally sym-
metric and therefore one can use only a certain part of the internal
profile to compute the points of the envelope, and then apply rota-
tion to complete the whole external profile. We define a tooth pro-
file as the segment of the curve that contains a single convex and
single concave region, see Figure 9. To characterize the geometry
and kinematics of a whole gerotor, it suffices to study a single tooth
profile.

φ

x

y

Figure 9: The tooth profile (red) is the basic unit of symmetry in
the gerotor. To study the motion of the internal profile it suffices to
consider the motion (blue) of an internal tooth profile (red).

Another important fact about gerotors is that an internal profile
that has Z−1 teeth is matched with an external profile with Z teeth,
see Fig. 10 and e.g. [Col74]. Moreover, at each time instant, they
stay in a tangential contact at Z−1 points, forming Z−1 chambers
that transfer the fluid. Another fact is that each point of the internal
profile r(θ) will, at a certain time instant φi, become a point of
eo. This fact comes from the functionality of the gerotor and the
fact that the chambers transfer the fluid by “pushing forward” the
common point of tangency as the two profiles are being tangentially
engaged one to another.

Consider now again the internal profile r(θ) that consists of Z−1
repetitive teeth. Alternatively, one may segment r(θ) into 2(Z −
1) convex/concave segments, separated by the 2(Z − 1) inflection
points, see Figure 10.

To compute the envelope, consider Eq. (5), which gives all en-
velope points (internal and external) and one needs to detect those
points that can contribute only to the outermost envelope. Fixing
φ and solving (5) for θ, one obtains a set of stationary parame-
ters (and consequently points) that can form the outermost enve-

eo

r(θ)

OOO2OOO1
III

d(θ
)

r(θi)

r(θi+1)

Figure 10: Set of stationary points. These points can lie i) in the
convex part of r(θ) (magenta), ii) the concave part of r(θ) (green),
or iii) be inflection points of r(θ) (blue). Line IIIr is always normal
to the time derivative vector ∂r/∂φ.

lope. These points can lie in i) the convex part of r(θ), ii) the con-
cave part of r(θ), or iii) be inflection points of the curvature of
r(θ), recall Figure 10. This classification also corresponds to lo-
cal minima, maxima, and inflection points of the distance function
d(θ) := d (I,r(θ)) between the instantaneous center of rotation I
and curve r(θ), see Fig. 11.

The outermost envelope eo is also a rotational symmetric closed
curved. It consists of 2Z convex and concave segments. While the
concave parts can be computed using both the convex and concave
parts of r(θ), the convex parts of eo can be generated by only the
convex points of r(θ). This claim directly follows from the fact
that eo is the outermost envelope and has to be tangential to r(θ).
By contradiction, if some r(θ̂) of the concave part of r(θ) is also
part of eo, then for arbitrarily small ε ∈ R, ε > 0, the point r( ˆθ+ ε)
lies outside eo.

Therefore, to compute eo it is sufficient to consider only the
convex segment of r(θ) between two inflection points r(θi) and
r(θi+1), which corresponds to the θ interval between two blue
point, see Fig. 11; we take the interval that contains θ = 0 value.

Overview of the algorithm. Consider now the internal profile
at an initial time instant r(θ,φ = 0). Note that Eq. (5) is one semi-
algebraic constraint in two variables and one could use a proper
solver to numerically trace the solutions [BEH11]. However, such
a global solver is an overkill as we do not need the internal branch,
and would be non-trivial to exploit the symmetry. We already es-
tablished that only convex parts of the curve r(θ) will contribute
to the outermost envelope, and that such an envelope can be char-
acterized using a single tooth profile. Therefore we divide r(θ,0)
into 2(Z − 1) convex and concave segments. We select a convex
segment, which we denoty by r− (θ) and proceed with a numerical
tracing of a single solution branch [BEH11].

This curvature-based selection allows us to compute only the
points on the outermost branch of the envelope and not all points
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θ (rad)

d(θ)

d
(m

m
)

Figure 11: Distance function d(θ) defined as the distance between
instantaneous center of rotation I and r(θ). Local maximizers (ma-
genta), local minimizers (green), and inflection points (blue) are
shown.

that comply with Eq. (5) as many envelope algorithms (e.g. [PP00])
do. See Fig. 12 for a comparison between the solutions traced by
our algorithm and those traced by [PP00]. Moreover, such an al-
gorithm would need an a posteriori phase where the internal points
are filtered out of the solution.

r(θ)

III

e0

(a) (b)

r(θ)

III

e0

Figure 12: Comparison between the root tracing in [PP00] (left)
and ours (right) for φ ∈ [0,π/2]. The solutions are shown in green.
Our approach computes only the outermost branch of the envelope.
Our approach executes this experiment in t = 0.098s and the ap-
proach in [PP00] in t = 0.55s for the same number of samples.

For each time instant of r− (θ), the envelope point is updated
and the outermost envelope e0 is calculated. Propagating in time,
the sought-after segment of the envelope is an ordered sequence of
points e0 = {p0, ...,pn}. Number n denotes the number of desired
points in the envelope’s tooth profile and it is a parameter of our al-
gorithm. Finally, we also know that the final point of the envelope’s
tooth profile pn must be at an angle of −π/Z with respect to the x+

axis measured from the center O2; see Fig. 13.

O2 x+ p0

r−

pn

−π/Z

Figure 13: Generation of the tooth
profile for the external profile. Seg-
ment r− moves according to the
motion defined by parameter φ and
in each time instant a new envelope
point is calculated and added to the
tooth profile (blue).

Envelope point update. For each time instant φ a new enve-

lope point is calculated. The point must solve the envelope condi-
tion Eq. (5). We solve Eq. (5) in the convex segment defined by
r− (θ,φ). To solve this equation efficiently we use the previous en-
velope point as the initial guess for a Newton-Raphson method and,
since we know that contact between r− (θ,φ) and e0 is continuous,
one looks in general for a single root of Eq. (5). For certain time in-
stances, e.g., when the internal profile touches the inflection point
of the outermost envelope, the corresponding parameter θ is a dou-
ble root of Eq. (5). In such case, the Newton-Raphson converges
only linearly to the root.

Recall that for any moving curve r(θ,φ), any vector normal to
the time derivative vector ∂r/∂φ passes through the instantaneous
center of rotation I, recall Fig. 10. The calculation of the envelope
can be further accelerated by considering the orthogonal comple-
ment of the derivative vector ∂r/∂φ (see Eq. (5)), which is the di-
rection vector of the line Ir. As one has I at hand, this fact elimi-
nates the need to evaluate one of the derivatives. With this approach
we ensure that the calculated points are on the envelope (up to the
numerical precision, double-float in our implementation). At initial
time φ = 0, the central point of the convex segment r− (θ) is used
as the initial guess.

Resolution of the calculation. Recall that curve r(θ,φ) moves
guided by the hypocycloidal motion of circles C1 and C2 (recall
Fig. 6). Therefore the instantaneous center of rotation I moves over
circle C2 as the motion evolves. For the initial time φ0, I will lie
on the intersection between C2 and the x− axis; and the final point
pppn of the envelope e0 tooth profile will be calculated when I forms
an angle of π − π/Z with respect to the x− axis (or −π/Z with
respect to the x+ axis), see Fig. 13. By setting the number n of
uniform samples as I sweeps the range [0,π−π/Z] (from x− axis)
we control the number of points calculated in the tooth profile of
e0. The full envelope e0 will have then N = 2Zn points.

4.1. Results of the envelope algorithm

The proposed algorithm to compute the outermost envelope for the
given internal profile was thoroughly tested. A sample of the results
for a fixed value R2 and various shape parameters e and S is shown
in Fig. 14 along with total area of the compression chambers, ex-
pressed as a percentage of the area of the internal profile. We set
the number of points for a tooth profile as n = 300. The parameter
values, together with the total number of points N (full envelope) to
approximate eo and the total execution times are shown in Table 1.
Observe that in average we need around 2s to compute the outer-
most envelope for n = 300. This is a sufficient accuracy as, for the
typical size of a gerotor, n = 300 would translate into a resolution
of a hundredth of a milimeter, fine enough resolution for manu-
facturing purposes and well within the capabilities of most CNC
machines [Zha10].

We also studied how our algorithm scales with the desired num-
ber of points n on the envelope’s tooth profile, see Fig. 15. Our
experiments show that the execution time scales linearly with n.
Moreover, for a fixed n, due to the symmetry, the total number of
points N on e0 scales, as Z increases, without a noticeable increase
in the total computing time, see Table 1. Therefore, by setting n
(and this is usually a manufacturing-driven constraint) one could
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33.35%

(a)

30.97%

(b)

15.88%

(c)

11.16%

(d)

17.56%

(e)

10.14%

(f)

Figure 14: Shapes of the internal profile r(θ) (red) and outermost envelope e0 (blue) for different values of the shape parameters. The values
of the shape parameters used are reported in Table 1. The framed values show the cavity area as a percentage of the internal gear’s area.

Fig. 14 Z S R2 e t (s) N
a 4 3.5 15 1.7 2.8 2396
b 6 3.9 15 1.6 2.0 3594
c 6 2.0 15 0.9 1.9 3594
d 10 3.0 15 0.6 1.8 5990
e 12 3.0 15 1.0 1.8 7188
f 15 2.4 15 0.6 1.8 8985

Table 1: Test of the envelope algorithm with different values of
shape parameters. The shape parameters (e, S, R2) used are re-
ported along with the execution time t and the number of points N
on the full envelope e0. Profiles are shown in Figure 14.

calculate envelopes for any number of Z with the same level of de-
tail in the same time.

E
xe

cu
tio

n
tim

e
t(

s)

Number of points on tooth profile of e0 (n)

Figure 15: Performance of our envelope algorithm depending on
the desired number of points n on the outermost envelope e0’s tooth
profile for a fixed triplet (e,S,R2).

5. Gerotor shape optimization

We aim to optimize the set of shape parameters of an existing gero-
tor pump to maximize the fluid pumped by the gerotor for a unit
of time. The problem is well-posed under the constraint of a fixed
area/volume of the internal profile, which is proportial to the weight
of the pump and also reflects a fixed amount of material needed
to manufacture the pump. This requirement heavily constrains the
search space but it is a common requirement in engineering scenar-
ios where a more efficient pump is needed to replace a pump that
already exists within a system with limited space and weight limits.

We also restrict the pump’s change in diameter to ±1 mm to ensure
that the optimized pump does not change much in total diameter
with respect to the original workpiece.

5.1. Area of internal profile

As already mentioned, the gerotor is a 2D mechanism extruded in
the direction perpendicular to its plane and therefore the constraint
on constant volume is equivalent to the constraint of constant area
of the 2D analogue. To approximate the area of the gerotor, one has
to discretize it. Even though we have the parametrization of r, and
one could consider using the Green’s theorem to compute the area,
the formula contains terms that cannot be integrated symbolically
and one would have to compute the integral numerically anyway.
Therefore, we approximate the area enclosed by r directly using a
sum of triangles.

We approximate the area enclosed by the internal profile r(θ),
which is a function of three shape parameters e, S and R2. Consider
a point r1 = r(θ1) and a point r2 = r(θ1 +δ). The area of the
triangle △OOO1r1r2 formed by the center of the rotor OOO1 and the two
points r1 and r2 is given by

A△ (θ1,δ) =
1
2

r1 × r2. (6)

OOO1 δ
r1 (θ1)

r2 (θ1 +δ)
r(θ)

Figure 16: The area of
triangle △OOO1r1r2 approxi-
mates the area enclosed by
the segment of the gerotor
between r1, and r2.

To calculate the area we again exploit the fact that the gerotor
is rotationally symmetric. The area of the full gerotor corresponds
to (Z −1) times the summation of the areas of all triangles as θ

sweeps the range of a single tooth profile. Recall from Fig. 9 and
10 that a tooth profile is defined as the portion of r(θ) given by two
consecutive convex and concave segments. Therefore we sample
the range of a single tooth profile by k samples, i.e. θi+1 = θi + δ,
i = 1, . . . ,k−1. Denoting the total area by G, we get

G(δ) = (Z −1)
k−1

∑
i=1

A△ (θi,δ) . (7)

Observe that G depends on the discretization stepsize δ (controled
by k) and also on the initial θ that we set θ1 = 0. The δ parameter
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governs the accuracy of the approximation. To measure the accu-
racy of our estimation with respect to the numerical integration via
Green’s theorem we calculate the mean absolute error (MAE) for
the area calculation of the internal profiles shown in Fig. 14, see
Fig. 17. This plot shows the error behavior as a function of the
stepsize δ. Based on this function, one can estimate a safe step-
size δ̃0 such that our direct approach via discretization of the in-
ternal profile returns the same error as numerical integration target-
ing double-float precision. The threshold that keeps highly-accurate
area computation is δ̃0 = 10−6 and therefore we set δ to this value
in our algorithm.

M
ea
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ut
e

E
rr

or
(m

m
2 )

Stepsize/tolerance δ

δ̃0

Figure 17: Mean Absolute Error (MAE) calculated for the area
estimation of the profiles in Fig. 14. We choose our stepsize as δ̃0 =
1×10−6 (green).

Note that G also depends on the three shape parameters e, S
and R2, and the number of teeth of the internal profile Z − 1. Fix-
ing the number of teeth, G = const. can be interpreted as an im-
plicit surface in the (e,S,R2)-shape space, see Fig. 18. Observe that
Eq. (7) can be differentiated with respect to the shape parameters
e, S and R2 to obtain a gradient vector ∇G. In the optimization
of non-analytic objective functions, at every time-step the gradient
of the objective function F is estimated by searching using finite-
differences to look for the cheapest direction. Since deviation from
the constraint manifold will be penalized in the objective function,
by using the constraint gradient one can rapidly discard search di-
rections that deviate from the constraint manifold without the need
to evaluate the objective function F , thus accelerating the conver-
gence towards the optimizer. This is another reason why we com-
pute the area via direct discretization of the curve, rather than the
Green’s theorem and numerical integration.

5.2. Physical feasibility

To define a physically feasible interior gerotor profile r(θ), the tan-
gent vectors at every point must be uniquely defined, i.e. there must
not be singular points, as singular points represent features such as
cusps or self-intersections, which makes the profile unfeasible for
practical applications, see Fig. 19. The feasibility of r(θ) can be
assured by adequate relationships between the shape parameters

r2 (λ−1)3 (τ−1)
(τ−1) λ2 +(1−2τ) λ+ τ

≤ S ≤ 3
√

3
√

R2
2 − r22 (τ−1)

(2τ−1)3/2
(8)

where λ= R2/r2 and τ= Z/(Z −1). For more details about deriva-
tion of Eq. (8) see [LF96, Section 5]. Since circle radius r2 can

(a)

R2

e

S

Z = 4

(b)

R2

e

S

Z = 6

(c)

R2

e

S

Z = 9

(d)

R2

e

S

Z = 11

Figure 18: Implicit surfaces generated by the fixed area constraint
G(e,S,R2) = const. for different values of the number of teeth. For
all cases we use a fixed area of const.= 390 mm2 and ranges of in-
terest for the shape parameters: (e,S,R2)∈ [0,5]× [0,5]× [11,15].

be calculated from e and Z (recall the profile construction in Sec-
tion 3.1), the feasibility condition depends only on the shape pa-
rameters e, S, R2 and the desired number of teeth Z.

(1.1,−4.1,15)(a) (1.1,8.3,15)(b)

Figure 19: The violation of the feasibility condition (Eq. (8)) re-
sults in profiles that contain cusps and self-intersections, and are
not suitable for practical applications. The boxed values show the
triplets (e,S,R2).

Given a fixed Z, the constraint in Eq. (8) defines a subset of the
shape parameter space. We call this subset the feasible space and
denote it by Ω f , see Fig. 20. Ω f is delimited by the boundary sur-
face defined in Eq. (8) (when the equality holds) and contains all
triplets (e,S,R2) that generate valid profiles.

5.3. Shape optimization

As the gerotor’s flowrate is proportional to the total size of the com-
pression chambers [LKSK18], to find the most efficient gerotor, we
optimize the profile design parameters to maximize the sum of ar-
eas of all chambers. This area is the difference between the areas
enclosed by the external and the internal profile (recall Eq. (7)).
The search for the optimal gerotor mechanism is formulated as an
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R2

e

S

Ω f

Rmax
2 = 15 mm

Rmin
2 = 11 mm

Figure 20: The feasible space Ω f ⊂ R3 (red) is delimited by the
feasibility constraint surfaces of Eq. (8) (yellow and green), the
Rmin

2 and Rmax
2 planes (blue) and constraints e > 0 and S > 0. Every

point ggg ∈ Ω f corresponds to a physically feasible gerotor.

optimization problem:

max
e,S,R2

F(e,S,R2) = Aext(e,S,R2)−G(e,S,R2) (9)

subject to two constraints:

G(e,S,R2)− const.= 0 and Eq. (8), (10)

where the first constraint is the condition of a fixed area of the in-
ternal profile and the second constraint is the physical feasibility,
discussed in Section 5.2. The objective function F expresses the
cavity area of the gerotor (i.e. available area to be filled with fluid).

R2

e

G = const.
S

G f

Figure 21: The constrained search
space, G f (dark blue), is the restric-
tion of the G = const. manifold to
the feasible space Ω f , i.e., G f =
Ω f ∩ (G = const.), recall Fig. 20.
Our optimization maximizes the ob-
jective function F on this G f mani-
fold.

Remark 1. The external part of a gerotor pump is built using not
only the external envelope, but also an external circle, recall Fig. 3,
of a given radius Rext . This circle defines the size of the overall set
and one should consider it when calculating the weight. The ma-
terial area of the whole gerotor is then πR2

ext −F. However, even
though the value of Rext is proportional to the areas of the internal
and external profiles, it is primarily defined by engineering con-
straints (e.g. interface of the gearset with the machine assembly).
As it is not possible to consider these constraints in our optimiza-
tion pipeline, we define our constant weight (≡ material) constraint

as the area of the internal profile constant (G = const.). An explo-
ration of the constraint manifold is shown in Fig 22.

(a)

R2

e

S

Z = 4
(1.7,3.7,14.5)

(b)

R2

e

S

Z = 6
(0.9,1.2,12.18)

(c)

R2

e

S

Z = 9
(0.9,2.0,13.0)

(d)

R2

e

S

Z = 11
(0.7,3.6,14.8)

Figure 22: Constrained search space G f (blue) for various values
of Z. The feasibility space Ω f shrinks for increasing Z, resulting in
smaller manifolds G f . The framed images show the profiles corre-
sponding to the marked point (yellow) on the constraint manifold.
The triplets (e,S,R2) are shown for each case.

To solve the optimization problem we opted for an interior point
algorithm [WMNO06]. In this implementation the implicit surface
constraint, which is characterized as a nonlinear equality constraint,
is managed through a logarithmic barrier function and its gradient
function used to speed up convergence, see [CGT97]. The feasibil-
ity nonlinear inequality constraints are managed using penalty mul-
tipliers [Deb00]. When one wants to optimize an existing piece, the
(e,S,R2) triplet of the original gerotor can be set as the initial point
xxx0 for the interior point algorithm. When no original piece exists,
we opt for an Augmented Lagrangian Genetic Algorithm [CGT97]
to produce an initial guess xxx0 in the constraint manifold and then
we refine the best solution obtained by the genetic algorithm using
the same interior point algorithm.

6. Results and benchmark comparison

To test our methodology we optimize an existing workpiece. We
aim to maximize the fluid’s area of the pump for the same number
of teeth Z = 9 and keep the internal area of the workpiece con-
stant and the radius R2 in the range [13,14] mm. The profiles of
the original workpiece and the optimized profiles, along with their
corresponding shape parameters, are shown in Figure 23. The op-
timized piece mantains the same area for the internal gear as in
the original piece but produces larger compression chambers. This
increased volume capacity translates into a higher flowrate of the
optimized piece while keeping the same gear area, and therefore
the material needed for its fabrication.

To validate our optimization, we calculate explicitely (with 5000
samples) the constrained search manifold G f for the original work-
piece and evaluate in extenso the objective function F (cavity area)
over the whole manifold. Fig. 24 shows three points on G f that
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represent to the original workpiece, the optimized gerotor and the
shape that corresponds the mean value of F throughout G f . We also
show the location of the maximum-valued PPPmax gerotor computed
using the sampled manifold. The maximum value of F estimated
using our optimization pipeline F (PPPopt) = 92.47 mm2 differs from
that of the maximum in the sampled manifold F (PPPmax) = 92.36
mm2 by 0.11%. Notice that the total execution time to evaluate
in extenso the sampled constraint manifold takes over two hours
(7810 seconds) while our optimization pipeline runs in under two
minutes.

compression chamberOptimized = (1.27,3.00,13.97)

Original = (1.10,2.50,13.40)

original workpiece
Figure 23: Gerotor profiles (both internal and external) of the
original shape (black) and the optimized pump (red) are shown.
The area of the internal profile is 377.59 mm2 in both cases. The
increased compression chamber at one particular time instant is
zoomed-in; the set of original and optimized parameters (e,S,R2)
are shown.

We also estimate the instantaneous flowrate (amount of fluid per
unit time) of each pump to demonstrate that our optimized profile
is better than the original workpiece, see Fig. 25. We do this by
a numerical method (see Rundo [Run17, Section 4.2]) that calcu-
lates the area of the compression chambers for each time instant
the pump. We perform all estimations for a pump speed of 10000
rpm and we show that the optimized profile increases the mean esti-
mated flowrate qavg of the existing workpiece from 7.44 lpm (liters
per minute) to 8.62 lpm, an increase of 15.88%. Comparing the op-
timized profile to the pump corresponding to the mean-value of F ,
the increase in the mean flowrate is of 70.25%.

Fig. 26 shows the evolution of the area for a single compression
chamber in time in the case of the original profile and the optimized
profile. The increase in the flowrate corresponds to the increase of
available fluid amount in each chamber and one can see that the
optimized chamber absorbs, at every time instant, more fluid than
the original profile.

We use our optimization pipeline to study the effect of the num-
ber of teeth Z on the gerotor’s cavity area. We find the optimum Popt
profile for Z = [7,8,9,10] for the same internal area as our original
workpiece (377.59 mm2). In Fig. 27 we show the optimum pro-
files, their location on the constraint manifold, and the in extenso
evaluation of the manifolds sampled with 5000 points. Observe that
the maximum cavity area diminishes as Z increases. We also note
that, for all values of Z, the cavity area increases as the eccentric-
ity e increases. This is in accordance with the engineering practice,

G f

PPPor

PPPopt

PPPmean

33.98 mm2

92.47 mm2

PPPmean

PPPorPPPopt

PPPopt
PPPmax

Figure 24: Constrained search space G f for the optimization of
the original workpiece. We evaluate objective function F in the
entire manifold with 5000 samples. We show the locations on the
manifold of the original gerotor PPPor, the optimized version PPPopt ,
the maximum-valued gerotor PPPmax, and the mean-valued gerotor
PPPmean computed over the sampled manifold.

Original profile, mean flowrate qavg = 7.44 lpm

Optimized profile, mean flowrate qavg = 8.62 lpm

Mean profile, mean flowrate qavg = 5.07 lpm

Rotation of the pump φ (degrees)
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Figure 25: Estimated instantaneous flowrates for the original
(black), optimized (red) and mean (blue) pumps in a full cycle. The
mean flowrate (dotted lines) of the increased from 7.44 lpm of the
original pump to 8.62 lpm of the optimized pump, which corre-
sponds to an increase by 16% in the total flowrate of the pump.

and also the experience of our industrial partner (Anonymous), that
increasing the eccentricity increases the flowrate.

6.1. Implementation details

The whole algorithm was implemented in MATLAB and the MAT-
LAB’s integrated optimization toolbox was used to solve the opti-
mization problem posed. All tests were conducted in a computer
with 16 GB RAM and 11th Gen Intel Core i5-11400 (2.6GHz)
processor. The execution times for the envelope algorithm were
reported in Table 1 and Fig. 15. The execution times for the en-
tire optimization pipeline in the case of the examples presented in
Fig. 27 are reported in Table 2.
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Figure 26: Area evolution for a single compression chamber in the
case of the original (black) and optimized profile (red).

Z t(s) n Gtol

7 108.64 200 10−5

8 105.73 200 10−5

9 102.53 200 10−5

10 94.42 200 10−5

Table 2: Execution times for the search of Popt in Fig. 27. For all
runs the number of points on the envelope’s tooth profile was set
to n = 200 and the area constraint tolerance was set to Gtol =
10−5. This means we allow our result to deviate from the constraint
manifold as much as Gtol .

6.2. Discussions & limitations

Optimizing the number of teeth. Even though we did not optimize
the number of teeth, it would be possible to consider that parameter
also as an optimization variable and use mixed-integer program-
ming to look also for the optimal number of teeth. However, it is in
accordance with the engineering practice that the number of teeth
is fixed and only the shape of the gerotor is being optimized. The
reason for that is that the selection of the number of teeth obeys
to factors related to the specific operation of the pump (e.g. opera-
tion speed). This variable, however, does affect the wear and con-
tact stress of the workpiece [KRFM12] and common engineering
practice dictates that a minimum of Z = 7 should be used to ensure
correct gearing [JDM16]. Additionally to the gearing factor, pumps
with less Z = 7 teeth are discouraged in practice due to the flowrate
ripple effects, vibrations, and louder noise. See [GMCC19] for a
review of articles that elaborate on this matter.

Alternative optimization methods. We used interior point and
augmented Lagrangian genetic algorithm as our optimization
method as it is well suited for optimization with several constraints
and has good convergence properties. Alternatively, one could ex-
periment with other genetic algorithms or other evolutionary meth-
ods well-suited for non-analytic objective functions [Vos99].

Other optimization objectives. We approched the problem purely
geometrically, looking for the best shape that maximizes the area of
compression chambers, postulating that their size is proportional
to the whole flowrate. In our case we were approached by an in-

dustrial partner with a task to optimize for maximum flowrate,
but for certain applications one may aim at other objectives, e.g.
flowrate steadiness in medical dosing applications, noise reduction,
etc. With a modification of the objective function, our framework
can be easily adapted towards that goal.

Physical validations. We have 3D printed a plastic prototype of
the optimized gerotor computed using the proposed algorithm and
also the original workpiece to manufally test their kinematic be-
haviour, see Fig. 28. Both mechanisms behave similarly in terms
of rotating the interior part inside the exterior base. We have not
run physical experiments using a metal workpiece; however, using
the help of our industrial partner, we aim to validate the optimiza-
tion results by physical tests in the future. We add a video of both
moving prototypes as complementary material.

Computational efficiency. The computational time takes a few
minutes to compute the whole algorithm on a standard laptop.
Some parts of the algorithm, e.g., the execution of the interior point
algorithm could eventually get speeded up via parallelization, how-
ever, in the whole gerotor fabrication cycle, this computation time
negligible.

7. Conclusions

A computational framework to design and optimize gerotor pumps
has been presented. The proposed approach constructs a configu-
ration space of all physically feasible gerotors. Considering three
major design parameters, the search space is a part of R3, where
the desired gerotor is sought for. The search for the most efficient
gerotor is formulated as a constrained optimization problem and
an interior-point algorithm is used to find the maximizer. The re-
sults show that the proposed framework finds the optimal solution.
The proposed algorithm has been tested on an benchmark geome-
try, showing that the flowrate can be increased up to 16% compared
to an existing gerotor.
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