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Modeling spillover dynamics: 
understanding emerging 
pathogens of public health concern
Fernando Saldaña 1, Nico Stollenwerk 1,2, Joseba Bidaurrazaga Van Dierdonck 3 & 
Maíra Aguiar 1,2,4*

The emergence of infectious diseases with pandemic potential is a major public health threat 
worldwide. The World Health Organization reports that about 60% of emerging infectious diseases 
are zoonoses, originating from spillover events. Although the mechanisms behind spillover events 
remain unclear, mathematical modeling offers a way to understand the intricate interactions among 
pathogens, wildlife, humans, and their shared environment. Aiming at gaining insights into the 
dynamics of spillover events and the outcome of an eventual disease outbreak in a population, we 
propose a continuous time stochastic modeling framework. This framework links the dynamics of 
animal reservoirs and human hosts to simulate cross-species disease transmission. We conduct a 
thorough analysis of the model followed by numerical experiments that explore various spillover 
scenarios. The results suggest that although most epidemic outbreaks caused by novel zoonotic 
pathogens do not persist in the human population, the rising number of spillover events can avoid 
long-lasting extinction and lead to unexpected large outbreaks. Hence, global efforts to reduce the 
impacts of emerging diseases should not only address post-emergence outbreak control but also need 
to prevent pandemics before they are established.
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The COVID-19 health crisis has been a stark reminder of the vulnerability of the human population to novel 
pathogens and a call for global action to reduce the risk of future emerging infectious diseases (EIDs)1. But 
SARS-CoV-2 was not the first and certainly not the last pathogen to jump across species from wildlife to the 
human population in a zoonotic spillover event. Even before the emergence of SARS-CoV-2, it was estimated 
that zoonotic pathogens brought approximately one billion human infections and millions of deaths annually2. 
Moreover, due to increasing levels of contact between humans and wildlife, the frequency of spillover events 
seems to be higher than ever before3. The unprecedented monkeypox outbreaks that arose outside endemic 
regions during the summer of 2022 is another example of how public health threats are enhanced by the move-
ment of individuals worldwide4. With clear evidence of how devastating an emergent zoonotic pathogen can be, 
it is crucial to strengthen the public health capacity for detecting, identifying, and addressing likely explosive 
epidemics.

Spillover events depend on highly complex interactions among several factors. These factors include the 
prevalence and intensity of the infection in the natural reservoir, pathogen features that determine its ability to 
be transmitted between different hosts, and population characteristics that affect the probability of infection5. 
Recent evidence suggests that changes in land use, such as deforestation and intensification of agriculture, have 
increased the probability of the emergence of zoonotic diseases6. The sale and consumption of wild animal spe-
cies can also increase the risk of zoonotic spillover7. Furthermore, high population density tied to high human 
mobility leads to a greater possibility that such spillover events lead to deadly pandemics8. Zoonotic epidemics 
have had devastating health and socioeconomic impacts with an estimated annual economic loss of US212 
billion since 19183,6. Yet, preventive actions towards the reduction of EIDs would be reasonably low-priced in 
comparison with the economic and mortality costs of responding to large epidemic outbreaks6,9.

Nowadays, it is well-recognized that human and animal health are deeply interconnected and linked with 
the environment where they coexist. Strategic mathematical modeling is vital for understanding this connec-
tion and therefore the ecology of future EIDs. Mathematical modeling also has the potential to improve disease 
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surveillance, undertake dynamic risk assessments, and establish interventions for prevention and control. Nev-
ertheless, zoonotic spillover events are rarely included in theoretical disease transmission models for EIDs10, and 
the dynamics of pathogen emergence causing a new infectious disease with pandemic potential remains largely 
unexplored. Major difficulty relies on the lack of quality data, and a number of research groups struggle with the 
current challenges of modeling epidemics. Most of the existing models focus on understanding the spread of 
already-established infectious agents within a single population, either the reservoir component or the human 
host7,10. Although some modeling studies have incorporated pathogen spillover transmission into multi-host 
epidemic models to investigate EIDs11–20 the stochastic nature of such events is often not fully investigated. Recent 
studies have explored various aspects of zoonotic spillover, providing valuable insights into the emergence of 
new pathogens through spillover dynamics14,16,18,21. However, there are still significant gaps in understanding, 
and future research could focus on developing more comprehensive modeling frameworks that depict the entire 
evolution of the zoonotic spillover process22. This includes capturing disease dynamics in non-human species10,17. 
We propose a continuous time stochastic modeling framework to describe a cross-species disease system using a 
minimalist two-species epidemiological model. We consider three routes of transmission (i) animal-to-animal, 
(ii) animal-to-human, and (iii) human-to-human, so the two-host populations are fully coupled. While we 
neglect the possibility of spillback events i.e. human-to-animal transmission, we evaluate different progressive 
stages of zoonotic emergence. Our modeling framework uses data on laboratory-confirmed cases to investigate 
the 2022 monkeypox outbreaks outside the endemic region, with further discussions on the initial phase of the 
COVID-19 pandemic. Studying the coupled epidemic in our two-species model allows us to investigate the role 
of the reservoir and the spillover transmission rate on the emergence and size of the outbreaks in the human 
population, gaining insights into the impact of EID risks in the public health context.

Results
Spillover events are significantly affected by the epidemiological dynamics in the reservoir, such as prevalence, 
distribution, and intensity of infection. Initially, pathogens exist within their ‘natural’ reservoir, which can be 
simply defined as an animal population that can maintain a pathogen in circulation23. As a consequence of 
this definition, the basic reproduction number in the reservoir, Rr

0 , must be greater than one. Due to a long 
history of host-pathogen co-evolution, the natural animal host usually carries pathogens without presenting 
any clinical symptoms (or at most mild clinical symptoms not affecting their health). For example, some of the 
most important zoonotic viruses such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or 
henipaviruses, can result in severe disease in humans; yet, the reservoir hosts usually tolerate these infections 
with little or no overt of disease24.

With that in mind, for the reservoir dynamics, we propose a simple SI (susceptible-infected) model coupled 
with a SHAR (susceptible-hospitalized-asymptomatic-recovered) model for the human host, as described in 
“Methods” section. By assuming that animal hosts are natural carriers of the pathogen, disease transmission 
dynamics is in stationarity, with the basic reproduction number in the reservoir set to the supercritical regime, 
i.e. above one ( Rr

0 = 2.0 , with the average reservoir life expectancy, assumed to be 1/dr = 1 year, and the trans-
mission rate βr = 2dr ). The numerical simulations in Fig. 1 show the stochastic realizations and the analytical 
mean-field solution for the infected reservoir population in the coupled SI-SHAR model. From the definition of 
natural reservoir23 it is clear that at some point transmission dynamics will reach an endemic equilibrium as is 
assumed here. Nevertheless, spillover events might occur, although with a lower probability, even if the reservoir 
is still far from endemic levels. This scenario is explored in more detail in the supplementary material considering 
Ir ≪ I∗r  for early times but Ir converges asymptotically to I∗r  . Hence, before the animal reservoir reaches preva-
lence levels close to the EE, the spillover force of infection is low and spillover events are scarce. The simulations 
suggest (see Supplementary Figs.  S1– S3) that relaxing the endemic equilibrium assumption in the reservoir 

Figure 1.   Stochastic realizations and the analytical mean-field solution for the infected reservoir population. 
The baseline values of the model parameters are shown in Table 1 in the SM. (a) Shows the full spectrum for 
the infected reservoir population, whereas (b) provides a closer look into the stochastic fluctuations (thin 
lines) observed around the endemic equilibrium (bold line). The baseline parameter values used in these 
computations are listed in Supplementary Table  S1.
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dynamics does not lead to significant qualitative changes in the human population. However, considering the 
early outbreak dynamics in the animal reservoir might lead to bigger stochastic fluctuations in the human host.

The trade‑off between the human basic reproduction number and the spillover rate
In a deterministic setting, a spillover event will successfully establish an epidemic in the human population if the 
basic reproduction number satisfies R0 > 1 (super-critical regime), whereas no self-sustained transmission can 
occur otherwise. These mean-field dynamics are usually valid if a sufficiently large number of infected individuals 
are present to make statistical variations negligible. However, stochastic systems display large fluctuations resem-
bling new epidemic waves even in the sub-critical regime ( R0 < 1 ). Nevertheless, in the super-critical regime 
( R0 > 1 ), many realizations maintain low numbers of infections, needing a long time to take off and become an 
epidemic wave. These fluctuations, rather than details of the infection process, dominate the dynamic behavior 
of the system25. Simply put, even when the basic reproduction number ( R0 ) is above 1, if only a small number 
or just one individual is initially infected with a new pathogen in a population with no prior exposure, there is 
a chance that the infection could fade out and the pathogen might not be able to keep spreading. In particular, 
under the homogeneous mixing assumption, for an initial seed of n infected individuals, the probability of 
extinction is 1/Rn

0 . Correspondingly, the probability of a major outbreak is 1− 1/Rn
0 . These estimates are valid 

for several Kermack–McKendrick-type models26.
Building on the work of Wolfe et al.27, Lloyd-Smith et al. used the human reproduction number Rh

0 to propose 
a classification scheme of pathogen emergence28. In this framework, pathogen emergence is divided into five 
progressive stages ranging from agents that exclusively infect animals (Stage I) to those that only infect humans 
(Stage V)27,28. Zoonotic emergence takes place in stages II–IV. In stage II, spillover events only lead to primary 
infections in humans but no further human-to-human secondary transmission ( Rh

0 = 0 ) occurs. In stage III, 
pathogens can lead to limited transmission chains of human-to-human secondary infections that stutter to 
extinction ( 0 < Rh

0 < 1 ), while in Stage IV pathogens still arise in animal populations and can be successfully 
transmitted between human hosts, leading to self-sustained chains of transmission ( Rh

0 ≥ 1)27,28. Although this 
classification scheme is helpful, it is based solely on the basic reproduction number for the human population 
Rh
0 , and the role of the natural reservoir and spillover events on the epidemiological dynamics is not discussed19. 

Voinson et al.19 showed that for scenarios with recurrent spillover events, the stages II–IV of pathogen emergence 
will depend on both spillover transmission and human-to-human secondary infections. In a deterministic set-
ting, we have shown (see the Supplementary Material) that for the coupled SI-SHAR model (5), if the reservoir 
is at the endemic equilibrium and the spillover rate satisfies τ > 0 , then no disease-free equilibrium (DFE) 
exists for the human population. In other words, if there is a recurrent transmission from the natural reservoir 
to humans, the deterministic process always predicts an outbreak in the human population. Hence, the deter-
ministic model lacks the capability to properly simulate important dynamics of pathogen emergence at crucial 
regimes such as the introductory phase where limited transmission chains of human-to-human mostly end up 
with disease extinction.

As shown in Voinson et al.19, within the stochastic framework, the occurrence of a disease outbreak in the 
human population will depend mainly on Rh

0 and the spillover rate τ . We provide numerical experiments to 
illustrate this trade-off. For the numerical simulations we assume that at the initial time, the human population 
is fully susceptible. The infection prevalence level is considered close to the endemic equilibrium in the reservoir 
(see Fig. 1). Furthermore, non-endemic prevalence levels in the reservoir do not change the qualitative behavior 
of the long-term human epidemiological dynamics as long as the reservoir converges to its endemic equilibrium 
(see the Supplementary Material). The disease severity ratio is fixed as η = 0.2 so 20% of the population devel-
ops severe symptoms prone to hospitalization upon infection. First, it is assumed that natural immunity after 
recovering from infection is lifelong; yet, the possibility of a loss of immunity is also considered in this study.

Quantifying the rates at which novel zoonotic pathogens spill over into human populations is a challenging 
task for public health officers. Even for already circulating pathogens such as COVID-19, monkeypox, or Ebola 
viruses, detection can be problematic in areas with limited access to confirmatory diagnostics. Hence, a reliable 
estimation of the spillover force of infection is extremely difficult to obtain28. Yet, subtle changes in the spillover 
rate might lead to substantial changes in the human epidemiological dynamics14. Figure 2 shows a typical sto-
chastic realization for the total human disease prevalence (adding the asymptomatic and hospitalized classes) 
for different values of the pathogen spillover rate ( τ ∈ [10−6, 10−3] ). The dynamics correspond to stage II of 
pathogen emergence, with β = 0 and Rh

0 = 0 so the outbreak in the human population is fully driven by spillover 
events and no further human-to-human secondary transmission is possible. We can observe that for τ = 10−6 
(see Fig. 2a) the prevalence never surpasses one active human infection and there can be a huge time gap between 
consecutive spillover events. For τ = 10−5 or τ = 10−4 (see Fig. 2b,c, respectively), while the prevalence levels 
rise, the increment on the number of cases is not significant because the maximum prevalence is even below 
0.1% of the total population. Furthermore, even if the time gap between consecutive spillover events decreases 
there are still periods with zero human infections (see Fig. 2b,c). By contrast, for τ = 10−3 human prevalence 
levels are always positive, resembling the supercritical regime of the dynamics (see Fig. 2d).

Figure 3 presents an ensemble of stochastic realizations that correspond to stage III of pathogen emergence 
in the human population. In this stage, human-to-human secondary infections are possible but without fur-
ther spillover events, they cannot lead by themselves to a large epidemic outbreak in the human population28. 
Therefore the basic reproduction number in the human population Rh

0 is less than one. In other words, newly 
infected individuals might generate new infections before recovery but on average they recover faster than they 
generate new infections, thus after a small outbreak the system is expected to end with almost zero cases on 
average (eventually with large excursions towards high outbreaks)25. In Fig. 3 the blue thin lines correspond to 
stochastic realizations for the asymptomatic class, whereas the orange thin lines correspond to the hospitalized 
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class. The respective bold lines represent the mean-field solutions. It is assumed that Rh
0 ≈ 0.9 . We observe that 

for a spillover rate τ = 10−5 (see Fig. 3a) many very small outbreaks occur but none of them lead to an epidemic 
breakout. Whereas, for a higher spillover rate τ = 10−4 (see Fig. 3b), prevalence levels appear to undergo a short 
but clear exponential growth of infections that seems like a classical epidemic wave, even though the system is 
in the subcritical regime.

One key result that comes from comparing Figs. 2d and 3a is that qualitatively the epidemiological dynamics 
in the infected human population are almost the same, even though in Fig. 2d Rh

0 = 0 with τ = 10−3 while in 
Fig. 3a Rh

0 ≈ 0.9 with τ = 10−5 . Hence, if the human epidemic is within a sub-critical regime, spillover events 

Figure 2.   A typical stochastic realization for the dynamics of the infection prevalence (adding the 
asymptomatic A and hospitalized H classes) in a human population. For different spillover rates (a) τ = 10−3 , 
(b) τ = 10−4 , (c) τ = 10−5 , (d) τ = 10−6 , the outbreak in the human population is fully driven by spillover 
events (with β = 0 and Rh

0 = 0 ). The baseline parameter values used in these computations are listed in 
Supplementary Table  S1.

Figure 3.   Stochastic realizations (bold lines) and the analytic mean-field solution (thin lines) for the 
asymptomatic A class (blue) and the hospitalized H class (orange). In (a) the spillover rate is τ = 10−5 and in 
(b) is τ = 10−4 . The dynamics correspond to stage III of pathogen emergence with 0 < R

h
0 ≈ 0.9 < 1 , close to 

criticality. The baseline parameter values used in these computations are listed in Supplementary Table  S1.
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can significantly affect the human host’s incidence patterns and prevalence levels. This finding is consistent with 
results in previous studies which found that besides stage IV, stages II–III can also lead to large outbreaks in the 
human population if driven sufficiently hard by the reservoir18. An important challenge when analyzing zoonotic 
outbreaks with short chains of transmission is thus to quantify the relative contribution of spillover events and 
human-to-human transmission to the force of infection10. Mathematically, both spillover and self-sustained 
human transmission can be conceptualized as arrival processes7,14. Likely, the most significant difference is that 
spillover events are a series of one-time events that are commonly assumed to arise from random and independ-
ent contacts between the animal reservoir and the human host. Hence, the accumulation of spillover events is 
expected to grow linearly as a function of time. On the other hand, onward human-to-human transmission is 
better described by self-exciting events that can lead to short transmission chains or epidemic breakout with 
early exponential growth7,14.

Stage IV of pathogen emergence represents a critical phase in the pathogen–host interaction, marked by 
the pathogen’s establishment and persistence within the host population. This scenario is presented in Fig. 4. 
Since in stage IV, the pathogen has firmly established itself within the host population it is assumed that Rh

0 > 1 . 
However, even at this stage spillover transmission can still be present with unknown rates so different τ values 
are assumed in Fig. 4. The simulations suggest that as the spillover rate decreases, the number of hospitalized 
and asymptomatic individuals present higher stochastic fluctuations. For instance, in Fig. 4a with τ = 10−5 , can 
observe that the peak time for some atypical stochastic realizations can be delayed up to 300 days in comparison 
with the peak time of the mean-field solution. These large deviations from the mean are not presented either 
in Fig. 4b where τ = 10−4 or in Fig. 4c where τ = 10−3 . Hence, even if in stage IV of pathogen emergence the 
epidemic is mainly driven by sustained human-to-human secondary infections, spillover transmission can lead 
to higher stochasticity (especially at the early phase) and impact the spread of the pathogen at the population 
level. For example, the second row in Fig. 4 shows that peak time can vary significantly depending on the spillover 
rate. Robust estimation of the peak time distribution is crucial to understanding the epidemic evolution and can 
help decision-makers to impose control policies. Applied to a real-world epidemiological scenario, even with 
significant advances in determining the magnitude and timing of epidemic curves, several epidemic peak time 
predictions for COVID-19 were inaccurate, with most peaks delayed with respect to predictions25,29–31. One 
explanation in this direction is that time-dependent changes in epidemiological parameters such as transmission 
and recovery rates have a non-trivial effect on the epidemic peak time29. Furthermore, it was found that imported 
cases, that is, individuals becoming infected by an undetected infection chain started outside the studied popula-
tion, can significantly affect epidemic spread25,32.

Figure 4.   (First row): One hundred stochastic realizations and the analytic mean-field solution for the 
asymptomatic class (blue) and the hospitalized class (orange). Different spillover rates are investigated. In (a–d) 
τ = 10−5 , in (b–e) τ = 10−4 and in (c–f) τ = 10−3 . (Second Row): Peak time distribution for the corresponding 
stochastic realizations based on an ensemble of 104 stochastic realizations. The vertical black line corresponds to 
the peak time of the outbreak obtained from the mean-field solution for each case, respectively. The dynamics 
correspond to stage IV of pathogen emergence with 1 < R

h
0 ≈ 1.4 . The baseline parameter values used in these 

computations are listed in Supplementary Table  S1.
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Applied to COVID-19 dynamics, Aguiar et al.25,33,34 have shown that models considering a small proportion 
of imported cases contributing to the overall force of infection can spark small or larger isolated outbreaks with 
growth factors and momentary reproduction ratios hovering around the epidemic threshold. The imported case 
was assumed to be a mobile asymptomatic infected individual, either a foreigner visiting the region or a local 
returning to the country without being detected by the current testing strategy, similar to what we expect when 
country lockdowns are completely lifted and mobility has returned to normal. Thus, the import factor refers to 
the possibility of susceptible individuals becoming infected by an undetected infection chain started outside the 
studied population, and can be directly related to the spillover transmission described here.

In Fig. 4d we can observe that for a low spillover rate, most stochastic realizations reach the epidemic peak 
time after the mean-field solution, which explains why several COVID-19 peaks were delayed with respect to 
predictions. The distribution of the prevalence of the infection at different times ( t1, t2, t3 ) for the three values of 
the spillover transmission rate is also investigated (see Fig. 5). The time t1 is 50 days before the mean-field peak 
time, whereas t2 is at the day of the peak of the outbreak, and t3 is 50 days post-peak. The dynamics correspond 
to stage IV of pathogen emergence with 1 < Rh

0 ≈ 1.4 . Independent of the time chosen, for low levels in spillover 

Figure 5.   Distribution of the overall infected population ( H + A ), based on an ensemble of 104 stochastic 
realizations for different times considering different values of the spillover transmission rate. Left column: The 
time t1 is 50 days before the mean-field peak time. Middle column: The time t2 is the day of the peak. Right 
column: The time t3 is 50 days post-peak. The spillover transmission rate is τ = 10e−5 for the top row, τ = 10e−4 
for the middle row, and τ = 10e−4 for the bottom row. The vertical black line corresponds to the mean field 
prevalence for each case, respectively. Other parameters used in these computations are listed in Supplementary 
Table  S1.
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transmission the prevalence distribution is highly non-Gaussian but as τ increases the distribution resembles 
more the bell-shaped form of the Gaussian distribution.

In a deterministic setting, a clear separation exists between stage III and stage IV via the human basic repro-
duction number. However, as discussed in Voinson et al, when estimating epidemic risk at the early phase of 
epidemic outbreaks it can be challenging to distinguish between subcritical short chains of transmission and 
epidemic transmission with supercritical dynamics. One of the main challenges is to obtain a reliable estimation 
of the reproduction numbers. Although there are several non-parametric methods to key epidemiological param-
eters directly from early incidence data, recently emerged zoonoses usually come with data limitations that lead 
to highly uncertain estimates. Furthermore, due to stochastic effects, there is a chance of epidemic fade-out even 
if Rh

0 > 1 so only stage III dynamics are presented; whereas for the deterministic model, the infection establishes 
itself in the population and presents stage IV dynamics. Alexander et al.7 notice this flaw in the classification 
scheme of Lloyd-Smith et al.28 and proposed an improvement considering an extra degree of freedom for stage 
IV that distinguishes the probability of epidemic fade-outs and breakouts. A key issue to improve science-driven 
interventions for disease prevention and control is thus identifying the outbreak regime and the mechanisms 
that allow a stuttering chain to switch into a sustained transmission chain25.

Waning immunity and multiple epidemic waves
The interaction between pathogens and the host immune system is a highly dynamic process. In a few cases, the 
natural immune protection that develops after infection confers lifelong immunity. Nevertheless, the outcome 
of host–pathogen interactions is usually complex leading only to temporary or partial immune protection35. 
Figure 6 shows the effect of waning immunity and the possibility of reinfections. The basic reproduction number 
for the human population corresponds to a supercritical regime ( Rh

0 ≈ 1.5 ), and the spillover rate is assumed 
to be τ = 10−5 . The average duration of natural immunity is assumed to be 180 days in Fig. 6a and 360 days in 
Fig. 6b. Figure 6 suggests that the loss of immunity in previously infected individuals replenishes the pool of 
susceptible individuals and might lead to seasonal epidemics or multiple epidemic waves. Such behavior has 
been observed in several local and nationwide COVID-19 epidemics since 202025,31,33,36–39.

The 2022 monkeypox outbreak outside endemic regions: a case study with empirical data
Monkeypox virus is a DNA virus known for being the etiological agent of a zoonotic disease known as monk-
eypox whose first human cases were identified in the Democratic Republic of the Congo in 197040. Humans can 
acquire the monkeypox virus via human-to-human transmission but also via spillover events from the animal 
reservoir. Until 2022, all monkeypox cases identified outside of endemic areas were either imported or linked 
to an imported case or animals imported from endemic areas. Nevertheless, at the end of May 2022, the United 
Kingdom reported the identification of several cases of monkeypox with no history of recent travel to endemic 
areas or contact with previously reported cases. Since then, several cases have been reported outside endemic 
regions. The early epicenter of the outbreak was the European region; yet, the outbreak affected more than 
110 countries with approximately 88,000 laboratory-confirmed cases around the globe40. While we argue that 
COVID-19 dynamics could reassemble the scenario discussed in Fig. 6b, the available data on the early phase is 
limited and already showing exponential growth that was quickly interrupted by the extreme lockdown meas-
ures. Thus, it is not possible to investigate quantitatively well the initial phase of COVID-19. However, models 
can bridge the missing gaps in epidemiological dynamics, providing possible scenarios of disease spreading and 
quantifying the uncertainties resulting from the missing data. On the other hand, for the 2022 monkeypox out-
breaks, no extreme human intervention took place, and hence the available data describe better an unperturbed 
epidemiological situation.

We present weekly confirmed cases from the start of the 2022 monkeypox outbreak in the four most affected 
European countries (Spain, France, Germany, and the United Kingdom) until 23 September 2022 (see Fig. 7). 
The incidence time series and confirmed cases for these and several other countries can be obtained from an 

Figure 6.   Stochastic realizations and the analytic mean-field solution for the asymptomatic class (blue) and the 
hospitalized class (orange). In (a) the average duration of natural immunity is 180 days and in (b) is 360 days. 
Other parameters are as shown in Supplementary Table  S1.
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open-access database presented in Kraemer et al.41. In the case of the European Region data is also available 
via the European Center for Disease Control (ECDC) and the WHO Regional Office for Europe through The 
European Surveillance System (TESSy)42. For each country, the data is represented as bar plots. We remark that 
given the unexpected outbreak and the large geographical spread of the disease, the actual number of cases is 
likely to be underestimated and the extent of asymptomatic infection is unknown. Hence, the stochastic SI-SHAR 
model is calibrated to the data for each country via the hospitalized class H used as a proxy for cases showing 
severe disease symptoms that are easily detected. The mean-field analytical solution of the SI-SHAR model 
together with an ensemble of stochastic realizations can successfully reproduce the epidemiological dynamics 
of these monkeypox outbreaks (see Fig. 7). Spain, France, Germany and the UK all exhibited an increasing trend 
in monkeypox cases from late May 2022 until late June 2022. During this exponential growth phase of the out-
breaks, the instantaneous reproduction number was above one for each of these countries. As shown in a previ-
ous study43, the basic reproduction number was estimated as 2.06 for Spain, 2.62 for France, 2.81 for Germany, 
and 1.82 for the UK. However, these reproduction numbers are probably overestimated since some infections 
may come from spillover events. Nevertheless, a reliable estimation of the spillover force of infection is difficult 
to obtain. For Spain and France, the outbreak peaked in mid-July 2022, followed by a decreasing trend in the 
number of confirmed cases. For Germany, the number of cases peaked at the beginning of July 2022, followed 
by a decline in the number of confirmed cases. The outbreak peaked in late June 2022 in the UK followed by a 
plateau during July 2022 and a fast decrease afterwards. The number of confirmed cases consistently declined 
from the start of September suggesting that the outbreaks are stabilizing at low numbers resembling stage III 
dynamics of pathogen emergence, so the possibility of a huge pandemic is very low. Although confirmed mon-
keypox cases decreased significantly in the European region, further strategies toward elimination are essential 
to avoid subsequent evolution of the monkeypox virus that can result in higher transmission44. Note that while 
this decline might be attributed to public health interventions and behavioral changes in the population due 
to increased risk perception, no drastic intervention measures were needed to control the outbreaks, and that 
can be considered as an indicator of low pathogen virulence, i.e., with low human-to-human transmission rate 
(much lower than the SARS-CoV-2 viruses).

Discussion
The emergence of environmental and wildlife pathogens in human populations is a process that has occurred 
several times and is expected to keep happening in the near future. The most alarming part is that significant 
evidence indicates that zoonotic pandemics are becoming more frequent and rising in cost6,9. Current global 
disease control to address future pandemics focuses mainly on pandemic preparedness and response, such as 
vaccine and drug development, and healthcare system strengthening. Although these actions are crucial and 

Figure 7.   Weekly laboratory-confirmed monkeypox cases in (a) Spain, (b) France, (c) Germany, and (d) the 
United Kingdom, from May to September 2022. The data is represented by bar plots. The mean-field solution 
(solid line) together with an ensemble of 500 stochastic realizations is shown for each country.
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have a useful effect, they overlook the critical need to prevent pandemics before they are established6. Spillover 
events can trigger outbreaks that may escalate into epidemics or pandemics if not controlled. By decreasing the 
frequency of spillover events, we can prevent the rapid spread of infectious diseases within human populations. 
Since the natural reservoir is often unknown, control strategies directed at spillover prevention should focus on 
reducing activities that are expected to increase the overall risk of zoonotic disease outbreaks7. Multiple studies 
suggest that ecological disruption, including deforestation, forest degradation, habitat fragmentation, agricultural 
expansion, wildlife trading, and climate change, results in increasing levels of pathogen exposure and created 
conditions for successful spillover events1–3. Hence, we cannot expect a decrease in the risk of newly emerging 
diseases unless we address ecological degradation, population growth, and climate change.

In this work, we have proposed a minimalistic modeling framework to describe the spillover interface and 
explore conditions that lead to disease emergence in human populations. In contrast to current mathematical 
models of the zoonotic spillover interface, our model explicitly considers the dynamics in the non-human species 
and provides a stochastic treatment of spillover dynamics. Yet, the model is parsimonious and essentially mimics 
the stochastic dynamics of two SIR-type processes connected via spillover events. Through several numerical 
experiments, we illustrated the role of the reservoir dynamics, the host-specific reproduction numbers, and the 
spillover transmission rate on the global epidemiological dynamics of the system. The model shows that if the 
human epidemic is within a subcritical regime, spillover events can significantly affect prevalence levels in the 
human host. Spillover transmission can trigger isolated outbreaks, sometimes of significant sizes, which leads to 
large stochastic fluctuations and a positive stationary number of new infections in the mean-field approximation. 
This might cause frequently unexpected large outbreaks occurring at different points in time in several regions 
of the world, as was observed for COVID-19 epidemics12,29–34,36–39,45. These fluctuations, rather than details of 
the infection process, dominate the dynamical behavior of the system once the host-to-host transmission of a 
new pathogen can be maintained25. Thus, neglecting critical stochastic fluctuations coming from cross-species 
transmission could lead to inaccurate epidemiological dynamics and flawed control interventions in the human 
population.

While there is no good quality data collected during the initial phase of COVID-19 epidemics, we have used 
numerical simulations to illustrate the impact of spillover events on the emergence and spread of new infectious 
diseases. As a case study, in this paper, we evaluate the 2022 monkeypox outbreak outside endemic regions, par-
ticularly within the European region as an example of a zoonotic disease driven by both person-to-person and 
reservoir-to-human transmission. Our results suggest that, differently from the observed COVID-19 dynamics, 
the 2022 monkeypox outbreaks do not represent a high public health risk for a pandemic, presenting limited 
transmission chains of human-to-human secondary infection4,40. Overall, most epidemic outbreaks caused by 
novel zoonotic pathogens do not persist in the human population due to the stochastic nature of the infection 
process. Nevertheless, the rising number of spillover events can avoid long-lasting extinction and lead to new 
and frequently unexpected large outbreaks. Hence, global efforts to reduce the impacts of emerging diseases 
should not only address post-emergence outbreak control but also need to prevent pandemics before they are 
established. As a final remark, our modeling framework is a versatile tool that not only can be used to describe 
the general characteristics of the spillover interface but also can be easily adapted to build more complex models 
suitable for investigating important aspects of the disease emergence process for specific zoonotic pathogens.

Methods
The results presented here are based on a two-host stochastic Kermack–McKendrick-type system that includes 
the natural reservoir Nr and the human population N. After spillover events, pathogens can lead to disease in 
novel non-natural hosts. Nevertheless, in most cases, these pathogens cause only mild or asymptomatic infections 
which persist for a prolonged time in their reservoir hosts24. Hence, we assume an SrIr (Susceptible-Infected) 
structure for the transmission dynamics in the reservoir population coupled to a SHAR (Susceptible-Hospital-
ized-Asymptomatic-Recovered) structure for the dynamics in the human population.

The SI‑SHAR model
The reservoir model dynamics are described by the following reaction scheme

whereas the reaction scheme for human epidemiological dynamics is

(1)

Sr + Ir
βr
−→ Ir + Ir ,

Nr
br
−→ Sr ,

Sr , Ir
dr
−→, ∅,
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The SI-type model describes the dynamics of the reservoir population. We assume that natural animal host 
usually carries pathogens without presenting any clinical symptoms. While the pathogen transmission is well 
maintained in the population in stationary, the basic reproduction number in the reservoir set to in the super-
critical regime, i.e. above one Rr

0 = 2.0 (with the average reservoir life expectancy assumed to be 1/dr = 1 year, 
and the transmission rate βr = 2dr ). For simplicity, reservoirs can not recover from the infection, contributing 
to the force of infection throughout their life span.

The SHAR model is an extension of the well-known SIR framework in which the I class is divided into two 
groups labeled H and A, respectively: H stands for individuals developing a severe form of the disease and 
likely being hospitalized, while A refers to infected individuals who are asymptomatic or have a mild form of 
the disease. Besides the transmission rate in the human host β , the recovery rate γ , and the waning immunity 
rate α (already present in the general SIR formulation), the SHAR model includes two extra epidemiological 
parameters: the severity ratio η , that gives the fraction of infected individuals who develop severe symptoms, and 
the scaling factor φ , which differentiates the infectivity φβ of mild/asymptomatic infections with respect to the 
baseline infectivity β of severe/hospitalized cases33. The value of φ can be tuned to describe different situations: 
a value of φ < 1 indicates that severe cases have larger infectivity than mild cases (which in the case of infectious 
respiratory diseases, for example, could be linked to enhanced coughing and sneezing), while φ > 1 would be 
used to describe the scenario in which asymptomatic individuals and mild cases contribute more to the spread 
of the infection (e.g., due to their higher mobility and possibility of interaction) than severe cases (that are more 
likely to be detected and isolated). Here, the spillover factor τ refers to the possibility of susceptible individuals 
acquiring the disease via a spillover event, and couples the dynamics of the animal reservoir and the human hosts.

The spillover force of infection depends on the prevalence in the reservoir Ir/Nr and the parameter τ , which 
is the product of the reservoir-human contact rate and the probability of infection given a contact10. Infected 
human individuals in both the asymptomatic and hospitalized classes recover naturally at a rate γ . Yet, they can 
become susceptible again due to waning immunity or even due to new virus variants at a rate α . Demographic 
dynamics are included in the reservoir via a birth rate br proportional to the reservoir total population Nr and the 
reservoir death rate dr . Likewise, humans are recruited into their susceptible class with a birth rate b proportional 
to the human population N and suffer from natural death at a rate µ.

For simplicity, the equality of the birth and death rates is assumed for both species, respectively. The dynamics 
of the stochastic process are governed by the following master equation for the dynamics of the rate of change 
of state probabilities33,34,46

(2)

S +H
ηβ
−→ H +H ,

S +H
(1−η)β
−−−−→ H + A,

S + A
ηφβ
−−→ A+H ,

S + A
(1−η)φβ
−−−−−→ A+ A,

S + Ir
ητ
−→ Ir +H ,

S + Ir
(1−η)τ
−−−−→ Ir + A,

H ,A
γ
−→ R,

R
α
−→ S,

N
b
−→ S,

S,H ,A,R
µ
−→ ∅.

(3)

dp(t, Ir , S,H ,A)

dt

= p(t, Ir − 1, S,H ,A)
βr

Nr
(Nr + 1− Ir)(Ir − 1)+ p(t, Ir , S,H ,A)br(Nr − 1)

+ p(t, Ir , S,H ,A)dr(Nr + 1− Ir)+ p(t, Ir + 1, S,H ,A)dr(Ir + 1)+ p(t, Ir , S + 1,H − 1,A)ηφ
β

N
(S + 1)A

+ p(t, Ir , S + 1,H ,A− 1)(1− η)φ
β

N
(S + 1)(A− 1)+ p(t, Ir , S + 1,H − 1,A)η

β

N
(S + 1)(H − 1)

+ p(t, Ir , S + 1,H ,A− 1)(1− η)
β

N
(S + 1)H + p(t, Ir , S + 1,H − 1,A)η

τ

Nr
(S + 1)Ir

+ p(t, Ir , S + 1,H ,A− 1)(1− η)
τ

Nr
(S + 1)Ir + p(t, Ir , S,H ,A+ 1)γ (A+ 1)+ p(t, Ir , S,H + 1,A)γ (H + 1)

+ p(t, Ir , S − 1,H ,A)α(N − (S − 1)−H − A)+ p(t, Ir , S − 1,H ,A)b(N − 1)+ p(t, Ir , S + 1,H ,A)µ(S + 1)

+ p(t, Ir , S,H + 1,A)µ(H + 1)+ p(t, Ir , S,H ,A+ 1)µ(A+ 1)+ p(t, Ir , S,H ,A)µ(N + 1− S −H − A)

− p(t, Ir , S,H ,A)

(

βr

Nr
(Nr − Ir)Ir +

β

N
S(H + φA)+

τ

Nr
SIr + γ (A+H)

+α(N − S −H − A)+ (br + dr)Nr + (b+ µ)N),
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where Sr = Nr − Ir and R = N − (S +H + A) . From the two-host Kermack–McKendrick-type model given 
as the master equation (3) we can obtain realizations of the stochastic process via the classical Doob–Gillespie 
direct method47 (an exact Monte Carlo method also known as the stochastic simulation algorithm (SSA)). The 
algorithm is implemented in StochSS48. Furthermore, defining the mean values and their derivatives

We obtain the mean-field approximation, i.e. neglecting variances and co-variance, the following dynamical 
systems for the mean values where we have omitted the �·� for notation simplification.

For a more detailed description of the mean-field approximation, please refer to Aguiar et al.33,34 and refer-
ences therein. For the mean-field model, the next-generation method49 can be used (see the supplementary 
materials) to obtain the following human basic reproduction number

therefore for fixed N, η , φ , γ , the value of the human transmission rate β fully determines Rh
0 and vice-versa.

Data availability
The datasets analyzed during the current study are available from the European Center for Disease Control 
(ECDC)42 and the open-access database presented in Kraemer et al.41.

Code availability
Relevant code used to perform the numerical simulations is available in the GitHub repository https://​github.​
com/​ferna​ndosa​ldana​garcia/​Model​ing_​spill​over_​dynam​ics/.
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Ṡ = bN −
β

N
(SH + φSA)− τS

Ir

Nr
+ αR − µS,
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