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Abstract: A two-dimensional free-boundary diffusive logistic model with radial symmetry is consid-
ered. This model is used in various fields to describe the dynamics of spreading in different media:
fire propagation, spreading of population or biological invasions. Due to the radial symmetry, the free
boundary can be treated by a front-fixing approach resulting in a fixed-domain non-linear problem,
which is solved by an explicit finite difference method. Qualitative numerical analysis establishes the
stability, positivity and monotonicity conditions. Special attention is paid to the spreading–vanishing
dichotomy and a numerical algorithm for the spreading–vanishing boundary is proposed. Theoretical
statements are illustrated by numerical tests.
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1. Introduction

Since the seminal works of Hotelling (1921) [1], Fisher (1937) [2] and Kolmogorov,
Petrovski and Piskunov (1937) [3], time-dependent diffusion–reaction partial differen-
tial equations (PDE) have been commonly used for describing the growth and spread
of populations and for propagation modelling in many different applications, such as
biological invasions [4], epidemic spreading [5,6], wildfire propagation [7,8] or population
genetics [9].

A crucial element of the propagation problems is the localisation of the spreading
front. By the strong maximum principle for parabolic equations, the unknown population
density u(x, t) satisfies

u(x, t) > 0 ∀x ∈ Rn, t > 0, (1)

although the initial population range is bounded.
In [10], Du and Lin introduced a modification of the Fisher-KPP diffusive logistic

model by adding a Stefan’s type condition for the boundary, such that the front has to
be determined depending on time together with the unknown u(x, t). Thus, the problem
becomes a free boundary problem. The one-dimensional case is considered in [10], while
the two-dimensional case with radial symmetry is studied in [11]. The cited works [10,11]
have inspired many further studies for more complex models [6,12–14] and the model in a
heterogeneous time-periodic environment [15].

One important advantage of considering this free boundary propagation model is the
ability to capture the realistic dichotomy of two possible scenarios: spreading or vanish-
ing. However, with the previous reaction–diffusion models without imposed free bound-
ary, only spreading is observed. Some relevant theoretical results about the spreading–
vanishing dichotomy are proved in [10,11].
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The aim of this paper is to provide an efficient numerical method for the free boundary
diffusive logistic model with radial symmetry. Since the best model may be wasted with
a careless numerical treatment, a detailed numerical analysis is studied. Furthermore,
reliable algorithms are proposed for numerical approximation of the relevant parameters
for a spreading or vanishing scenario.

The aim of this paper is to present an effective numerical approach for solving the
free boundary diffusive logistic model with radial symmetry based on front-fixing trans-
formation. Given the potential loss of accuracy that can result from a poor numerical
treatment, we provide a detailed numerical analysis. Additionally, the paper also includes
a presentation of several significant theorems related to spreading–vanishing phenom-
ena. Furthermore, we propose efficient algorithms for the numerical approximation of the
relevant parameters for preading or vanishing scenario.

The paper is structured into several sections. Section 2, provides a concise explanation
of the free boundary diffusive logistic model [11], followed by new results related to the
spreading–vanishing dichotomy. In Section 3, we describe the methodology employed
to derive numerical solutions for the unknown population density and the propagation
front. This involved the development of a front-fixing method and the utilization of a finite
difference scheme. Section 4 focuses on the numerical analysis of the solution, with specific
emphasis on stability, positivity, and monotonicity. We then present numerical experiments
to illustrate the results in Section 5. Finally, we conclude the paper in the last section.

2. Diffusive Logistic Model

In the present study we follow the approach introduced by Du and Lin [10] of using
the free boundary formulation with the Stefan condition. In [11], authors extended this
approach to a multidimensional case with radial symmetry. This assumption allows the
reduction of the general multidimensional partial differential equation (PDE) to the one
dimensional with the unique spatial variable r = |x|, where x ∈ RN . In this paper we
consider N = 2, i.e., the two-dimensional problem. Hence, the population density of a
spreading species u(r, t) is found to be a positive solution of the following free-boundary
PDE problem,

ut(r, t) = D∆u(r, t) + u(r, t)(α(r)− β(r)u(r, t)), t > 0, 0 < r < H(t), (2)
dH(t)

dt
= −µur(H(t), t), t > 0, (3)

subject to the initial and boundary conditions

H(0) = H0, u(r, 0) = u0(r), 0 ≤ r ≤ H0, (4)

ur(0, t) = 0, u(H(t), t) = 0, t > 0, (5)

where H(t) is the unknown moving boundary describing the spreading front of the species,
D is the diffusion rate, µ is a given positive proportionality constant between the moving
boundary speed and the population gradient at the front, α(r) is the intrinsic growth rate
and α(r)/β(r) is the habitat carrying capacity. Both α(r) and β(r) are bounded functions,
i.e., there are two positive constants κ1 and κ2, such that

κ1 ≤ α(r), β(r) ≤ κ2, ∀r ∈ [0, ∞). (6)

Note that this model is radially symmetric but heterogeneous. The opportunity of
considering these type of population dynamics models instead of the homogeneous ones is
pointed out in [4,16,17].

Initial distribution u0(r) satisfies

u0 ∈ C2([0, H0]), u′0(0) = u0(H0) = 0, u0(r) > 0 ∀r ∈ [0, H0). (7)
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Due to the radial symmetry, u(r, t) depends only on one spatial variable r and Lapla-
cian ∆u takes the form

∆u = urr +
1
r

ur, (8)

where the right side of equality (8) is the so-called Bessel operator [18,19].
The Stefan condition, expressed by Equation (3), ensures that the speed of the spread-

ing front is directly proportional to the gradient of the population at the front. It is important
to note that when µ = 0, the free-boundary PDE problem is reduced to a fixed domain
problem, which corresponds to the classical Fisher-KPP model [2].

Spreading–Vanishing Dichotomy

Previous theoretical studies [10,11] found that the population can either spread by
occupying a new area or vanish without propagating depending on the initial front, pop-
ulation density and the parameter µ. This phenomena is called a spreading–vanishing
dichotomy. Summarising the results of Theorems 2.4, 2.5 and 2.10 of [11], we can formulate
the following spreading criteria:

Theorem 1 (Spreading–vanishing dichotomy [11]). Let (u(r, t), H(t)) be the solution of the
problem (2)–(5), then there is a positive constant R∗, such that the following situations are possible:

1. If H0 ≥ R∗, then the population spreads;
2. If H0 < R∗, then there exists µ∗ > 0 depending on u0 such that:

• If µ > µ∗, then the population spreads;
• If µ ≤ µ∗, then the population vanishes.

In the present paper, we focus on the computation of R∗ with the aim of providing
a numerical complementation of the results in [11]. Following the ideas of [11], R∗ is
established such that

λ1(D, α(r), R∗) = 1, (9)

where λ1(D, α(r), R∗) is the principal eigenvalue of the problem{
D∆φ + λα(r)φ = 0, 0 < r < R∗,
φ(R∗) = 0.

(10)

Hence, we aim to solve the inverse problem: for fixed λ = 1, find R∗ such that (10) holds.
The following corollary defines R∗.

Corollary 1 (Initial value problem for spreading–vanishing boundary). Due to the radial
symmetry, problem (10) for λ = 1, is equivalent to the following initial value problem (IVP):

D∆φ + α(r)φ = 0, r > 0,
φ(0) = C,
φ′(0) = 0,

(11)

where C > 0 is some arbitrary constant. Then, R∗ is the first positive root of φ(r) = 0.

Note that the choice of the constant C does not change the value R∗, which can be
shown by the following lemma.

Lemma 1. Let φ1(r) and φ2(r) be the solutions of IVP (11) for C = C1 > 0 and C = C2 > 0,
respectively. If r0 is a root of φ1(r) = 0, then φ2(r0) = 0.
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Proof of Lemma 1. First, let us show that φ2(r) = κφ1(r), where κ = C2
C1

. Since Equation (11)
is linear, it is easy to see that

D∆(κφ1(r)) + α(r)(κφ1(r)) = κ[D∆φ1(r) + α(r)φ1(r)] = 0. (12)

Moreover, φ2(0) = κφ1(0) = C2, and φ′2(0) = κφ′1(0) = 0. Hence, φ2(r) is a solution of
IVP (11) with C = C2.

Now, if r0 is a root of φ1(r) = 0, then φ2(r0) = κφ1(r0) = 0.

Corollary 1 defines the algorithm for computation of R∗. The following theorem gives
analytical expression for R∗ for the simplest case α = const.

Theorem 2. Spreading–vanishing boundary R∗ for the problem (2)–(5) with constant intrinsic
growth rate α = const is defined as follows

R∗ = r0

√
D
α

, (13)

where r0 is the first positive root of the Bessel function of the first kind, r0 = 2.40483.

Proof of Theorem 2. Since α = const, from (8), the differential equation in problem (11)
can be written as the following second-order linear differential equation

xy′′ + ay′ + bxy = 0, with a = 1, b =
α

D
. (14)

The general solution of (14) is given in terms of the Bessel functions ([20], p. 241,
eq. 63), by

y(x) = x
1−a

2

(
C1 Jν(

√
bx) + C2Yν(

√
bx)
)

, ν =
1
2
|1− a|, (15)

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind, respectively.
In the case of (11), a = 1 and b = α

D , and consequently ν = 0, which leads to the
following general solution

y(x) = C1 J0

(√
α

D
x
)
+ C2Y0

(√
α

D
x
)

. (16)

From (11), φ(0) = C, hence, since Y0(x) is singular in x = 0 [21], C2 = 0 and C1 = C.
Moreover, d

dx J0(x = 0) = 0 [21], which agrees with the second initial condition in (11).
Finally, the solution of the IVP (11) is found as follows

φ(r) = C · J0

(√
α

D
r
)

. (17)

The distribution of zeroes for the Bessel functions of the first kind on the real line is
known [21], and the first positive root is r0 = 2.40483, hence√

α

D
R∗ = r0, (18)

which proves the statement of the Theorem.

In the general case α = α(r), numerical methods have to be employed, see Algorithm 1.
In the present paper, the numerical solution to the IVP (11) is obtained through the use of
the Runge–Kutta–Fehlberg (RKF) method [22], an adaptive step-size method that estimates
local errors and adjusts step size accordingly. By using fourth and fifth-order Runge–Kutta
formulae, the RKF method can provide highly accurate solutions to IVPs. While factors such
as initial conditions may affect the accuracy of the RKF method, it has been demonstrated
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that the choice of C does not impact the value of the first positive root. Given the high
accuracy of the RKF method, root-finding algorithms are likely to converge quickly and
accurately to the first positive root. If necessary, the numerical solution can be interpolated
using computationally efficient and accurate methods, such as cubic spline interpolation,
to obtain values at points of interest.

Algorithm 1: Computation of R∗.
Data: D, α(r)
Result: R∗

C ← 1;
Solve IVP numerically:

u′1 = u2,

u′2 = − 1
r u2 − α(r)

D u1,
u1(0) = C,
u2(0) = 0.

f (x)← interpolate(u, x);
Solve f (x) = 0;
R∗ ← first positive root of f (x)

Once R∗ is found, Theorem 1 is applied. If H0 < R∗ is chosen, we search for µ∗ by
using the simplified bisection method, see Algorithm 2.

Algorithm 2: Computation of µ∗.

Data: H0, α(r), β(r), D, u0, tol ; /* H0 < R∗ */
Result: µ∗

µ1 ← 0, µ2 ← 10, Nmax ← 100;
for i = 1, 2 do

ui ← Solution of (2)–(5) for µi ;
if u′i(r = 0, t) ≤ 0 ∀t ∈ [0, T] then

fi ← 0;
else

fi ← 1;
end

end
n← 0;
while |µ1 − µ2| > tol and n < Nmax do

µc ← µ1+µ2
2 ;

uc ← Solution of (2)–(5) for µc ;
if u′c(r = 0, t) ≤ 0 ∀t ∈ [0, T] then

fc ← 0;
else

fc ← 1;
end
if fc = 1 then

µ2 ← µc;
else

µ1 ← µc;
end
n← n + 1;

end
µ∗ ← µc
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3. Numerical Algorithm

Problem (2)–(4) is a free-boundary PDE problem to be solved numerically. One of the
challenges related to the problem is the free boundary that can be treated by the front-fixing
Landau transformation [23,24], as it is done for the one-dimensional case [25]. In this paper,
we extend this approach to the two-dimensional case.

The front-fixing method has provided reliable results for free boundary models in
other fields, such as in mathematical finance [26] or civil engineering [27].

3.1. Front-Fixing Transformation

Under the assumption of the radial symmetry, the diffusive logistic model is described
by the free-boundary PDE (2) with one spatial variables; hence, the Landau transformation
takes the form

z(r, t) =
r

H(t)
, V(z, t) = u(r, t). (19)

Under the transformation (19), the moving domain r ∈ (0, H(t)) becomes the fixed
one z ∈ (0, 1) at any time moment t > 0. Let us introduce the following notation

a(z, t) = α(z · H(t)) = α(r), (20)

b(z, t) = β(z · H(t)) = β(r), (21)

with the same constraint
0 < κ1 ≤ a(z, t), b(z, t) ≤ κ2. (22)

By denoting G(t) = H2(t) and substituting (19) into the problem (2)–(5), one obtains

G(t)Vt = DVzz +

(
D
z
+

z
2

G′(t)
)

Vz + G(t)V(a(z, t)− b(z, t)V), t > 0, 0 < z < 1, (23)

G′(t) = −2µVz(1, t), t > 0, (24)

subject to the initial and boundary conditions

G(0) = H2
0 , V(z, 0) = u0(zH0), 0 ≤ z ≤ 1, (25)

Vz(0, t) = 0, V(1, t) = 0, t > 0, (26)

Non-linear PDE problem (23)–(26) is solved numerically by using the explicit finite
difference method (FDM) as described below.

3.2. Explicit FDM

First, let us introduce a bounded computational domain Ω = [0, T]× [0, 1]. We define
the uniform grid

zj = jh, h = 1/M, tn = nk, k = T/N, (27)

where N and M are two given integer numbers. Then, by denoting

vn
j ≈ V(zj, tn), gn ≈ G(tn), an

j = a(zj, tn), bn
j = b(zj, tn), (28)

a forward in time central in space FD scheme for (23) is given as

gn
vn+1

j − vn
j

k
= D

vn
j+1 − 2vn

j + vn
j−1

h2 +

(
D
zj

+
zj

2
gn+1 − gn

k

)
vn

j+1 − vn
j−1

2h

+ gnvn
j

(
an

j − bn
j vn

j

)
, 1 ≤ j ≤ M− 1, 0 ≤ n ≤ N − 1.

(29)

By reordering the terms in the scheme (29), one obtains

vn+1
j = An

j vn
j−1 + Bn

j vn
j + Cn

j vn
j+1, (30)
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where

An
j =

Dk
h2gn −

Dk
2hgnzj

−
zj

4h

(
gn+1

gn − 1
)

, (31)

Bn
j = 1− 2Dk

h2gn + k
(

an
j − bn

j vn
j

)
, (32)

Cn
j =

Dk
h2gn +

Dk
2hgnzj

+
zj

4h

(
gn+1

gn − 1
)

. (33)

The Stefan condition (24) is discretized by using the forward in time one-sided in
space FD scheme as follows

gn+1 − gn

k
= −µ

3vn
M − 4vn

M−1 + vn
M−2

h
. (34)

The boundary conditions (26) are discretized as

Vz(0, tn) ≈
−3vn

0 + 4vn
1 − vn

2
2h

= 0, vn
M = 0. (35)

Finally, the explicit FDM for problem (23)–(26) is written as follows
gn+1 = gn + k

h µ
(
4vn

M−1 − vn
M−2

)
,

vn+1
j = An

j vn
j−1 + Bn

j vn
j + Cn

j vn
j+1, 1 ≤ j ≤ M− 1,

vn+1
0 = 4

3 vn+1
1 − 1

3 vn+1
2 ,

vn+1
M = 0, 0 ≤ n ≤ N − 1,

(36)

together with the initial conditions g0 = H2
0 and v0

j = u0(zjH0), 0 ≤ j ≤ M.

4. Numerical Analysis

In this section, we study the most important characteristics of the proposed numerical
scheme, such as consistency and stability. Moreover, this section is dedicated to showing
that the proposed numerical algorithm preserves crucial qualitative properties of the exact
solution of the problem [10], such as positivity and monotonicity.

Consistency of the proposed numerical scheme can be easily established by following
Section 3 of [25].

4.1. Positivity

Dealing with the models for spreading media, such as fire propagation, population
spreading, etc., it is important to preserve non-negativity, otherwise the numerical solution
is meaningless. Hence, in this subsection, we show that the proposed scheme (36) provides
non-negative solutions under some conditions on the step size discretization.

Theorem 3. With previous notation, {gn}0≤n≤N is positive increasing in a time sequence.

Proof of Theorem 3. Let us use the induction principle on the index n. For n = 0, from the
initial conditions (4), it follows that

du0

dr
(H0) < 0, (37)

which becomes vz(1, 0) < 0 under the front-fixing transformation.
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By assuming that v(z, t) is at least twice differentiable with respect to z and by using
the Taylor’s expansion about (zM, 0), zM = 1, one obtains

v0
M−1 = v0

M − hvz(1, 0) +O(h2), (38)

v0
M−2 = v0

M − 2hvz(1, 0) +O(h2). (39)

Since v0
M = 0 and vz(1, 0) < 0,

∆0 = 4v0
M−1 − v0

M−2 = −2hvz(1, 0) +O(h2) > 0, (40)

for small enough values of h.
Hence, from (36), the positivity of g1 is established for any µ > 0

g1 = g0 +
k
h

µ∆0 > g0 > 0. (41)

Hence, the base case n = 0 is proven. Now, assuming that the statement of the
Theorem holds true up to some integer n, let us prove that it holds for (n + 1) as well.

Let us denote
∆n = 4vn

M−1 − vn
M−2, n ≥ 0. (42)

Under the induction hypothesis, gn > gn−1, then for sufficiently small k, ∆n−1 > 0
from the first equation of (36). As

∆n = ∆n−1 +O(k), (43)

it follows that ∆n > 0 for small enough values of k and, consequently, gn+1 > gn. Then, the
statement of the Theorem is straightforward:

gn+1 > gn > . . . > g1 > g0 > 0. (44)

The next lemmas show the positivity of the coefficients defined in (31)–(33), which
implies directly the positivity of the solution.

Lemma 2. Coefficients An
j and Cn

j , defined by (31) and (33), respectively, are positive.

Proof of Lemma 2. From Theorem 3 and definition (33), Cn
j > 0, as it is a sum of posi-

tive terms.
Since h ≤ zj < Mh = 1, for any j = 1, . . . , M− 1, from (31), the following estimation

is obtained

An
j ≥

Dk
h2gn −

Dk
2gnh2 −

1
4h

(
gn+1

gn − 1
)
=

k
h2gn

(
D
2
− h

4k
(gn+1 − gn)

)
. (45)

From (34) and (42), one gets

h
gn+1 − gn

k
= µ∆n. (46)

By using the Taylor’s expansion about (zM, tn) with sufficiently small h,

∆n = −2hvz(1, tn) +O(h2). (47)

Hence, h gn+1−gn

k = O(h), which together with (45) implies the positivity of An
j for

sufficiently small h.
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In order to show the positivity of Bn
j > 0, 1 ≤ j ≤ M − 1, and 0 < vn

j ≤ M0,
0 ≤ j ≤ M− 1, we consider two possible cases related to the relation between the initial
population density u0(r) and the carrying capacity of the species α(r)

β(r) :

1. 0 < u0(r) < C0, 0 ≤ r ≤ H0,
2. max0≤r≤H0{u0(r)} = M0 ≥ C0,

where C0 = sup
{

α(r)
β(r) , 0 ≤ r < ∞

}
.

Let us introduce the following notation

0 < κ1 ≤ α1 ≤ α(r) ≤ α2 ≤ κ2, 0 ≤ r < ∞, (48)

0 < κ1 ≤ β1 ≤ β(r) ≤ β2 ≤ κ2, 0 ≤ r < ∞, (49)

then, C0 is bounded as follows
α1

β2
≤ C0 ≤

α2

β1
. (50)

Let us consider the first case, 0 < u0(r) < C0, 0 ≤ r ≤ H0. We use the induction
principle on the index n to prove that under a condition to be found, the coefficients Bn

j are
positive and also the numerical solution is positive and upper bounded by C0, 0 < vn

j < C0,
0 ≤ j ≤ M− 1, 0 ≤ n ≤ N.

For n = 0, since 0 < u0(r) < C0, then from the initial conditions (25), 0 < v0
j < C0,

0 ≤ j ≤ M− 1. Moreover,

B0
j = 1 + k

(
a0

j − b0
j v0

j

)
− 2Dk

h2g0 > 1 + k
(

α1 − β2
α2

β1

)
− 2Dk

h2g0

= 1− k
[(

α2β2

α1β1
− 1
)

α1 +
2D

h2g0

]
> 0, 1 ≤ j ≤ M− 1,

(51)

under the following constrain

k < Q1h2, Q1 =
g0

2D + h2α1g0
(

α2β2
α1β1
− 1
) . (52)

Now, let us assume that for some fixed n, the following is fulfilled

Bn
j > 0, 1 ≤ j ≤ M− 1, 0 < vn

j < C0, 0 ≤ j ≤ M− 1. (53)

Then, vn+1
j defined by (30), is positive due to the positivity of all coefficients An

j , Bn
j ,

Cn
j and the solution at the nth time level. On the other hand, vn+1

j can be considered as a

function of vn
j , i.e., vn+1

j = f (vn
j ) for 1 ≤ j ≤ M− 1. Then, the first derivative

∂ f
∂vn

j
= Bn

j − kbn
j vn

j = 1 + k
(

an
j − 2bn

j vn
j − 2

D
h2gn

)
> 1 + k

(
α1 − 2β2

α2
β1
− 2

D
h2g0

)
> 0, (54)

if
k < Q2h2, Q2 =

g0

2D + h2α1g0
(

2α2β2
α1β1

− 1
) < Q1. (55)

The positivity of the first derivative ∂ f
∂vn

j
means that vn+1

j is increasing with respect to

vn
j , 0 < vn

j < C0. Hence,

vn+1
j < (An

j + Bn
j + Cn

j )C0 =

(
1 + kan

j

(
1− C0

an
j /bn

j

))
C0 ≤ C0, 1 ≤ j ≤ M− 1. (56)
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For j = 0, by applying the Taylor’s expansion about (0, tn+1), it is found that

vn+1
0 = vn+1

1 +O(h), (57)

which leads to the boundedness of vn+1
0 , and, consequently,

0 < vn+1
j < C0, 0 ≤ j ≤ M− 1. (58)

To finish the proof for the first case, we show that under the constrain (52), Bn+1
j ≥ 0, as

Bn+1
j > 1 + k

(
α1 − β2

α2

β1
− 2D

h2g0

)
> 0. (59)

Now, let us consider the second case, max0≤r≤H0{u0(r)} = M0 ≥ C0. Analogously,
we use the induction principle.

For n = 0,
0 < v0

j = u0(H0zj) ≤ M0, 0 ≤ j ≤ M− 1. (60)

By defining

Cm = inf
r∈R+

{
α(r)
β(r)

}
,

α1

β2
≤ Cm ≤ C0 ≤ M0, (61)

one obtains

a0
j − b0

j v0
j ≥ b0

j

(
a0

j

b0
j
−M0

)
≥ b0

j (Cm −M0) ≥ β2(Cm −M0). (62)

Therefore,

B0
j ≥ 1− k

(
β2(M0 − Cm) +

2D
h2g0

)
> 0, (63)

if k satisfies the following condition

k < Q3h2, Q3 =
g0

2D + h2g0β2(M0 − Cm)
. (64)

Let us assume that for some fixed n, Bn
j > 0, 1 ≤ j ≤ M − 1, and 0 < vn

j ≤ M0,
0 ≤ j ≤ M− 1. To complete the proof we have to show that it holds for n + 1.

The positivity of vn+1
j , 1 ≤ j ≤ M− 1 is straightforward from the definition (30) and

positivity of the coefficients at the time level tn. By using the Taylor’s expansion about
(z0, tn+1), it is easy to show that vn+1

0 > 0.
Analogously to the first case, we consider vn+1

j = f (vn
j ) with the first partial derivative

∂ f
∂vn

j
= 1 + k

(
an

j − 2bn
j vn

j − 2
D

h2gn

)
≥ 1 + k

(
β2(Cm − 2M0)−

2D
h2g0

)
> 0, (65)

if

k < Q4h2, Q4 =
g0

2D + h2g0β2(2M0 − Cm)
< Q3. (66)

Since 0 < vn
j ≤ M0, 1 ≤ j ≤ M− 1, by the hypothesis of the induction, then by taking

into account that 1
C0

= infr∈R+

{
β(r)
α(r)

}
, one obtains

vn+1
j ≤ f (M0) ≤ (An

j + Bn
j + Cn

j )M0 ≤
(

1 + kan
j

(
1− M0

C0

))
M0 ≤ M0. (67)

Gianni Pagnini



Mathematics 2023, 11, 1296 11 of 19

For j = 0, if vn+1
0 > M0, then ∂v

∂z |z=0 > 0, which contradicts the boundary conditions.
Hence, vn+1

0 ≤ M0.
Finally, if k satisfies (64), then

Bn+1
j ≥ 1 + k

(
β2(Cm −M0)−

2D
h2g0

)
> 0. (68)

Summarising, the following Lemma and Theorem about the positivity condition
are formulated.

Lemma 3. Let us consider the numerical scheme (36) with sufficiently small step sizes h and k
such that

k < Qh2, (69)

where Q = min{Q2, Q4}, defined in (55) and (66). Then, coefficients Bn
j , 1 ≤ j ≤ M − 1,

0 ≤ n ≤ N − 1, defined by (32) are positive.

Theorem 4 (Positivity condition). The numerical solution computed by the scheme (36) with
sufficiently small step sizes h and k such that

k < Qh2, Q = min{Q2, Q4} (70)

where Q2, Q4 are defined in (55), and (66) is positive and bounded:

0 ≤ vn
j ≤ P0, 0 ≤ j ≤ M, 0 ≤ n ≤ N, (71)

where P0 = max{M0, C0}.

4.2. Stability

In the present study, we use the definition of stability proposed in [28], p. 92, based
on the supremum norm of a vector. Therefore, we start this subsection with recalling the
definition of the stability.

Definition 1 (Stability). The numerical scheme (36) is said to be ‖ · ‖∞-stable in the domain
[0, 1]× [0, T], if for every partition with step sizes h = 1

M and k = T
N , the following holds

‖vn‖∞ ≤ K, 0 ≤ n ≤ N, (72)

where vn = [vn
0 , vn

1 , . . . , vn
M]T is the vector solution of the scheme (36) and K > 0 is some constant

independent of n and the step sizes h and k.

By using this definition, from Theorem 4, one can take K = P0 = max{M0, C0}, where
M0 = max{u0(r) : 0 ≤ r ≤ H0} and C0 = sup

{
α(r)
β(r) , 0 ≤ r < ∞

}
. As K is independent of

n and the step sizes h and k, the following result has been established.

Theorem 5 (Stability). With the previous notation, for small enough step sizes h and k satisfying
the positivity condition (70), the scheme (36) is ‖ · ‖∞-stable in the domain [0, 1]× [0, T].

4.3. Monotonicity

Apart from the basic qualitative properties, such as stability and positivity, we study
the monotonicity of the numerical solution.
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Theorem 6 (Monotonicity). Let (36) be a numerical scheme for the problem (23)–(25), where α(r)
is a monotone decreasing function and β(r) is a monotone increasing function. If h is sufficiently
small and k satisfies the following constraint

k < Q̃h2, (73)

where Q̃ > 0 is some positive constant that can be found in terms of the parameters of the problem,
then the scheme (36) preserved the monotonicity of the numerical solution,

vn
j ≥ vn

j+1, ⇒ vn+1
j ≥ vn+1

j+1 , 0 ≤ j ≤ M− 1. (74)

Proof of Theorem 6. From (30),

vn+1
j − vn+1

j+1 = (vn+1
j − vn

j ) + (vn
j − vn

j+1)− (vn+1
j+1 − vn

j+1)

= An
j vn

j−1 + k
(

an
j − bn

j vn
j −

2D
h2gn

)
vn

j + Cn
j vn

j+1

+ (vn
j − vn

j+1)−
(

An
j+1vn

j + k
(

an
j+1 − bn

j+1vn
j+1 −

2D
h2gn

)
vn

j+1

)
− Cn

j+1vn
j+2

≥ (vn
j − vn

j+1) + (An
j − An

j+1)v
n
j + (Cn

j − Cn
j+1)v

n
j+1

− k
2D

h2gn (v
n
j − vn

j+1) + k
(
(an

j − bn
j vn

j )v
n
j − (an

j+1 − bn
j+1)v

n
j+1)v

n
j+1

)
≥ (vn

j − vn
j+1)

(
1− k

(
D

4h2gn +
2D

h2gn

)
+ kbn

j+1(v
n
j+1 + vn

j )(v
n
j+1 − vn

j )

)
≥ (vn

j − vn
j+1)

(
1− k

(
9D

4h2g0 + 2P0β2

))
≥ 0,

(75)

where P0 = max{M0, C0}, if

k ≤ Q̃h2, Q̃ =
4g0

9D + 8h2g0P0β2
. (76)

5. Numerical Results
5.1. Constant Intrinsic Growth Rate and Carrying Capacity

First, we consider the case α = const, β = const. It has been shown in Section 2 that in
this case, R∗ can be found by applying Theorem 2. In the following example, we use the
proposed numerical algorithm to approximate R∗.

Example 1. In the logistic model (2)–(5), we set the following default parameters

D = 1, µ = 2, α = β = 1, H0 = 3, u0(r) = 1−
(

r
H0

)2
. (77)

In order to calculate R∗, we solve numerically the IVP

Dφ′′ +
D
r

φ′ + αφ = 0, φ(0) = 1, φ′(0) = 0, (78)

by using the Runge–Kutta–Fehlberg method, and then the first positive root is calculated
by using the secant method. The found value R∗ = 2.4056 agrees with the theoretical value

R∗t = r0

√
D
α = 2.4048. Since the default value H0 = 3 > R∗, spreading is observed, as well

as for H0 = 2.5 and H0 = 2. However, H0 = 1 leads to vanishing, as shown in Figure 1,
where the free boundary H(t) is increasing in time for H0 = 2, 2.5, 3 and constant for
H0 = 1.
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Despite H0 = 2 < R∗, the population still spreads, see Figure 1. It is explained by
Theorem 1, case µ > µ∗. The threshold value µ∗ is calculated by Algorithm 2, and it is
found that µ∗ = 0.2682. Since the default value is µ = 2 > µ∗, the population spreads for
H0 = 2.

0 100 200 300 400 500 600

t

0

50

100

150

200

250

300

350
H

(t
)

H
0
 = 3

H
0
 = 2.5

H
0
 = 2

H = 1

Figure 1. Free boundary H(t) for the logistic model (2)–(5) with parameters given in (77) and
various H0.

The spreading–vanishing dichotomy for H0 = 2 is illustrated in Figure 2. For the
simulations we set H0 = 2 < R∗ and two values for µ: one was µ∗, and the other was 10%
higher, i.e., µ = 1.1µ∗.

0 10 20 30 40 50 60 70 80 90 100

t

2

2.5

3

3.5

4

4.5

5

5.5

6

H
(t

)

 = *

 = 1.1 *

0 1 2 3 4 5 6

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
(r

,T
)

t = 0

 = *

 = 1.1 *

Figure 2. Numerical solution for Example 1: Free boundary H(t) (left) and population distribution
at the final moment u(r, T) (right) for H0 = 2 and µ = µ∗ (black solid line) and µ = 0.29507 > µ∗

(red solid line), which correspond to vanishing and spreading, respectively. The dashed line in the
right plot is the initial population distribution u0(r).

Note that T should be chosen properly and large enough since the population may
decrease, but after some time, it starts recovering and finally, grows. It is illustrated by the
following example.

Example 2. In the logistic model (2)–(5), we set the following default parameters

D = 1, µ = 0.27, α = β = 1, H0 = 2, u0(r) = 1−
(

r
H0

)2
. (79)

As shown in the previous example, H0 = 2 < R∗ and µ = 0.27 > µ∗ = 0.2682.
We set T = 200 and plot the maximum population umax(t), which in accordance with
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Theorem 6 about the monotonicity preserving property of the numerical solution, is u(0, t),
see Figure 3.

0 20 40 60 80 100 120 140 160 180 200

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
(r

 =
 0

,t
)

Figure 3. Maximum population with respect to time for the parameters (79) in Example 2.

If one considers the time horizon until T = 100, the population can be considered as
vanished; however, if the time horizon is enlarged, until T = 200, the recovering effect
is observed.

5.2. General Case α(r), β(r)

Now, let us illustrate the theoretical results established above with numerical examples
for the general case α(r), β(r).

Example 3. In the logistic model (2)–(5), we set the following default parameters

D = 1, µ = 2, α(r) =
2r + 3
2r + 2

, β(r) =
2r + 1
2r + 2

, H0 = 3, u0(r) = 1−
(

r
H0

)2
, T = 3. (80)

Analogous to the previous subsection, we start with the spreading–vanishing di-
chotomy. By Algorithm 1, we calculate R∗ = 2.1289, which is lower than in the constant
case. Hence, for H0 > R∗, the population spreads, see Figure 4 (left plot).

Note that in the general case, the habitat carrying capacity varies between 1 and 3
(for α(r) and β(r) defined by (80)). In this case, the initial population density u0(r) is less
than the supremum of the carrying capacity C0, and then the population can grow from the
initial state but can not reach C0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r

0

0.5

1

1.5

2

2.5

3

u
(r

,t
)

t=0

t = T

Habitat carrying capacity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

r

0
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0.4

0.6

0.8

1

1.2

1.4

u
(r

,t
)

t=0

t = T

Habitat carrying capacity

Figure 4. Population at t = 0 and t = T for α(r) = 2r+3
2r+2 (left) and α(r) = 0.5 ∗ (1 + sin(r)) (right).
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Theorem 6 states that the proposed numerical method preserves the monotonicity
of the solution with respect to r, if α(r) is monotone decreasing and β(r) is monotone
increasing functions. This property is also shown in Figure 4 (left plot); the solution is
monotone non-increasing. However, if we change the intrinsic growth rate,

α(r) = 0.5 · (1 + sin(r)), (81)

then the monotonicity is lost, see the right plot of Figure 4.
In order to check the monotone behaviour of the solution, Figure 5 presents the slope

∆ = du
dr at the moment t = T for both monotone and osculating α(r). Note that for

monotone α(r), the slope is negative; while for osculating α(r), the slope changes sign
several times.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r
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-0.002

0

d
u

/d
r

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

r

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

d
u

/d
r

Figure 5. Slope at t = T for α(r) = 2r+3
2r+2 (left) and α(r) = 0.5 ∗ (1 + sin(r)) (right).

Finally, we check the stability condition proposed in Theorem 4. For that purpose,
we consider the problem (2)–(5) with T = 0.1. We set M = 100, so h = 10−2. By using the
condition of Theorem 4 and (76), we find

Q = min{Q2, Q4, Q̃} = min{4.4899, 4.4979, 3.9968} = 3.9968. (82)

In Figure 6, we compare the free boundary and the solution at r = 0 calculated by the
proposed algorithm with k1 = Qh2 and k2 = 1.25Qh2.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

3

3.05

3.1

3.15

3.2

3.25

H
(t

)

k = 1.25Qh2

k = Qh2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

u
(t

, 
r 

=
 0

)

k = 1.25Qh2

k = Qh2

Figure 6. Stable (black dashed line) and unstable (red solid line) solution of the problem (2)–(5)
with parameters (80), T = 0.1: free boundary H(t) (left plot) and maximum population u(r = 0, t)
(right plot).

To complete the study, let us consider a case when the initial population exceeds
the carrying capacity, i.e., the model with parameters (80), but with the initial population
defined as follows

u0(r) = 4−
(

2r
H0

)2
. (83)

The numerical solution at various time moments t = 0, 0.5, 3, 10, is plotted in Figure 7.
Note that the initial population distribution is higher than the carrying capacity. At the
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first time moment t = 0.5, the population is still above the carrying capacity, but recession
is observable compared with the initial value. At t = 3, the population curve is below
the carrying capacity line. Since the parameters considered in this example guarantee
spreading behaviour, we observe that at t = 10, the population grows up to the carrying
capacity. Hence, this example shows that the model and proposed numerical algorithm
adapt to any initial conditions and preserve theoretical properties of the population.

0 1 2 3 4 5 6 7 8 9 10

r

0

0.5

1

1.5

2

2.5

3

3.5

4

u
(r

,t
)

t=0

t = 0.5

t = 3

t = 10

Habitat carrying capacity

Figure 7. Numerical solution for Example 3 with parameters (80) and initial condition (83) at various
moments t.

The proposed numerical algorithm is compared with known numerical methods
for solving free boundary time-dependent PDE problems, such as the Level Set method
(LSM) [29]. In the case of the PDE (2), it is the 1D version of the LSM. The key idea
behind the level set method is to represent the interface or shape is the zero level set of
a higher-dimensional function. In other words, we embed the interface or shape in a
higher-dimensional space and define a scalar function that is negative inside the population
and positive outside it. The zero level set of this function represents the front or boundary.
By evolving this function over time, we can track the motion of the interface. The evolution
of the function is solved using explicit FDM.

One of the advantages of the level set method is its natural extension to higher
dimensions and the fact that it can handle topological changes, such as merging or splitting
of interfaces, which are challenging for other numerical methods. The level set method
is useful for problems involving complex geometry or multiple interacting interfaces.
However, for the problem (2) with radial symmetry, this characteristic is not urgent.

Table 1 displays the root-mean-square error between the results obtained from the
front-fixing (FF-FDM) method and LSM, as well as the corresponding computational
times for different numbers of spatial grid points. To ensure parity, we preserve the
parabolic mesh ratio and keep the temporal step-size constant for each M value in both
methods. Figure 8 shows the numerical solutions obtained from both methods. The small
discrepancy near the free boundary observed in the results can be attributed to the approach
used by the FF-FDM method, which calculates the free boundary as part of the solution.
In contrast, the LSM method simply determines whether the solution lies inside or outside
the population domain. This subtle difference in methodology can affect the accuracy of
the solution near the free boundary, and should be taken into consideration when selecting
an appropriate numerical method for solving similar problems.
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Table 1. Root-mean-square error between the numerical solutions u(r, T) obtained from the front-
fixing (FF-FDM) method and LSM and corresponding CPU-time in seconds for both methods.

M (Spatial Discretization) LSM CPU-Time, s FF-FDM CPU-Time, s RMSE

100 0.0312 0.0012 0.0079
200 0.0313 0.0937 0.0142
400 0.4687 0.5312 0.0150
800 2.2656 2.7500 0.0129
1600 16.3750 17.8125 0.0100
3200 148.5000 148.0625 0.0073

0 1 2 3 4 5 6

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
(r

,T
)

LSM

FF-FDM

Figure 8. Numerical solutions u(r, T) for T = 3 obtained from the front-fixing finite difference
method (FF-FDM) and the level set method (LSM) for the problem in Example 3.

6. Conclusions

The current paper presents a novel and highly efficient numerical algorithm for solving
a two-dimensional diffusive logistic model with radial symmetry. The proposed front-fixing
method is found to be more robust and easier to implement compared to the widely-used
level set method. Moreover, the numerical analysis shows that the proposed method is
conditionally stable, consistent with the original PDE problem, and preserves the positivity
and monotonicity of the solution.

Furthermore, the paper presents several important theorems that have been proven,
and a numerical algorithm for the spreading–vanishing boundary for the general case
of non-constant parameters α(r) and β(r). All theoretical statements have been illus-
trated by numerical examples, which demonstrate the crucial role of the proposed stability
conditions and the importance of a large enough time horizon for analyzing the spreading–
vanishing dichotomy.

Overall, the proposed algorithm provides a powerful tool for solving diffusive logistic
models with radial symmetry, and the theoretical analysis presented in the paper offers
valuable insights into the dynamics of such models. The results and methods presented
in the paper may have significant implications for a range of fields, including ecology,
population dynamics, and epidemiology.
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