
1

Revisiting Implicit and Explicit Averaging for
Noisy Optimization

Ali Ahrari∗−, Member, IEEE Saber Elsayed∗, Senior Member, IEEE, Ruhul Sarker∗, Member, IEEE,
Daryl Essam∗, Member, IEEE, and Carlos A. Coello Coello+, Fellow, IEEE

Abstract—Explicit and implicit averaging are two well-known
strategies for noisy optimization. Both strategies can counteract
the disruptive effect of noise; however, a critical question remains:
which one is more efficient? This question has been raised in
many studies, with conflicting preferences and, in some cases,
findings. Nevertheless, theoretical findings on the noisy sphere
problem with additive Gaussian noise supports the superiority
of implicit averaging, which may have had a strong impact on
the preference of implicit averaging in more recent evolutionary
methods for noisy optimization. This study speculates that the
analytically supported superiority of implicit averaging relies on
specific features of the noisy sphere problem with additive noise,
which cannot be generalized to other problems. It enumerates
these features and designs controlled numerical experiments
to investigate this potential reliance. Each experiment gradu-
ally suppresses one specific feature, and the progress rate is
numerically calculated for different values of the sample size
given a fixed evaluation budget. Our empirical results indicate
that for a wide range of noise strength and evaluation budget
per iteration, the more these specific features are suppressed,
the more the optimal averaging strategy deviates from implicit
towards explicit averaging, which confirms our speculations.
Consequently, the optimal sample size, which is regarded as
the trade-off between implicit and explicit averaging, depends
on the problem characteristics and should be learned during
optimization for maximum efficiency.

Index Terms—Continuous optimization, uncertainty, evolution-
ary algorithm, noisy problem

I. INTRODUCTION

MANY real-world optimization problems are subject to
uncertainty, meaning that the quality or feasibility of

a candidate solution cannot be calculated with certainty. This
uncertainty may affect the decision parameters; for example,
the fabrication precision for a product has limited accuracy [1].
This means the decision parameters in the fabricated products
from a unique solution will follow random distributions. A
good solution should be robust to such uncertainties, and
perform well if the implemented solution (slightly) deviates
from the computationally selected one, or when the work-
ing conditions are variable. Robust optimization [2], [3] and
reliability-based optimization [4] can find such solutions for
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these problems, which frequently arise in different fields such
as engineering design [5] and operations research [3].

In some other problems, uncertainty affects the assessment
of a solution, which means it cannot be accurately evaluated.
Finding the optimal solution(s) to these problems requires
solving a noisy optimization problem [6]. Such problems may
arise in different applications, such as machine learning [7],
[8], chemistry and material sciences [9], and online optimiza-
tion of feedback controllers [10].

Robust optimization and noisy optimization share many
similar features and challenges; however, there is one signif-
icant difference between their goals. In robust optimization,
the goal is to find the global robust optimizer, the one with
the best expected or average fitness with respect to the given
uncertainties. The robust optimizer may slightly or substan-
tially depend on the distribution of uncertainties. In contrast,
in noisy optimization, the goal is to find the best solution for
the noiseless problem; however, the presence of uncertainties
in the calculated fitness makes this task more difficult.

Rakshit et al. [6] classified strategies for handling noise into
five groups: (i) explicit averaging, (ii) implicit averaging, (iii)
alternative fitness estimation methods, (iv) specialized search
strategies, and (v) robust selection. Among them, averaging
techniques are robust, simple and can be easily integrated with
any population-based search method.

In explicit averaging, also known as resampling, a candidate
solution is evaluated κ times independently, in which κ is
known as the sample size [6]. The true fitness is estimated
using some statistical indicators. The mean of these κ values
is a commonly used statistic for this purpose [6], although
the median is a more robust statistic, especially when the
distribution of the evaluated fitness has a heavy-tail or includes
outliers [11], [12]. Given a population size of λ, the required
number of function evaluations per iteration is FEpI = κλ.
In contrast, implicit averaging does not use resampling but
uses the largest possible population size for a given FEpI,
which is λ = FEpI. Implicit averaging mitigates the disruptive
effect of noise by assessing more sample solutions instead of
lowering the noise. This can be particularly beneficial when
recombination is used since it moderates the erroneous effect
of noise in selection [10].

Although there is general agreement that both averaging
techniques can improve performance in noisy problems, there
remains a crucial question that has been raised in many
studies on noisy optimization: which averaging strategy is
more beneficial [13], [14], [15], [16]? This means that the
given FEpI (which may change after each iteration) should
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be allocated to provide rough fitness estimations of many
solutions (implicit averaging) or more accurate fitness estima-
tions of fewer solutions (explicit averaging). There have been
contradicting preferences, and in some cases, answers, to this
question [17], [8].

Theoretical studies on simple noisy problems, such as
the sphere function, generally favor implicit averaging for
population-based methods with a reasonable parent to off-
spring size ratio (e.g., between 0.25 and 0.5) [13], [18], [19].
A similar conclusion has been drawn for the more general
case of quadratic problems [1]. For robust optimization, how-
ever, the theoretical findings in [20] revealed the benefits of
explicit averaging with moderate values of κ for a specific
test function. More recent sophisticated methods for noisy
optimization generally employ implicit averaging [14], [21],
which is potentially motivated by existing theoretical findings
that favor implicit averaging for noisy quadratic problems and
with different noise models [1], [19].

This study provides empirical evidence that the superiority
of implicit averaging for noisy sphere problems with additive
noise, which is supported by theoretical methods [19], [1],
depends on specific properties of this problem, some of which
might be absent in many other problems. It discriminates these
properties and designs and performs controlled experiments
which reveal that by gradually suppressing any of these prop-
erties, the optimal sample size is likely to gradually increase
for a fixed FEpI.

The rest of this article is organized as follows: Section
II reviews related theoretical and empirical findings in noisy
optimization. Section III provides preliminaries related to
this work. Section IV discusses our empirical methodology.
Section V performs controlled experiments to explore the
dependency of the optimal sample size on specific properties
of the sphere problem. Finally, Section VI summarizes the
empirical findings and draws conclusions.

II. RELATED STUDIES

Explicit averaging is a popular and general technique that
is commonly used in the literature for handling evaluation
noise by reducing noise strength [22], [10]. Assuming that the
noise follows a normal distribution with standard deviation
of σϵ, mean of κ independent evaluations of the solution x
has a standard deviation of σϵ/

√
κ. Moreover, resampling can

provide an estimate of the noise strength of each solution.
It can also reveal the impact of noise, e.g., by analyzing the
change in the rank of solutions after resampling [10].

Another advantage of explicit averaging is that it is not
necessary to reevaluate all sampled solutions κ times. Dynamic
sampling strategies [6] allocate different sample sizes to differ-
ent solutions. For example, Branke [23] investigated different
averaging options and suggested either reevaluation of the
best solutions κ times or estimating a weighted fitness based
on a large archive of evaluated solutions. Adaptive sampling
strategies make a more efficient use of FEpI by gradually
increasing κ for certain solutions until a sufficiently reliable
selection can be made [24], [17], [16]. A comprehensive
review of dynamic sampling strategies can be found in [6],
[25].

When the population has only one parent, theoretical studies
on optimizing simple noisy problems with evolution strategies
[19] and genetic algorithms [22] support the advantages of
explicit over implicit averaging. In contrast, theoretical anal-
yses in [19], [18], [1] demonstrate the superiority of implicit
averaging for multi-parent evolution strategies on quadratic
functions and different noise distributions, as long as the ratio
of parents to offspring is selected properly. The analysis in
[13] for binary genetic algorithms suggested that increasing
the population size is always a better choice than increasing
κ, assuming that the computational cost of the optimization
mainly originates from solutions’ evaluations.

A few studies performed a theoretical analysis of the opti-
mal κ for robust optimization of functions with noise induced
multimodality [20], [2]. In these functions, the global optimum
is not affected by the noise parameter if it is below a certain
threshold. For a noise parameter greater than this threshold,
local optima emerge, and the robust global and local optima
become dependent on the value of the noise parameter. Four
different functions in this class, denoted by f1, f2, f3, and f4
were introduced and analyzed in different studies [20], [2],
[26]. These analyses employed steady state behavior, the state
in which both control and decision parameters fluctuate around
their expected values, as a measure for the success of opti-
mization. For f4, both averaging strategies could provide an
arbitrarily exact approximation of the robust global optimizer
given a sufficiently large FEpI; however, implicit averaging
emerged as the most efficient choice, and thus, resampling
was discouraged [20].

A similar analysis of f2 [2], [26] resulted in completely
different conclusions. For this function, neither the simple
evolution strategy nor the canonical genetic algorithm could
reach the global optimum, even when λ → ∞ [2]. For the
evolution strategy, an ad hoc setting of µ/λ = 0.61, could
approximate the global optimum; however, it is far from the
recommended setting for noiseless problems (µ/λ = 0.25)
and general noisy problems (0.25 ≤ µ/λ ≤ 0.5) [20]. A more
general alternative was to use a greater but moderate value for
the sample size (κ ≤ 10) [2], [27]; Nevertheless, increasing κ
emerged as an inefficient alternative which should be used only
when implicit averaging may not reach the global optimizer
when λ→∞ [27].

Bosman et al. [14] reported little benefit from explicit
averaging when using a relatively sophisticated optimization
method on complex noisy problems of BBOB’2009 [28],
even when the cost of reevaluation was not considered. More
importantly, for noise models that do not follow the central
limit theorem, e.g., the Cauchy noise, explicit averaging turned
out to be detrimental since it increased the noise strength. Con-
sidering the findings in [11] and [12], one potential alternative
to this challenge is to use the median of the calculated fitness
values, instead of the mean.

Implicit averaging has thus been preferred in more recent
evolutionary methods for noisy optimization. For example, ex-
plicit averaging was avoided in the BI-Population Covariance
Matrix Adaption Evolution Strategy [21] while an increasing
population size mechanism was kept active. Implicit averaging
can also employ heuristics to adapt (generally increase) the
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population size whenever it is required or beneficial. For
example, the population adapting rule proposed in [29] in-
creases the population size when there is no improvement in
the average fitness of the parent population. The population
control mechanism in [15] increases the population size when
there is no statistically significant improvement in the parental
centroid fitness. Li et al. [30] utilized the noise quantification
strategy introduced in [10] and proposed a population sizing
rule which increases the population size when the normalized
quantified noise is greater than zero and vice versa.

III. PRELIMINARIES

This section briefly reviews preliminary notions and defini-
tions which are used in this study.

A. Problem Formulation

For a predefined search space S, the goal of noisy optimiza-
tion is to find the global minimum x∗ ∈ S, which optimizes
the true objective function (f(x)). The minimization case is
considered in this study without loss of generality:

x∗ = argmin
x∈S

f(x). (1)

In contrast to deterministic optimization, f(x) cannot be
calculated for an arbitrary x. Instead, evaluation of x returns
f̂(x) = f(x; ϵ), a noisy estimate for f(x) in which ϵ is the
noise parameter. Each evaluation of x will return a different
value for f̂(x), the standard deviation of which is referred to
as the noise strength and denoted by σϵ [31]. Since the goal of
noisy optimization is to find the global minimum of the true
objective function, x∗ is independent of σϵ. This is in contrast
to robust optimization in which the robust global minimizer
can be affected by the noise type and strength.

B. Noise Types

Two common noise types are considered: additive noise
and fitness proportionate. Both noise types employ a Gaussian
model. Additive Gaussian noise is the most commonly used
noise model in the literature [32], according to which the noise
strength is independent of the solution:

f̂(x) = f(x) + ϵAN (0, 1), (2)

in whichN (0, 1) is a random number sampled from a standard
normal distribution and f(x) is the true fitness of solution x.
ϵA controls the noise strengths in which the the subscript “A”
indicates that the noise model is additive. For additive noise,
σϵ = σA.

Fitness proportionate noise [32], also known as multiplica-
tive noise [15], may happen in certain applications, such
as measuring devices, in which the accuracy is roughly a
percentage of the measurement [32]:

f̂(x) = f(x) (1 + ϵPN (0, 1)) , (3)

in which ϵP controls the strength of the fitness-proportionate
noise.

C. Signal-to-Noise Ratio

It should be noted that noise only affects the selection step
in the evolution process. The impact of the noise depends on
its strength in comparison with the true difference between the
solution values (signal). This is referred to as signal-to-noise-
ratio (SNR) [10]. If SNR is small, even if the noise strength
itself is great, the impact of noise on the selection operator
will be small. This notion provides a useful means to analyze
the detrimental impact of noise.

D. Evolution of the Population

Evolution strategies have been shown to be more robust
to noise than other direct search methods [33]. This study
employs (µ/µI, λ)-ES with isotropic mutation to evolve the
population. At each iteration, λ solutions are generated by
mutation of the population center (xC) using a normal distri-
bution with standard deviation of σ:

xi ← xC + σND(0,1), i = 1, 2, . . . , λ, (4)

in which D is the problem dimensionality and ND(0,1) is
a vector of D independent numbers sampled from a standard
normal distribution. σ is the mutation strength, also known
as the step size. These λ solutions are evaluated and sorted
according to their realized fitness. Then, the µ-best solutions
are selected and recombined to update xC for the next
generation:

xC ←
(
1

µ

) µ∑
i=1

xi (5)

This type of recombination in known as global intermediate
recombination. The non-elitist selection of parents is particu-
larly useful for noisy optimization since the error of overvalued
solutions may not propagate for more than one iteration [10].
In this study, the truncation ratio (µ/λ) is set to 0.25. This
choice is supported by theoretical results in [19] and the
default setting for the (effective) number of parents in the most
successful evolution strategies for noiseless problems [34],
[35]. For the noisy sphere problem, the optimal truncation ratio
increases with noise strength until it reaches µ/λ = 0.5 [19];
however, the optimal value for µ/λ is not known beforehand
and any 0.25 ≤ µ/λ ≤ 0.5 is thus a reasonable choice.

E. Improvement Measure

Two common improvement measures used in the literature
are progress rate and quality gain [31], [36]. Progress rate
measures the improvement in the solution space (i.e., how
much closer the population is to the global minimum after
one iteration) whereas quality gain measures the improvement
in the objective space. The progress rate is the performance
indicator used in this study, which is the difference between the
distance of the population center (xC) to the global minimum,
before and after one iteration. Starting with the population
center at xini

C and the given σ (step size), λ solutions are
sampled according to (4). Then, the center of the population is
updated according to (5). This new center is denoted by xfin

C .
The progress rate is then calculated as follows:

ϕ = ∥xini
C − x∗∥ − ∥xfin

C − x∗∥. (6)
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Fig. 1. Schematic illustration of progress rate ϕ. Cross and plus marks show
the sampled solutions generated by the mutation of the initial population
center (xini

C ). Plus marks represent the selected parents used to calculate the
new population center (xfin

C ). Progress rate is the reduction in the distance of
the population center to the global minimum (x∗) after one iteration: ϕ =
∥xini

C − x∗∥ − ∥xfin
C − x∗∥.

Fig. 1 depicts the calculation of the progress rate schemat-
ically. Twelve solutions were generated by mutation of the
current population center (xini

C ). Three solutions with the
best values were then selected as the parents and the new
population center, xfin

C , is calculated as the centroid of the
selected parents. The progress rate is the difference between
the lengths of the illustrated vectors.

IV. METHODOLOGY

Analytical methods can provide useful information on in-
tervening factors. Some well-known heuristics were initially
developed using theoretical analyses of simple problems [31].
Theoretical models, however, are limited to simple problems
like the sphere function [32] or the OneMax problem [22],
[37]. They may also use some simplifications, such as very
large problem dimensionality or linearization of the landscape
[32]. Another limitation of theoretical methods is that although
the derived equations show the impact of each factor, it does
not provide an upper-level insight into what happens and why
it happens during the population evolution which results in this
impact. Such insight can be very helpful to predict whether the
findings from simple problems can be generalized to different
and/or more complex problems.

This study employs highly controlled numerical experiments
in which the rate of improvement, the improvement over
one iteration, is measured and analyzed. Such a measure for
improvement has two advantages over the measures that are
defined over a longer course of evolution, e.g., the steady state
behavior, which has been used in [2], [27], [20]:

• It isolates the effect of the employed mechanism for
step size adjustment since an exhaustive search can be
performed to find a near-optimal step size.

• the optimal value of κ is likely to change during the
optimization process. For example, for a noisy problem
with additive Gaussian noise, the difference between the
true values of sampled solutions (signal) is great when the
step size is large; therefore, resampling is not a rational

choice since selection noise is already insignificant. In
contrast, the step size is generally small when the popula-
tion center approaches the (global) minimum. In this case,
the signal is small and resampling becomes a reasonable
choice since it can reduce the noise and thus improves
the selection’s reliability.

The rate of improvement has the limitation of measuring local
performance; however, for spherical problems, which include
all the problems considered in this study, local and global
improvement are monotonously related.

For a given FEpI, we search for the optimal trade-off be-
tween implicit and explicit averaging. The trade-off parameter
0 ≤ cκ ≤ 1 is defined as follows:

cκ =
log2(FEpI/λ)

log2 (FEpI/λmin)
=

log2 κ

log2 κmax
, (7)

in which λmin = 4 is the smallest reasonable value for λ when
the truncation ratio is 0.25 and κmax = FEpI/λmin. cκ = 0
and cκ = 1 means completely implicit and completely explicit
averaging, respectively. Any other value indicates a trade-off
between implicit and explicit averaging, where a greater cκ is
associated with a more explicit averaging and a greater sample
size.

Static sampling is used in this study, according to which
every solution is evaluated κ times. The optimal cκ is the
one that maximizes the progress rate ϕ for the given FEpI.
It should be noted that a greater κ means a smaller λ since
λκ = FEpI. The true fitness is estimated as the mean of these
κ independent evaluations. In particular, we are interested in
investigating the optimality of cκ = 0 when special features
of the sphere problem are disturbed, which will be discussed
in Section V.

V. CONTROLLED NUMERICAL EXPERIMENTS

As discussed in Section I, theoretical findings strongly favor
implicit averaging for the sphere problem with additive noise
given that mutation strength is set to its optimal value. This
can be explained as follows: For a greater λ, the optimal σ
is greater [36], resulting in a greater variance of the sampled
solutions. The true difference between the solutions, the signal,
is thus greater while the noise strength is constant. Therefore,
a higher λ is associated with a greater SNR. In contrast,
explicit averaging aims at reducing noise to increase SNR. We
speculate that the reported advantages of implicit averaging
rely on exploiting specific features of the sphere or quadratic
problem. More specifically:

• for the sphere problem, the objective function increases
fast (quadratically) with respect to the distance from
the global minimum. This results in a stronger signal if
sample solutions are farther from the global minimum.

• the noise is independent of the solution
• spherical problems are symmetric around the global min-

imum.
• the (near-) optimal σ is provided for the population.
This section hypothesizes how each feature contributes to

the optimality of implicit averaging according to theoretical
findings. It designs controlled simulations to explore whether
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cκ = 0 remains as the best choice if these specific features,
one at a time, are disturbed.

For a predefined FEpI, the progress rate is calculated for
different values for 0 ≤ cκ ≤ 1 when xC = 1. The tested
values of cκ correspond to κ = 1, 2, 4, 8, . . . , κmax. For every
value of cκ, σ is set to its near-optimal value denoted by σbest
unless otherwise stated. This near-optimal value is calculated
by performing an exhaustive search such that σbest is estimated
with 10% accuracy, assuming that ϕ is a unimodal function
of σ. The lowest value for σbest is 0.01. Each numerical
simulation is repeated 5000 times and the results are averaged
to calculate σbest and ϕ. For all the simulations, D = 10 and
FEpI = 1024 unless otherwise stated.

For the simulations involving additive noise only, we eval-
uated each solution one time but set the noise parameter to
ϵA/
√
κ. This is equivalent to the mean of κ independent

evaluations of a solution when the noise strength is ϵA, but
the former is computationally κ times cheaper.

A. Rate of Increase in Signal for Farther Solutions

In the sphere problem, the true values of the solutions far
from the global optimum increase quadratically as we move
away from the global minimum. This means that the signal,
and thus SNR, increases rapidly while the noise strength does
not change if it is additive noise. To study the impact of this
factor, the following test problem is considered:

f(x; p) = ∥x∥p. (8)

Parameter p controls how fast the objective value increases
for farther solutions. p = 2 results in the well-known sphere
function. The additive noise model is considered for this
problem.

Fig. 2 illustrates ϕ as a function of cκ and ϵA for different
values of p. The values of ϵA were selected to have diverse
and reasonable values for ϕ when cκ = 0 (completely implicit
averaging). It can be observed that:

• for p = 2, a greater λ (a smaller cκ) is always a better
choice. The slope of ϕ is also negative at cκ = 0,
which indicates the high contribution of a smaller cκ.
This observation completely agrees with the theoretical
findings.

• for p = 1 and p = 4, a smaller cκ is still a better choice
for all the tested values of ϵA; however, when compared
with p = 2, there is a noticeable difference in the slope
of the graphs: For a greater p, the progress rate declines
much faster when cκ is increased. This trend is more
noticeable for a greater ϵA. In contrast, when p = 1
and ϵA ≥ 1.5, the gain from reduction of cκ is minor,
especially when cκ ≤ 0.25.

• for p = 0.5, p = 0.25, and p = 0.125, there is a
detectable optimal value for cκ, which is off the extreme
values, unless ϵA is very small. For a sufficiently small
value of ϵA, the effect of the noise is not strong enough
to (significantly) mislead the ranking of the solutions,
and thus, reevaluation does not provide any remarkable
contribution. As ϵA increases, the optimal cκ increases as
well.

• As expected, σbest is greater for a smaller cκ; however, it
is also observed for small values of cκ, σbest reduces when
p decreases. This can be explained as follows: sampling
solutions farther from the global minimum improves the
signal less for a smaller p, and thus, the improvement
in SNR is less. Therefore, the advantage of a greater σ
diminishes when p is reduced.

• When cκ = 0 (implicit averaging) and p = 4, there
is a noticeable direct relationship between σbest and ϵA.
Although not shown here, based on similar simulations,
we calculated σbest = 3.68 for the noiseless problem
(ϵA = 0). This indicates that for a greater ϵA, the benefits
of an increased signal pay off for the drawbacks of the
deviation from the optimal step size of the noiseless
problem. This trend diminishes or disappears for smaller
values of p = 2

The obtained results from this experiment confirm that the
optimality of cκ = 0 relies on a fast increase in the objective
function when moving away from the global minimum. When
this increase is not that fast (e.g., the objective function in-
creases sub-linearly with the distance to the global minimum),
the optimal cκ increases with ϵA.

B. Noise Type Effect

The previous simulation revealed that the success of cκ = 0
could be explained by the rapid increase in the signal when the
noise strength remains constant. This condition may vanish if
the noise strength grows with the signal. In such situations, a
greater σ is associated with not only a greater signal but also
a greater noise; therefore, it does not improve SNR. To check
the effect of this factor, we employ the sphere function (test
problem in (8) with p = 2) with fitness proportionate noise
(see III-B). Fig. 3 illustrates ϕ (mean and 95% confidence
interval) and σbest as a function of ϵP and cκ. It can be observed
that:

• unless ϵP is very small, the optimal value of cκ is greater
than zero. More importantly, this value is greater for a
greater ϵP. For example, for ϵP = 0.3 and ϵP = 4, the
optimal cκ is about 0.125 and 0.75, respectively.

• for cκ = 0, σbest rapidly reduces when ϵP increases such
that for ϵP ≥ 2, σbest ≊ 0, indicating that no positive
progress can be made. This indicates that a greater σ does
not help the implicit averaging anymore. For a greater
value of cκ, σbest is less affected by ϵP.

In summary, when the noise also grows with the signal, cκ = 0
is generally not the best choice. A greater ϵP increases the
optimal cκ. Although the case of fitness-proportionate noise
was tested, a qualitatively similar trend is predictable for other
noise types in which the noise strictly increases with fitness. It
is also predicted that a noise model in which the noise strength
grows faster with fitness favors a greater cκ.

C. Symmetry in the Landscape

One remarkable feature of the spherical problems is the
symmetry of their landscapes around the global minimum. A
selection strategy that averages a large number of parents can
exploit this specific feature.
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Fig. 2. Progress rate ϕ (mean and 95% confidence interval) and near-optimal mutation strength (σbest) as a function of cκ and noise strength (ϵA) for different
values of p (see (8)). For ϕ, the dashed lines delineate the 95% confidence interval.

Let us consider a simple problem to analyze this effect. For
this example, we generalize the test problem defined in (8) so
that it can simulate a skewed landscape:

f(x; p, kskew) = ∥y∥p, yi =

{
(1+kskew)xi if xi < 0

xi if xi ≥ 0
, (9)

in which kskew controls the skewness of the fitness landscape
around the global minimum. This problem reduces to (8) for
kskew = 0.

It is already known that the skewness of the fitness land-
scape around the global minimum challenges population-based
methods, even for noiseless problems [34], [38]. The skewness
pushes the population center away from the global minimum
since sampled solutions on one side of the global minimum
are more likely to be selected for recombination. A simple 1-D
problem is illustrated in Fig. 4 for a better visualization of this
effect, assuming that the population center lies on the global
minimum. Fig. 4a illustrates the plot of this function when
p = 1 and kskew = 0. Forty solutions (plus and cross marks)
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Fig. 4. Effect of the landscape skewness on the new xC (solid square)
when 40 solutions (plus and cross marks) have been randomly generated from
N (0, 1). The new xC is the centroid of the selected solutions (plus marks).
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Fig. 5. ϕ and σbest for different values of κ and kskew for the test problem
formulated in (9) with additive noise (ϵA = 1). For ϕ, the dashed lines
delineate the 95% confidence interval.

were generated when σ = 1. The 10-best solutions were
selected as the parents (plus marks) to calculate the new center
(solid square). As can be observed, the new center remains
close to the global minimum. The slight negative progress is
caused by the randomness in the sampling process. Fig. 4b
illustrates the outcome of the same process for the same 40
solutions when kskew = 3. The new center now falls on the
right side of the global minimum. This negative progress will
intensify if kskew is increased because more solutions on the

right side of the global minimum will be selected as parents.
This illustration shows that for the skewed landscape, the

population center is pushed away from the global minimum if
σ is large. This observation raises a question regarding the
benefits of implicit averaging (cκ = 0) for non-symmetric
noisy problems, as it uses a larger σ in symmetric spherical
landscapes (see Fig. 2), to arguably increase the signal.

To investigate the dependency of the optimal cκ on skew-
ness, we consider the problem in (9) with additive noise, 10
variables and p = 2. Since the population center xC = 1
is in the first hyperoctant of the search space, and the ob-
jective increases faster on the negative sides, we can safely
assume that the population center makes progress towards the
global minimum from the right, and thus, it remains in the
first hyperoctant. Therefore, although the test problem is not
spherical, the progress rate still provides a reliable indicator of
improvement since the fitness landscape in the first hyperoctant
is still a spherical function.

Fig. 5 plots the calculated values of ϕ (mean and 95%
confidence interval) and σbest for different values of cκ and
kskew. It can be observed that:

• For a symmetric landscape (kskew = 0), the optimal cκ is
zero. However, when kskew increases, the optimal cκ also
increases.

• A greater skewness diminishes the progress rate regard-
less of the value of cκ, but this decline in the progress
rate is more drastic for a smaller cκ.

• For a small kskew, σbest drastically reduces when kskew
increases. It should be highlighted that a greater kskew
is associated with a greater or equal signal and the
noise is additive, so SNR still substantially improves if
a greater σ is used. This indicates that the detrimental
effect of skewness is stronger than the positive effect of
an increased SNR.

This simulation indicates that the success of cκ = 0
strongly relies on the presence of symmetry around the global
minimum, a special condition that may not always exist in the
problem.

D. Effect of FEpI

To check the effect of FEpI on the optimal value of cκ, we
select three different problem settings, one from each previous
simulation, such that for FEpI = 1024, the optimal cκ lies off
the extremes:

• Problem P1: Spherical problem defined in (8) with p =
0.5 when ϵA = 0.7 (additive noise)

• Problem P2: Spherical problem in (8) with p = 2 and
ϵP = 0.7 (fitness proportionate noise)

• Problem P3: Skewed problem in (9) with p = kskew = 2
and ϵA = 1 (additive noise)

Fig. 6 illustrates the effect of FEpI and cκ on ϕ for each
problem. As observed,

• for a large range of the tried values for FEpI, the optimal
cκ remains off the extremes.

• the optimal cκ is generally smaller for a smaller FEpI.
This was predictable since evolutionary algorithms need
diversity in their populations; otherwise their exploration
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Fig. 6. Effect of FEpI and cκ on ϕ for three problems: P1, P2, and P3. The dashed lines delineate the 95% confidence interval for ϕ.
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Fig. 7. ϕ for different values of σ and cκ. The test problem is the one
defined in (8) when ϵA = 10 and p = 2. The dashed lines delineate the 95%
confidence interval for ϕ.

will be compromised. Surprisingly, this is not the case
for Problem P2 (Fig. 6b). For this problem, the optimal
cκ is almost independent of FEpI.

E. Optimality of the Mutation Strength

As discussed in Subsection III-D, evolution strategies em-
ploy a (self-) adaptation mechanism to dynamically adjust σ
during the optimization process. These mechanisms, however,
might not necessarily set σ to its optimal value. For example,
self-adaptation suffers from opportunism [39], a tendency to
set σ to a value smaller than the optimal one, especially for
badly-scaled problems. Moreover, the update of σ during the
optimization process is gradual and the optimal σ changes
dynamically during the optimization process; therefore, even
if the (self-) adaptation mechanism can learn the optimal σ,
the adjusted σ might always differ from it.

It is already known that for quadratic problems with additive
noise, implicit averaging is advantageous if σ is set to the
optimal value [10], [1]. This raises a question regarding the
dependency of the optimal cκ on a given σ, which is not a

near-optimal value. Fig. 7 illustrates ϕ for different values of
cκ and σ for the problem formulated in (8) when ϵA = 10
and p = 2. From previous simulations, we already know that
when p = 2, cκ = 0 is the best choice provided that σ is set to
its near-optimal value. However, when σ is smaller than σbest,
the optimal cκ will be much greater.

It is noteworthy that a fixed σ means an identical distribution
of sampled solutions for all values of cκ. Therefore, this
simulation indicates that more data with less accuracy is not
necessarily a better option than less data with high accuracy
since the spread of these data also plays a decisive role.

VI. DISCUSSION AND CONCLUSION

For the case of the sphere problem with additive noise and
given optimal mutation strength, our simulations completely
agree with existing theoretical findings: Implicit averaging is
the best choice. However, this study demonstrated that the
optimality of this choice relies on the presence of certain and
specific features in the sphere problem: i) a rapid increase in
the signal (difference between true values of solutions) for
regions farther from the global minimum, ii) independence of
the noise strength from the objective function (i.e., additive
noise), and iii) symmetry of the objective function around the
global minimum.

The controlled simulations in this study revealed that if
any of these features is suppressed, implicit averaging might
not remain as the best choice. Furthermore, for a wide range
of noise strength and evaluation budget per iteration, the
more a problem deviates from these properties, the greater
the optimal cκ will be, which means the optimal averaging
strategy becomes more explicit. These trends are qualita-
tively the same for a large range of FEpI, which may be
static, dynamic, or adapted during optimization. Besides, as
demonstrated in this study, if the available mutation strength
is smaller than the optimal one, the optimal cκ becomes
greater. This is particularly important because existing (self-)
adaptation strategies have some delay in learning the optimal
mutation strength and cannot learn its precise value in certain
landscapes. We speculate that suppressing two or more of
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these factors simultaneously will have similar or even stronger
impacts on the optimal cκ although this study did not consider
numerical simulations for this purpose. Nevertheless, if there
is no knowledge on the best choice for cκ before or during the
optimization process and a fixed sample size should be used
for every solution, our results suggest that cκ = 0 is the safest
choice.

There are two other factors that favor explicit averaging
and are worth further investigation. First, using the median
instead of the mean of independent evaluations can enable
explicit averaging to deal with noise models with heavy tails
[12], [11], a noise model in which explicit averaging fails if
the conventional mean indicator is used [14]. Second, it is
not necessary to resample all solutions κ times. More efficient
strategies that sequentially resample some solutions selectively
can save a lot of unnecessary reevaluations, e.g., adaptive
sampling techniques [16], [37]. This is particularly useful for
global intermediate recombination in which parents participate
with equal weights in the recombination process. The selection
operator should only determine whether or not a solution is
among the µ-best ones with sufficient reliability.

The findings from these simulations reveal a need for
efficient and reliable heuristics that can learn the optimal cκ
during the optimization process since, in general, a problem
may lack the specific features of the sphere problems, or
the noise strength may depend on the solution value. The
simulations performed in this study can serve as a checkpoint
to confirm the capability of a candidate heuristic in learning
the optimal trade-off between implicit and explicit averaging.

The findings in this study also cast doubt on the merits
of another theoretically supported strategy for noisy optimiza-
tion: re-scaled mutation [40]. This strategy uses an increased
mutation strength for sampling solutions but proportionally
reduces the change in the population center. For the sphere
problem with additive noise, theoretical findings indicate the
positive and drastic impact of this strategy when the noise
is sufficiently strong [41]; however, as demonstrated in this
study, benefits of a greater diversity in the sampled solutions
is contingent upon the presence of specific features in the prob-
lem as enumerated and explained in this study. Consequently,
this study motivates reevaluation of the advantages of re-scaled
mutation when these specific features are suppressed to clarify
how this strategy performs in more general situations.
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