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Abstract—Discretization-based feature selection approaches
have shown interesting results when using several metaheuristic
algorithms such as Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), Ant Colony Optimization (ACO), etc. However,
these methods share the same shortcoming which consists in
encoding the problem solution as a sequence of cut-points.
From this cut-points vector, the decision of deleting or selecting
any feature is induced. Indeed, the number of generated cut-
points varies from one feature to another. Thus, the higher the
number of cut-points, the higher the probability of selecting
the considered feature and vice versa. This fact leads to the
deletion of possibly important features having a single or a low
number of cut-points, such as the infection rate, the glycemia
level, and the blood pressure. In order to solve the issue of the
dependency relation between the feature selection (or removal)
event and the number of its generated potential cut-points, we
propose to model the discretization-based feature selection task
as a bi-level optimization problem and then solve it using an
improved version of an existing co-evolutionary algorithm, named
I-CEMBA. The latter ensures the variation of the number of
features during the migration process in order to deal with
the multimodality aspect. The resulting algorithm, termed Bi-
DFS (Bi-level Discretization-based Feature Selection), performs
selection at the upper level while discretization is done at the
lower level. The experimental results on several high-dimensional
datasets show that Bi-DFS outperforms relevant state-of-the-art
methods in terms of classification accuracy, generalization ability,
and feature selection bias.

Index Terms—Discretization-based feature selection, fea-
tures interactions, cut-points search, bi-level optimization, co-
evolutionary algorithm.

I. INTRODUCTION

MACHINE learning applications encompass several
fields such as: big data [1], predictive and data analytics

[2] [3] [4], speech recognition [5], and bioinformatics [6]. For
all these fields, a large amount of data is available. In fact, the
adopted high-dimensional datasets in machine learning and
data mining applications may have a considerable number of
irrelevant and redundant features [7], [8]. Those noisy features
can negatively influence the classification accuracy of any
learning algorithm. Therefore, it is necessary to select only es-
sential and relevant features in order to ensure several machine

R. Said, M. Elarbi, S. Bechikh, and L. Ben Said are with the
(SMART) Strategies for Modelling and Artificial Intelligence Labo-
ratory, ISG, University of Tunis, Tunis 2000, Tunisia (e-mail: ri-
habsaid.edu@gmail.com; arbi.maha@yahoo.com; slim.bechikh@fsegn.rnu.tn;
lamjed.bensaid@isg.rnu.tn)

Carlos A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300,
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learning tasks such as classification, clustering, and regression.
This pre-processing step is termed feature selection and it
is used to improve the performance of the machine learning
algorithm. In the literature, feature selection has proven its
effectiveness when it is applied on high-dimensional datasets
[9], [10]. However, the interactions between features on a large
search space make feature selection still a challenging research
field [11]. Recently, Evolutionary Algorithms (EAs) have been
found to be successful techniques for feature selection tasks
when compared to baseline methods [12], [13], [14], [15],
[16].

Feature discretization represents a crucial pre-processing
task for machine learning and data mining applications. In-
deed, several learning algorithms are efficient on discrete data.
Thus, the discretization task is used to transform the continu-
ous values of features into their corresponding discrete ones.
Indeed, it is shown that the use of discretization can ensure
the effectiveness and the efficiency of learning algorithms
since noise or minor fluctuations in the data can be ignored
[11]. Feature selection and discretization are applied as pre-
processing steps for machine learning [17]. However, these
two tasks should be performed simultaneously, since the fea-
tures interactions’ information can be lost by performing them
independently [18]. Therefore, the classification performance
could be negatively affected. In spite of the high number of
methods available for feature selection, most of them separate
the selection process from the discretization one [18]. For any
particular Feature Subset (FS), finding the optimal sequence
of features cut-points (thresholds) is not a straightforward
task at all. Besides, the quality of a feature subset is heavily
influenced by the efficacy of its corresponding cut-points
[17]. For this reason, researchers have proposed to frame
the problem of feature selection and feature discretization as
a joint problem named DBFS (Discretization-Based Feature
Selection) [19], [11], [20], [21], [22]. Basically, the goal of
this joint problem is to find an optimal sequence of cut-points
from which the selected (and, consequently, the discarded)
features are identified; and thus a feature subset is found along
with its cut-points. As each feature requiring discretization
is numerical, solving the task of feature subset search as a
DBFS corresponds to a continuous optimization problem and
no more to a discrete one. This fact makes the search space
much larger and even infinite, as there is an infinity of real
numbers between any pair of real numbers (cf. Fig. 1a).

To address the issue of dealing with a continuous (infinite)
search space, some researchers have suggested its discretiza-
tion [11]. As not all real numbers belonging to the feature
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(a) Main idea of Evolve PSO [19].
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(c) Main idea of the proposed approach (Bi-DFS).

Fig. 1: Research gap and main idea of Bi-DFS.

range allow an effective separation (splitting) of data, a table
of maximum-entropy cut-points is extracted from the data set
and seeded as input to the search algorithm from the start.
More specifically, once the data set is available, the MDLP
(Minimum Description Length Principle) is applied on each
feature range to extract the set of cut-points (thresholds) with
maximum entropy of the considered feature. This way, a two-
dimensional table of cut-points is deduced where each row
gives the list of found cut-points for each feature. Eventually,
the rows do not have the same size as the number of potential
cut-points differs from one feature to another (cf. Fig. 1b).
Once the table of potential (maximum-entropy) cut-points
is generated, the solution encoding for the search algorithm
is represented as a sequence of potential cut-points indices
(vector of integers). Eventually, a feature is discarded if its
corresponding integer value does not belong to the feature in-
teger range. This approach has shown interesting results in the
specialized literature. Some improvements of such approaches
have been also proposed using cooperative co-evolution [20]
and the ReliefF filtering method [21]. In spite of the interesting

results obtained and the proposal of all these improvements
that mostly adopted PSO as a baseline metaheuristic optimizer,
all these works share the same shortcoming which consists
in encoding the solution as a sequence of cut-points, from
which the decision of selecting or removing any feature is
induced. It is very important to note that this issue could
occur in any metaheuristic algorithm (PSO (particle), GA
(chromosome), ACO (ant constructed solution), etc.) as the
solution would be always implemented as a vector of cut-
points. More specifically, if the vector element (i.e., position
in PSO or gene in GA) contains a potential cut-point, then
the feature is selected; otherwise it is discarded. This is a
“dangerous” rule because the number of potential cut-points
is defined by the MDLP criterion and thus it varies from one
feature to another. Thus, the higher the number of cut-points is,
the higher the probability of selecting the considered feature;
and vice versa. This leads to raising the probability of removal
of possibly important features having a single cut-point or a
low number of them, such as the glycemia level, the blood
pressure, and the infection rate.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

�������������

��� !"��#!$#� 

%���& �'�

��� !"�#

F1   F2 F1   F2 F1      F2

1.15   3.77

%()*���&��$()� (�)�

���&! +��() #���"� ,�

�#���& �'����� !"�#

-�.�%()*��+��/�����'��()*

�������������

��� !"��#!$#� 

0� �) (���&! +��() #

� �$��

%���& �'�

��� !"�#

F1   F2 C1 C2 C3

F1

F2

0.11

3.77

1.15

4.28

3.01

12���13 12������13

4522��6537

-$.�8(+��/�����'��()*

9�:�"���/���'�&(#(�)�#��&�

-�!� (����&��$()� (�)#����&! +��() #.

Cut-points of selected 

features (F1 and F2) are

 passed as parameters

 to the lower level

algorithm

8�# 

&��$()� (�)���

�� (�(;�'�&! +

��() #

0.11   3.77

3.01   3.77 0.11   4.28

3.01   4.28 1.15   3.77

1.15   4.28

0� �) (���&! +��() #

� �$��

C1 C2 C3

0.11

3.77

1.15

4.28

3.01F1

F2

Fig. 2: The added value of the proposed bi-level model over the
single-level one for the discretization-based feature selection
problem.

To solve the issue of the dependency of the event of feature
selection (or removal) on the number of its generated potential
cut-points, we propose in this paper a bi-level modeling and
resolution of the DBFS, where the upper level selects features
while the lower level searches for the corresponding effective
cut-points (cf. Fig. 1c). The main contributions of this paper
could be summarized as follows:

1) Modeling the DBFS as a bi-level optimization problem
and showing the added value of the bi-level model over
the single-level one (cf. Fig. 2).

2) Solving the proposed bi-level model using an im-
proved version of the bi-level algorithm CEMBA (Co-
Evolutionary Migration-Based Algorithm) [23] which
we name I-CEMBA, through the design of a new
migration strategy.

3) Showing the ability of Bi-DFS in obtaining better results
in terms of classification accuracy, generalization ability,
and feature selection bias compared to classical and
recent evolutionary approaches.

II. BACKGROUND AND RELATED WORKS

A. Feature selection and disretization

Feature selection and discretization represent important
tasks in the machine learning field. In fact, feature selection
ensures the selection ef relevant features from a dataset of
multiple features [24], [25], [26], [27], [28] while feature
discretization ensures the generation of a set of cut-points
(thresholds or split-points) to partition feature values into their
corresponding discrete values [29], [30]. A summary of feature
selection and discretization approaches is provided in Section I
of the Supplementary Material.

B. Discretization-based feature selection

There are few proposals that have tackled the discretization-
based feature selection problem. For instance, Liu and Setiono
[31] proposed one of the first discretization-based feature
selection algorithms which was termed Chi2. This is a general
and simple algorithm that selects and discretizes numerical
attributes. Chi2 derives from the ChiMerge that ensures dis-
cretization based on the X2 statistic. In fact, the inconsistency
rate is used as a stopping criterion, while the significance
value is automatically selected. However, the Chi2 algorithm
has two drawbacks. On the one hand, the inaccuracy of
ChiMerge is not considered in the Chi2 algorithm. On the
other hand, the discretization task could be inaccurate due
to the inconsistency rate of the user [32]. Thus, a Modified
version of Chi2 (MChi2) was proposed by Tay and Shen [32].
Another approach for feature discretization and selection is the
PrEprocessing Solution for Association Rules (PEAR) [33]. It
is a supervised approach that discretizes continuous values and
selects relevant features for the classification task. It consists
of a ranking procedure that goes from features with a small
number of cut-points to features with a large number of cut-
points in order to form a final subset of top ranked features.
In fact, PEAR is able to obtain good results; however, the
parameters’ tuning of this algorithm is difficult.

Recently, Tran et al. proposed two discretization-based
feature selection methods which are: (1) EPSO [19] and (2)
PPSO [11]. EPSO achieves feature discretization by the use
of the Bare-Bones PSO (BBPSO). For each feature, one cut-
point is evolved. The latter can be any value within the range
of the feature [Minimum feature value, Maximum feature
value]. Then, entropy-based cut-points are used as potential
or initial cut-points in order to narrow down the search space.
However, with the proposed representation of EPSO, the
search space is still too large and BBPSO cannot achieve a
better performance. For this reason, Tran et al. [11] proposed
the PPSO approach which is based on the combination of
discretization and feature selection in a single stage using
BBPSO. This approach automatically chooses potentially good
cut-points. Indeed, a table of potential cut-points is used
and if the obtained cut-point index belongs to the interval
[1, #C] (where #C represents the number of potential cut-
points), the corresponding feature is selected. More recently,
Zhou et al. [20] proposed a Cooperative Co-evolutionary al-
gorithm for Discretization-based Feature Selection (CC-DFS).
The idea consists of combining a genetic algorithm with a
PSO method in order to search for continuous and discrete
features. Furthermore, a ranking mechanism is applied to
control the probability of crossover and mutation. Another
recent approach was proposed by Zhou et al. [21] in which the
size of features is reduced by using a pre-screening process.
This approach is an Improved Discretization-based PSO for
Feature Selection (IDPSO-FS) that applies the PSO method in
order to search for the best combination of cut-points. More
recently, Zhou et al. [22] proposed a PSO framework for multi-
objective discretization-based feature selection. The proposed
work is a Flexible Cut-point PSO (FCPSO) that is based on
the selection of an arbitrary number of cut-points. Then, a
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TABLE I: Characteristics of existing discretization-based feature selection methods and our proposal (Bi-DFS).

Reference Approach Solution encoding Method type Dependency of feature removal on
Classical Evolutionary the number of discretization cut-points

[31] Chi2 Interval encoding × YES
[32] MChi2 Interval encoding × YES
[33] PEAR Vector encoding × YES
[19] EPSO PSO encoding × YES
[11] PPSO PSO encoding × YES
[20] CC-DFS PSO encoding for discrete features and bi-

nary encoding for continuous ones
× YES

[21] IDPSO-FS PSO encoding × YES
Bi-DFS Binary vector encoding for the upper level

and real vector encoding for the lower level
× NO

particle update with a mutation method is applied to search
for relevant features.

To conclude, we provide, in Table I, the main characteristics
of existing single-objective discretization-based feature selec-
tion approaches by describing, for each approach, the solution
encoding, method type (evolutionary approach or classical
approach), and the dependency criterion. We mention here
that the dependency criterion indicates if the selection event
depends on the number of generated cut-points or not. In
order to show the difference between existing discretization-
based feature selection approaches and our proposed approach,
we also provide the main characterstics of our proposed
Bi-DFS approach. In fact, all existing approaches show a
promising performance in the resolution of the discretization-
based feature selection problem. However, they are based on
a dependency between the number of generated cut-points
and the selection event which may lead to a deletion of an
important number of informative features that may affect the
results.

C. Bi-level optimization

A Bi-Level Optimization Problem (BLOP) is a representa-
tion of a hierarchical structure that connects two levels: (1) the
upper level (i.e., the leader) and (2) the lower level (i.e., the
follower). Each level optimizes its objective functions while
respecting a set of constraints. It is worth mentioning that
the lower level problem belongs to the upper level constraints.
The main goal in such a problem is to optimize the upper level
objective while ensuring two tasks: (1) respecting the upper
level constraints and (2) optimizing the lower level problem.
The bi-level mathematical formulation is given as follows
where F and f denote the upper and the lower objective
functions, respectively:

Min F (x = (xu, xl)) (1)

while respecting the following constraints:

xl ∈ argminxl
f(xu, xl) : gj(xu, xl) ≤ 0, j = 1 ... J,

Gk(xu, xl) ≤ 0, k = 1 ... K,

xu ∈ XU , xl ∈ XL.

(2)

In the two previous equations, xu and xl are used for the upper
level variables and the lower level variables, respectively. gi
denotes the lower level constraints set, whereas Gj describes
the upper level set of constraints. Furthermore, the upper level

objective function evaluation requires the optimal lower level
solution x∗l . In other words, the lower level problem uses xu as
a fixed parameter (constant) to search for the optimal solution
x∗l . After that, the upper level will be able to evaluate xu
by using x∗l . Other details are provided in Section II of the
Supplementary Material.

III. PROPOSED APPROACH

A. Main idea and motivations

Feature selection and discretization should be performed
in a simultaneous way. Therefore, if these two tasks are
done independently, the information of features’ interactions
could be lost. Therefore, the classification performance may be
negatively affected. In other words, if feature discretization and
selection are performed independently, the feature selection
process may miss relevant features [19]. Consequently, the fea-
ture selection stage may be degraded since important informa-
tion about features’ interaction could be lost during the process
of discretization [11]. For this reason, the fact of combining
discretization and feature selection tasks into a single stage
may lead to a better representation for the learning task. More
recently, researchers tackled the discretization-based feature
selection problem by proposing evolutionary approaches. We
mention here that existing approaches have a single level
modeling that encodes the solution as a sequence of cut-points,
from which the decision of selecting or removing any feature
is induced. This rule leads to removing possibly important
features having a single or a low number of cut-points, such as
the glycemia level, the infection rate, and the blood pressure.
To address this research gap and to solve the issue of the
dependency of the event of feature selection (or removal) on
the number of its generated potential cut-points, we tackle the
discretization-based feature selection by proposing a bi-level
model in which the two tasks of discretization and selection are
modeled as a bi-level optimization problem. Indeed, features
are selected at the upper level problem, while the discretization
task is performed at the lower level problem. The added value
of such a bi-level model is three-fold (cf. Fig. 2): (a) the feature
selection event no longer depends of the number of maximum-
entropy (potential) cut-points that are generated, (b) the FS
quality evaluation is more precise thanks to the optimization
of its cut-point sequence at the lower level, and (c) jointly
performing both binary search of FSs and discretization in a
synchronous manner, which allows exploiting the advantages
of each search process simultaneously. As illustrated in Fig. 3,
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a feature subset Xu (in which some features are randomly
selected and others are not) with its related potential cut-
points are passed as parameters to the lower level problem. It
is worth mentioning here that the potential cut-points table is
obtained through the application of the entropy and the MDLP
principles (cf. Appendix A of the Supplementary Material for
further details). After that, a whole lower level search space
exists in which all the possible combinations of potential cut-
points are generated while building combination vectors of
cut-points. A lower level evolutionary process is undertaken
through the use of the crossover, mutation, and selection
operators in order to vary potential cut-points and obtain the
best combination of cut-points that will be sent to the upper
level problem in order to evaluate the feature subset Xu. Fig. 3
gives a simple example in which a subset of four selected
features (F1, F3, F6, F8) is sent to the lower level problem.
F1 has one cut-point, F3 and F6 have two cut-points, and F8
has three cut-points. In the following, several combinations
of cut-points are generated at the lower level until obtaing
the best combination which is (PC1-F1, PC2-F3, PC1-F6,
PC3-F8). In other words, the best combination is composed
of the cut-point PC1-F1, the second Potential Cut-point of
F3 (PC2-F3), the first Potential Cut-point of F6 (PC1-F6),
and the third Potential Cut-point of F8 (PC3-F8). Finally, the
upper level receives the best combination of cut-points, then
it is also varied through the crossover, mutation, and selection

operators. The output is the best found feature subset with its
cut-points’ values. By following the bi-level model:

1) We remove the dependency between the feature deletion
event and the number of its generated cut-points. This
way, an interesting feature with one cut-point will be
selected.

2) We generate, for each feature subset Xu, several cut-
points combinations in the lower level search space and
we approximate its globally-optimal combination of cut-
points that will be sent to the upper level problem.

In fact, in a bi-level optimization problem, each upper level
solution is evaluated with the use of its corresponding lower
level solutions. For this reason, a high number of evaluations is
required. In other words, the approximation of optimal lower
level solutions requires a high number of evaluations. To deal
with this high computational cost and to solve the resulting bi-
level discretization-based feature selection problem, we have
designed an improved version of the CEMBA [23], called I-
CEMBA, that ensures the variation of the number of features
during the migration step. The main goal behind proposing
I-CEMBA is to tackle the multimodality aspect caused by
having several feature subsets with the same number of
features. To deal with this issue, we apply a variation strategy
during the CEMBA migration process in order to diversify the
number of selected features among the feature subsets of the
current population.
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Fig. 4: Illustration of the CEMBA-B migration strategy.

B. I-CEMBA: an improved version of CEMBA

To deal with the bi-level high computational cost and to
solve the proposed bi-level model, we need to use a bi-
level resolution approach. Indeed, we aim to fulfill three main
goals: (1) searching for the number of selected features, (2)
identifying the selected features, and (3) identifying the cut-
points for each selected feature. In this context, we are facing
a multimodality aspect that is caused by the fact that many
feature subsets having similar quality values have exactly the
same number of features [21],[34]. First of all, we have used
our CEMBA Baseline algorithm (CEMBA-B) [23] for the
problem resolution. However, we have faced conflicting deci-
sions between the upper level and the lower level. For instance,
we can have a cut-point at the lower level problem while its
corresponding feature is not selected at the upper level. Also,
we can find a selected feature at the upper level while having
an empty set of cut-points at the lower level. When applying
CEMBA-B, we observe that the CEMBA baseline approach
unchanged the feature subset size (cf. Fig. 4). In other words,
CEMBA-B preserves the number of selected features. Indeed,
in the two normal cases, when a feature is selected at the
upper-level and its corresponding cut-point exists in the lower-
level (Case a in Fig. 4), this feature remains selected; however,
when a feature is discarded at the upper-level and its cut-
points set is empty at the lower-level (Case b in Fig. 4), then
this feature is discarded. Concerning the other cases, when a
feature is discarded at the upper-level while its corresponding
cut-point exists in the lower-level (Case d in Fig. 4), then this
feature remains discarded; however, when a feature is selected
at the upper-level but its cut-points set is empty at the lower-
level (Case c in Fig. 4), then the feature is selected and we
choose for it a randomly cut-point from the table of cut-points.

In order to address the multimodal issue of the feature selec-
tion problem, we proposed an improved version of CEMBA

�: Empty cut-points subset for the corresponding feature

 : Existence of a cut-point for the corresponding feature

!: Random cut-point from the table of potential cut-points

V: Random variable in the range [0, 1]
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Fig. 5: Illustration of the I-CEMBA migration strategy.

that we called I-CEMBA. The proposed approach utilizes a
a repair operation of the migration strategy that is based on
varying the feature subset size. It is a diversification rule
that varies the number of selected features. To clarify the I-
CEMBA migration strategy, we provide its details in Fig. 5.
For the two normal cases (cases a and b in Fig. 5), if a feature
is selected while having a cut-point at the follower, then this
feature remains selected; and if the feature is discarded and
it has an empty cut-points set then it remains discarded. The
main difference between I-CEMBA and CEMBA-B becomes
evident in cases c and d (Fig. 5). On the one hand, case c
consists in having a selected feature at the upper level with
an empty cut-points set at the lower level. In this situation, a
random variable (i.e. V) is generated in the range [0, 1]. In the
following, if V < 0.5, the feature will be discarded; otherwise,
the feature remains selected and we choose a random cut-point
from the potential cut-points table. On the other hand, case d
occurs when the feature is discarded at the upper level but its
corresponding cut-point exists at the follower. In this situation,
if V < 0.5, the feature will be selected while using the existing
cut-point for the discretization; otherwise, the feature remains
discarded and its cut-points set will be empty.

C. Detailed description of Bi-DFS

To describe the bi-level model of discretization-based fea-
ture selection, we give details about the proposed Bi-DFS
approach. We mention here that the interaction between the
upper level and the lower level is given by Fig. 3. In fact,
it is very rare to have a denominator (LO or Dsame) which
is equal to zero; however, in such case, we add a very small
quantity called ε.

1) Upper level:
– Solution encoding: Upper level individuals are repre-

sented by a binary vector of n bits (features). It is a subset
of features in which each bit takes 0 or 1. In other words,
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if the feature is selected, then its bit takes 1; otherwise,
it takes 0.

– Initialization: To generate initial upper level populations,
features are randomly selected in order to constitute the
initial populations.

– Evaluation: To evaluate the obtained subset of selected
features, an Upper level Fitness Evaluation UFE is used.
UFE includes two sub-objectives as follows: (UFE1)
the minimization of the reduction rate of the selected fea-
tures number and (UFE2) the combination of the maxi-
mization of the Balanced Accuracy (BA) and a Distance
(D) measure. The combination of BA and D facilitates
the search process by giving a smoother landscape of
fitness and helps obtaining a good distinction between
feature subsets [11]. It is important to mention here that
a weight aggregation is used to ensure the combination of
BA and D [35], [20]. Indeed, the distance is added to the
function UFE1 with a weighting coefficient denoted as µ
[35]. µ is set to 0.8 (cf. Appendix B in the Supplementary
Material) and it is used to bias fitness values towards the
balanced accuracy and distance measure [36], [37]. UFE
is formulated as follows:

UFE = UFE1 + UFE2 (3)

where:
UFE1 =

SF

N
(4)

and,
UFE2 = µ×BA+ (1− µ)×D (5)

In the previous equations, SF is the number of Selected
Features, N representes the total number of features and
BA is the Balanced Accuracy that is defined as follows:

BA =
1

NC

NC∑
a=1

NIa
|Sa|

(6)

and D represents the distance which is calculated as
follows:

D =
1

1 + exp−5(Ddifferent−Dsame)
(7)

Ddifferent =
1

|S|

|S|∑
i=1

min
b|b 6=a,class(Va)6=class(Vb)

Dis(Va, Vb)

(8)

Dsame =
1

|S|

|S|∑
i=1

max
b|b 6=a,class(Va)=class(Vb)

Dis(Va, Vb)

(9)
In equation 6, NC is the number of problem classes,
NI defines the number of instances that are correctly
identified, and Sa is the size of a sample that belongs
to class a. In equation 7, we need to minimize the
distance between the same class instances Dsame and
maximize the distance between the different class in-
stances Ddifferent. In equations 8 and 9, Dis(Va, Vb)
is the calculated distance between a first vector Va and
a second one Vb. It is worth mentioning that Va and

TABLE II: Time complexity of each step of a canonical GA.

Step Time complexity
Population initialization O(N)
Population evaluation O(N)
Binary tournament for mating selection O(N)
Population Variation O(N)
Replacing parents by their children without competition O(N)

Vb belong to [0, 1]. We mention here that UFE is
normalized in the range [0, 1].

– Variation: To search for other features subsets, the two
genetic oprators which are crossover and mutation are
applied to the upper level populations. After that, a
selection operation is performed.

2) Lower level:
– Solution encoding: A vector is used as an encoding for

the lower level solution. Indeed, the lower level problem
receives the feature subset with its related potential cut-
points and builds vectors that represent the existing cut-
points combinations. In the context of bi-level program-
ming, each upper level feature vector (i.e., chromosome)
has multiple combinations of cut-points in the lower level
problem. We mention here that the best combination of
cut-points is then sent to the upper level problem.

– Initialization: Entropy is used to find cut-points that are
able to split intervals, while MDLP [38] is used to
evaluate the generated cut-points (cf. Appendix A of the
Supplementary Material for further details).

– Evaluation: The Lower Fitness Evaluation (LFE) is rep-
resented by the classification Balanced-Accuracy and the
distance which are computed at the lower level problem
and then, this computation is sent to the upper level
problem.

LFE = µ×BA+ (1− µ)×D (10)

– Variation: To search for the optimal combination of cut-
points, the lower level search space must be varied
through the use of crossover, mutation, and selection
operators.

D. Computational complexity of I-CEMBA and hardware en-
vironment

A baseline genetic algorithm starts with population initial-
ization and then repeats the following three steps for a number
of generations G: (1) Evaluation (fitness computation of each
individual), (2) Mating selection (binary tournament is adopted
in our work), and (3) Variation (crossover and mutation).
Eventually, the N generated children replace their parents.
Assuming that N is the population size, the time complexity
of the different steps are given by Table II. We conclude from
Table II that the time complexity of a canonical GA with
binary tournament selection is O(GN), as already studied
by Goldberg and Deb in [39]. To evaluate the complexity
of our algorithm, we should first study the complexity of
CEMBA. CEMBA could be seen as a nested algorithm that
divides the population into two populations and then co-
evolves them. This is done at each level while ensuring



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

communication through bi-level interaction and migration.
Due to the nested nature of CEMBA, its complexity could
be expressed as O(GN × LLS), where LLS denotes the
Lower-Level Search (i.e., the lower-level GA). As the latter
also corresponds to a canonical GA, the time complexity of
CEMBA is O(GN × GN), which equals to O(G2N2). In
spite of the fact that CEMBA decomposes the population
to reduce the number of fitness evaluations to almost half,
its complexity remains quadratic (O(G2N2)) when migration
is not executed. The migration strategy time complexity is
O(N2) since every lower-level solution will be evaluated
with respect to every upper-level solution. As the migration
operation belongs to the lower-level evolutionary process, the
complexity of LLS becomes O(G(N +N2)) when migration
is executed in every lower-level generation. Thus, the time
complexity of LLS when applying migration is O(GN2). It is
important to note that the migration step is periodically applied
(every 10 lower-level generations in this work). In summary,
the time complexity of CEMBA (and also I-CEMBA) is:

• O(GN × GN) = O(G2N2) when migration is not
executed; and

• O(GN ×GN2) = O(G2N3) when migration is executed
in every generation, which is costly but is still polyno-
mial.

We repeat again that the migration process is executed only
every k generations (where k = 10, in this work).

Let us move now to analyze the complexity of the Bi-DFS
approach using I-CEMBA. After studying the time complexity
of I-CEMBA (i.e., the same complexity of CEMBA), we
would like to mention that the most time- and memory-
consuming operation in our approach is the fitness computa-
tion at the lower level, since it requires a communication with
the data set to compute the classification performance value
in terms of BA. This communication is based on applying
the KNN classifier with the considered feature subset and its
corresponding sequence of cut-points on the data. To deal
with the significant computational cost incurred by wrapper
evaluations, we adopted the GPGPU (General-Purpose com-
putation on Graphic Processing Units) approach of Jurczuk et
al. [40], which was originally developed for the evolutionary
induction of decision trees. All experiments were conducted on
a workstation equipped with an Intel R©Xeon R©Processor E5-
2620 v3, 16 GB RAM and a single GPU card “GeForce RTX
2080 Ti WindForce OC-11GB” that contains 4352 CUDA
(Compute Unified Device Architecture) cores. The program-
ming language is C++ and the compiler is GCC 10.2.0. The
GPU-based parallelization was implemented in CUDA-C and
compiled by nvcc CUDA 7.0 (NVIDIA 2015) (single-precision
arithmetic was applied). It is worth noting that the entire data
set is sent to the GPU only once at the initialization phase of
I-CEMBA and it remains in the GPU allocated memory space
during the whole evolutionary process. This allows avoiding
the important computational cost of data transfer (from CPU
to GPU).

We move now to discuss an important issue of our approach
which is space complexity. The main space occupied by a
canonical GA is the memory space necessary to store the pop-

ulation’s chromosomes [39]. For the case of feature selection
with a binary encoding, the chromosome length (number of
genes) is equal to the number of considered data set features.
This may become costly in terms of memory consumption
when the data set contains thousands of features (which is
the case of this work). To deal with this issue, the following
implementation choices and techniques are adopted in our
work:

• As the upper-level chromosome is a binary vector of
thousands of binary values (0 or 1), it is not a wise
choice to implement it as a table of integers because the
integer consumes 32 bits (4 bytes). The C++ language
offers the bitset class (type) that emulates an array of
Boolean elements with optimized space allocation, where
each element occupies a single bit. This allowed us to
reduce the number of bits required by the upper-level
chromosome by 32 times. For instance, if a data set
contains 10000 features, only 10000 bits are required
when using a bitset array. This number of bits is less
than the one required to store 157 double numbers.

• The lower-level chromosome is a vector of floats, which
is memory-consuming. For this reason, allocation and
deallocation operations for dynamic memory manage-
ment are used along with GPU parallel computations.

To summarize, we admit that the space complexity required
by our approach is important and costly and thus we looked for
specific implementation choices to deal with the memory space
issue. Eventually, other choices and technologies could be
investigated to improve efficiency such as vector quantization
and the use a multi-GPU implementation approach.

IV. EXPERIMENTAL ENVIRONMENT

A. Datasets

We have used ten datasets where the number of features
varies between 2308 and 12600, the number of instances
varies between 50 and 203, while the number of classes is
between 2 and 11. Details are provided in Section III of the
Supplementary Material.

B. Baseline methods

To test the performance of our proposed Bi-DFS approach
in solving the discretization-based feature selection, we con-
ducted an experimental study in which we compared Bi-DFS
with respect to Bi-DFS-C, which applies the basic CEMBA
and four types of existing state-of-the-art approaches: (1) one-
stage evolutionary approaches (EPSO [19], PPSO [11], and
CC-DFS [20]), (2) two-stage evolutionary approaches (PSO-
FS [11]), (3) traditional approaches (MChi2 [32], MDL-LFS
[38] [41], MDL-CFS [38] [42], and MDL-CON [38] [43]), and
(4) Genetic Algorithm (GA)-based approaches (BL-GA (Bi-
Level Genetic-Algorithm) and SL-GA (Single-Level Genetic
Algorithm)). Details of the adopted approaches are provided
in Section IV of the Supplementary Material.
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TABLE III: Default parameters settings

Specific parameters

Bi-DFS, Bi-DFS-C
Upper Population size: UP1 = 30, UP2 = 30,
Lower Population size: LP1 = 30, LP2 = 30,
Upper and Lower Generations: UG = 20, LG = 20,
Stopping criterion: 720000 evaluations.

BL-GA
Upper Population size: UP = 60,
Lower Population size: LP = 60,
Upper and Lower Generations: UG = 20, LG = 20,
Stopping criterion: 720000 evaluations.

SL-GA
Population size: 60,
Generation number: 20,
Stopping criterion: 720000 evaluations.

Common parameters

Crossover Type: Uniform Crossover,
Probability = 0.9.

Mutation Type: Uniform Mutation,
Probability = 0.1.

C. Experimental setup

To evaluate the performance of Bi-DFS with respect to
existing approaches, we adopted a Taguchi method [26].
Table III details the adopted parameters for Bi-DFS, Bi-DFS-
C, BL-GA, and SL-GA which are the size of the populations,
the maximum number of generations, the stopping criterion,
and the genetic operators types and probabilities. For the other
algorithms, we adopted the parameters settings of their original
papers. To ensure a fair comparison, we adopted the same
number of evaluations (720000) as a termination criterion
for all the algorithms. As we are in the case of multiple
comparisons, we use the Friedman statistical test followed by
a posthoc analysis based on the Holm test. The first detected if
any of the algorithms is statistically different from the others,
while the second adjusts p-values and defines pair-wise rela-
tionships [44]. We mention here that we used three statistical
symbols: (1) “+” (better), (2) “-” (worse), and (3) “≈” (no
significance). KNN (K Nearest Neighbors) is used, in this
paper, as a learning algorithm and the Nested Cross-validation
strategy is also used with ten folds. More details about ten-
fold cross validation and structures of experiments with and
without feature selection bias are provided in Section V of the
Supplementary Material.

V. ANALYSIS OF RESULTS AND DISCUSSION

A. Analysis of comparative results

In this sub-section, we provide discussions about the global
observations and analysis of the Bi-DFS comparison with
respect to state-of-the-art approaches. Table IV shows the
classification accuracy results without feature bias of the
selected and discretized features obtained by Bi-DFS, PSO-
FS, EPSO, PPSO, CC-DFS, MChi2, MDL-CFS, MDL-CON,
and MDL-LFS. Indeed, experiments without feature bias were
performed using the test set in order to evaluate the per-
formance of the discretized and selected features generated
by each compared algorithm based on the training set [16],
[45]. Obtained training accuracy results are given by Tables II
and III in the Supplementary Material. We mention here that
Column “NOF” refers to the Number Of Features.

Regarding the dimensionality reduction, Bi-DFS returns fea-
ture subsets that are much smaller than those returned by PSO-

FS which represents the two-stage approach. Regarding the
classification accuracy, the data transformed by our approach
outperforms PSO-FS on all datasets. In fact, results of prostate
dataset reveal the largest difference between our proposed Bi-
DFS approach and PSO-FS. Indeed, PSO-FS selects 779.2
features with best classification accuracy of 90.01%, but Bi-
DFS selects 50.7 features while reaching 100% as the best
classification accuracy. In general, solutions produced by our
proposed bi-level approach have a significantly better classi-
fication accuracy compared to the two-stage approach on all
datasets. This observation is explained by the fact that PSO-FS
is a two-stage approach that does not perform discretization
and selection simultaneously which is not the case of Bi-DFS.

Bi-DFS is compared to two one-stage PSO approaches: (1)
EPSO and (2) PPSO. As can be seen from Table IV, Bi-DFS
selects a smaller number of features than those selected by
EPSO on all datasets and obtains better classification accuracy
compared to EPSO on all datasets. For example, Bi-DFS
selects 1.9% of features with a classification accuracy of
68.54% in 9Tumor dataset; however, EPSO selects 2.4% of
features with 64.20% of classification accuracy. On the other
hand, it is shown in Table IV that Bi-DFS selects a smaller
number of features than PPSO while obtaining similar or better
classification accuracy than PPSO. For leukemia 2, Bi-DFS
and PPSO reach 100% as their best classification accuracy,
but, Bi-DFS selects a lower number of features than PPSO. On
eight datasets, Bi-DFS achieves a better classification accuracy
than PPSO while selecting a lower number of features. For the
two remaining datasets, Bi-DFS achieves similar classification
accuracy to PPSO with a lower number of features. The
previous observation is explained by the fact that our proposed
approach (Bi-DFS) gives to the algorithm the ability to select
potential cut-points. The previous results are explained by
the two following facts. On the one hand, the search space
of EPSO is much larger and even infinite because we are
manipulating an infinity of real numbers in the feature range.
On the other hand, the PPSO approach is based on a relation of
dependency between the number of generated cut-points and
the feature selection task. As it is based on a bi-level model
that solves the dependency issue between the feature selection
event and its cut-points number, Bi-DFS outperforms EPSO
and PPSO.

Compared with respect to CC-DFS, a similar classification
accuracy is achieved on two datasets, the best classification is
obtained on seven datasets, and the second best classification
accuracy is achieved on one dataset. The obtained results
are explained by the bi-level structure of Bi-DFS that helps
to select a lower number of features while returning the
best classification accuracy. It is true that CC-DFS is an
improvement of existing discretization-based feature selection
approaches but this approach did not solve the issue of the
dependency of the event of feature selection or deletion on the
number of its generated potential cut-points. For this reason,
our proposed approach (i.e., Bi-DFS) outperforms CC-DFS
due to the bi-level model and the diversification rule of the
adopted I-CEMBA.

It is also important to test the efficiency of our proposed
Bi-DFS approach compared to traditional approaches (cf.
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TABLE IV: Obtained BA results without feature bias for all algorithms (using KNN as a classifer)

Dataset Algorithm NOF Best Median Std

DLBCL

Bi-DFS 37.5 97.95 94.41 2.21
PSO-FS 100.8 95.65(-) 81.06(-) 5.20(-)
EPSO 41.9 93.97(-) 86.10(-) 4.75(-)
PPSO 43.9 95.01(-) 87.97(-) 3.53(-)
CC-DFS 68.1 97.06(≈) 90.18(-) 3.05(-)
MChi2 11.0 74.10(-)
MDL-CFS 59.1 90.97(-)
MDL-CON 4.2 92.00(-)
MDL-LFS 4.9 73.20(-)

SRBCT

Bi-DFS 80.0 100.00 99.51 1.01
PSO-FS 148 96.95(-) 91.02(-) 3.01(-)
EPSO 137.8 100.00(≈) 97.09(-) 1.77(-)
PPSO 109.0 100.00(≈) 95.21(-) 2.06(-)
CC-DFS 219.8 100.00(≈) 98.50(-) 1.20(-)
MChi2 86.5 100.00(+)
MDL-CFS 81.9 100.00(+)
MDL-CON 5.4 85.01(-)
MDL-LFS 7.5 88.03(-)

9Tumor

Bi-DFS 109.0 68.54 62.01 2.09
PSO-FS 950.9 54.44(-) 46.11(-) 4.23(-)
EPSO 139.6 64.20(-) 57.57(-) 3.31(-)
PPSO 119.0 65.40(-) 58.13(-) 2.77(-)
CC-DFS 279.2 62.09(-) 54.11(-) 3.97(-)
MChi2 59.9 47.70(-)
MDL-CFS 39.1 52.91(-)
MDL-CON 8.5 27.94(-)
MDL-LFS 14.0 40.77(-)

Brain Tumor 1

Bi-DFS 69.0 88.74 80.22 3.00
PSO-FS 319.0 77.01(-) 70.69(-) 4.27(-)
EPSO 152.0 78.25(-) 73.00(-) 3.90(-)
PPSO 72.9 81.97(-) 75.10(-) 3.60(-)
CC-DFS 189.0 82.88(-) 77.01(-) 3.40(-)
MChi2 291.8 73.98(-)
MDL-CFS 117.0 78.88(-)
MDL-CON 6.9 55.06(-)
MDL-LFS 10.2 58.87(-)

Leukemia 1

Bi-DFS 75.2 99.88 97.11 1.22
PSO-FS 151.9 91.72(-) 80.06(-) 3.92(-)
EPSO 137.0 94.95(-) 93.95(-) 1.90(-)
PPSO 81.9 95.33(-) 94.84(-) 1.50(-)
CC-DFS 167.7 96.07(-) 94.52(-) 1.51(-)
MChi2 47.7 91.55(-)
MDL-CFS 57.0 92.99(-)
MDL-CON 3.7 88.93(-)
MDL-LFS 5.4 80.95(-)

Dataset Algorithm NOF Best Median Std

Leukemia 2

Bi-DFS 70.7 100.00 99.00 1.07
PSO-FS 151.7 93.11(-) 85.81(-) 4.07(-)
EPSO 140.1 93.99(-) 89.01(-) 3.01(-)
PPSO 87.7 100.00(≈) 95.03(-) 2.78(-)
CC-DFS 132.6 100.00(≈) 95.96(-) 2.11(-)
MChi2 167.7 92.90(-)
MDL-CFS 80.0 89.12(-)
MDL-CON 3.3 85.16(-)
MDL-LFS 5.1 98.90(≈)

Prostate

Bi-DFS 50.7 100.00 99.11 1.44
PSO-FS 779.2 90.01(-) 84.80(-) 2.70(-)
EPSO 56.1 91.03(-) 82.95(-) 3.46(-)
PPSO 67.2 96.02(-) 92.00(-) 1.89(-)
CC-DFS 182.0 91.87(-) 87.99(-) 2.30(-)
MChi2 34.4 85.92(-)
MDL-CFS 52.3 98.97(≈)
MDL-CON 5.2 70.01(-)
MDL-LFS 5.8 72.79(-)

Brain Tumor 2

Bi-DFS 60.0 85.90 74.17 4.19
PSO-FS 419.3 81.88(-) 68.71(-) 5.40(-)
EPSO 153.9 84.04(-) 71.06(-) 5.12(-)
PPSO 68.0 75.44(-) 69.01(-) 5.33(-)
CC-DFS 140.1 82.06(-) 71.07(-) 5.11(-)
MChi2 161.1 69.90(-)
MDL-CFS 64.1 70.79(-)
MDL-CON 5.3 61.00(-)
MDL-LFS 6.0 52.98(-)

11Tumor

Bi-DFS 100.2 87.70 84.70 2.50
PSO-FS 1640.2 85.87(-) 81.92(-) 2.80(-)
EPSO 150.9 82.87(-) 78.259(-) 3.51(-)
PPSO 168.0 83.10(-) 77.00(-) 3.95(-)
CC-DFS 1891.5 87.73(+) 84.74(+) 2.49(+)
MChi2 2099.7 83.98(-)
MDL-CFS N/A N/A
MDL-CON 10.0 53.10(-)
MDL-LFS 14.9 61.20(-)

Lung Cancer

Bi-DFS 145.6 93.33 87.12 1.74
PSO-FS 687.7 87.93(-) 80.82(-) 2.58(-)
EPSO 152.2 84.98(-) 80.84(-) 2.50(-)
PPSO 204.7 83.91(-) 78.90(-) 3.32(-)
CC-DFS 157.1 88.21(-) 80.44(-) 2.95(-)
MChi2 N/A N/A
MDL-CFS N/A N/A
MDL-CON 7.1 73.99(-)
MDL-LFS 12.9 80.01(-)

Table IV). It is worth mentioning here that the MDL-CFS
results are not available (N/A) for the 11Tumor and Lung
Cancer datasets. This observation is explained by the fact
that the CFS method is computationally expensive. The same
observation is seen for the MChi2 approach on the Lung
Cancer dataset because of an insufficient memory error.

Compared to MDL-LFS and MDL-CON, our proposed Bi-
DFS approach obtains the best training and test accuracies
on all datasets. As can seen from Table IV, Bi-DFS achieves
higher median test accuracy that belongs to the range [7.11%,
26.32%] compared to MDL-LFS on all datasets. Compared
to MDL-CON, Bi-DFS obtains from 2.41% to 34.07% higher
median test accuracy on all the adopted datasets. It is true that
MDL-CON and MDL-LFS obtain a lower number of features;
however, these two methods fail to achieve the best accuracy
results.

Compared to MDL-CFS, our proposed approach obtains the
best or the same training accuracy on all datasets. For the test
results, Bi-DFS obtains better median test accuracy on nine
datasets. On the SRBCT dataset, MDL-CFS outperforms Bi-
DFS in the median test accuracy; however, our proposed Bi-
DFS approach has the best test accuracy on all datasets.

Compared with MChi2, Bi-DFS has the best training ac-
curacy and the best test accuracy on nine datasets. For the

SRBCT dataset, MChi2 and Bi-DFS have the same training
accuracy; however, MChi2 outperforms Bi-DFS on the median
test result while our proposed Bi-DFS approach has always the
best test accuracy on all datasets.

All the previous results show the efficiency of Bi-DFS,
which is due to the evolutionary bi-level scheme that consists
in searching, for each feature subset, its best combination of
cut-points in order to have as an output a set of selected
features with their optimal cut-points combination. In this way,
the evaluation of each feature subset quality is more precise.
Moreover, the variation strategy of I-CEMBA helps Bi-DFS in
dealing with the multimodality aspect of the feature selection
problem.

B. Results with feature selection bias

Another experiment is performed with feature selection bias
in order to confirm the performance of our proposed Bi-DFS
approach on discretization-based feature selection. In fact, fea-
ture selection bias represents an important issue which occurs
when the whole data set is utilized during the feature selection
process. In this way, there is no unseen test data utilized
for feature selection [16], [45], [46]. Table V illustrates the
obtained results with feature selection bias for all algorithms
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TABLE V: Obtained BA results with feature bias for all algorithms (using KNN as a classifier)

Dataset Algorithm NOF Best Median

DLBCL

Bi-DFS 39.9 100.00 100.00
PSO-FS 103.8 90.98(-) 89.21(-)
EPSO 45.2 98.05(-) 96.15(-)
PPSO 49.3 100.00(≈) 100.00(≈)
CC-DFS 70.0 100.00(≈) 99.19(-)
MChi2 13.7 87.09(-)
MDL-CFS 63.5 100.00(≈)
MDL-CON 5.1 95.70(-)
MDL-LFS 5.7 98.85(-)

SRBCT

Bi-DFS 83.0 100.00 100.00
PSO-FS 150.7 91.77(-) 88.10(-)
EPSO 140.8 92.03(-) 90.22(-)
PPSO 112.1 100.00(≈) 99.20(-)
CC-DFS 222.0 100.00(≈) 99.70(-)
MChi2 88.2 100.00(≈)
MDL-CFS 83.9 100.00(≈)
MDL-CON 7.6 94.69(-)
MDL-LFS 9.5 98.80(-)

9Tumor

Bi-DFS 111.1 99.52 99.09
PSO-FS 961.1 80.17(-) 79.59(-)
EPSO 144.7 90.10(-) 89.09(-)
PPSO 123.0 98.06(-) 95.20(-)
CC-DFS 282.3 98.31(-) 96.17(-)
MChi2 64.0 98.99(-)
MDL-CFS 42.0 89.15(-)
MDL-CON 10.6 67.95(-)
MDL-LFS 16.2 74.01(-)

Brain Tumor 1

Bi-DFS 71.8 100.00 100.00
PSO-FS 325.6 91.29(-) 90.65(-)
EPSO 157.4 95.04(-) 94.90(-)
PPSO 75.1 100.00(≈) 100.00(≈)
CC-DFS 194.2 100.00(≈) 99.92(-)
MChi2 299.0 80.00(-)
MDL-CFS 100.00(≈)
MDL-CON 8.7 92.77(-)
MDL-LFS 12.9 83.99(-)

Leukemia 1

Bi-DFS 77.0 100.00 100.00
PSO-FS 155.1 89.11(-) 87.98(-)
EPSO 140.9 91.96(-) 90.90(-)
PPSO 85.1 100.00(≈) 100.00(≈)
CC-DFS 169.7 100.00(≈) 100.00(≈)
MChi2 49.0 98.72(-)
MDL-CFS 58.4 100.00(≈)
MDL-CON 5.2 98.11(-)
MDL-LFS 7.9 95.90(-)

Dataset Algorithm NOF Best Median

Leukemia 2

Bi-DFS 73.2 100.00 100.00
PSO-FS 157.4 90.97(-) 88.99(-)
EPSO 145.1 97.92(-) 96.18(-)
PPSO 90.0 100.00(≈) 99.12(-)
CC-DFS 135.1 100.00(≈) 100.00(≈)
MChi2 169.4 100.00(≈)
MDL-CFS 82.6 100.00(≈)
MDL-CON 4.9 97.91(-)
MDL-LFS 6.9 98.10(-)

Prostate

Bi-DFS 52.2 100.00 100.00
PSO-FS 782.6 93.10(-) 88.92(-)
EPSO 59.2 93.90(-) 90.85(-)
PPSO 70.1 100.00(≈) 99.37(-)
CC-DFS 185.8 99.11(-) 95.18(-)
MChi2 36.6 93.88(-)
MDL-CFS 55.7 97.50(-)
MDL-CON 7.0 100.00(≈)
MDL-LFS 8.2 95.62(-)

Brain Tumor 2

Bi-DFS 64.1 100.00 100.00
PSO-FS 425.6 92.01(-) 90.61(-)
EPSO 159.1 93.44(-) 91.69(-)
PPSO 70.0 100.00(≈) 99.83(-)
CC-DFS 145.1 100.00(≈) 100.00(≈)
MChi2 164.3 94.05(-)
MDL-CFS 68.5 100.00(≈)
MDL-CON 6.9 93.12(-)
MDL-LFS 8.1 100.00(≈)

11Tumor

Bi-DFS 102.9 100.00 99.00
PSO-FS 1650.6 85.10(-) 83.85(-)
EPSO 155.0 88.16(-) 85.41(-)
PPSO 170.1 99.15(-) 98.12(-)
CC-DFS 1898.5 100.00(≈) 100.00(+)
MChi2 2111.6 93.75(-)
MDL-CFS N/A 98.16(-)
MDL-CON 12.7 72.03(-)
MDL-LFS 16.5 78.01(-)

Lung Cancer

Bi-DFS 148.6 99.21 98.97
PSO-FS 690.9 83.17(-) 80.63(-)
EPSO 155.3 84.05(-) 81.47(-)
PPSO 209.2 97.10(-) 96.90(-)
CC-DFS 159.1 98.14(-) 97.25(-)
MChi2 N/A N/A
MDL-CFS N/A 98.16(-)
MDL-CON 8.8 93.00(-)
MDL-LFS 14.0 95.99(-)

using the whole dataset for the algorithm’s training. According
to Table V, Bi-DFS obtains 100% accuracy on eight datasets.
Compared to PSO-FS, EPSO, PPSO, CC-DFS, MChi2, MDL-
CFS, MDL-CON, and MDL-LFS, one can notice that Bi-DFS
obtains best or similar results on all the adopted datasets.

Compared to evolutionary approaches, the proposed Bi-DFS
approach has the best or similar best and median accuracies
compared with PSO-FS, EPSO, PPSO, and CC-DFS on all
datasets. Compared to traditional approaches, Bi-DFS outper-
forms MChi2, MDL-CFS, MDL-LFS, and MDL-CON on the
9Tumor, 11Tumor, and Lung Cancer datasets. Compared to
MChi2, our proposed Bi-DFS approach has the best accuracy
on eight datasets. However, the two approaches have the same
accuracy on the two other datasets. Compared to MDL-CFS,
Bi-DFS has the best accuracy on four datasets and the same
accuracy as MDL-CFS on six datasets. It is seen from Table V
that MDL-LFS and MDL-CON obtain a small number of
features. However, on nine datasets, our proposed Bi-DFS
approach outperforms these two approaches. On the other
dataset, Bi-DFS has the same accuracy which is 100%.

C. Analysis of experiments with another classifier
As mentioned in the previous sections, our proposed Bi-

DFS approach is able to outperform state-of-the-art approaches

in experiments with and without feature selection bias when
using KKT as a learning algorithm. In fact, it is interesting to
know if the discretized and selected features generated by Bi-
DFS can also improve the performance of classifiers other than
the one used in the fitness function (i.e., KNN). For this reason,
we have performed another experiment by using the Naı̈ve
Bayes (NB) algorithm. The main goal behind the experiment
is to test if our obtained results (i.e., the ability of the proposed
Bi-DFS approach in solving the discretization-based feature
selection problem and in outperforming existing approaches)
are of a general nature and if these results generalize to
other learning algorithms. It is important to mention that each
experiment is done independently since KNN and NB are two
completely different learning approaches. Generally, it is seen
from Table VI that the transformed data from our proposed
Bi-DFS approach is able to improve the NB classification
accuracy with and without feature selection bias.

For the obtained results without feature bias, our pro-
posed Bi-DFS approach outperforms all algorithms on seven
datasets. On two datasets, Bi-DFS has similar results as other
approaches while reaching 100% accuracy. On Brain Tumor
2 dataset, CC-DFS outperforms Bi-DFS. As illustrated by
Table VI, MDL-CON and MDL-LFS select a small number
of features compared to our proposed Bi-DFS approach.
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TABLE VI: Experiments with another classifier (NB)
Dataset Algorithm Without feature bias With feature bias

NOF Best Median NOF Best Median

DLBCL

Bi-DFS 35.3 98.20 95.06 38.8 100.00 100.00
PSO-FS 105.1 94.21(-) 80.11(-) 120.2 88.14(-) 82.71(-)
EPSO 40.7 91.36(-) 85.17(-) 43.3 98.91(-) 97.01(-)
PPSO 42.1 93.28(-) 85.76(-) 44.5 100.00(≈) 100.00(≈)
CC-DFS 70.0 96.35(-) 89.29(-) 72.1 99.65(-) 93.11(-)
MChi2 12.6 72.20(-) 13.7 98.94(-)
MDL-CFS 60.1 90.70(-) 62.2 100.00(≈)
MDL-CON 5.9 91.85(-) 6.5 95.70(-)
MDL-LFS 6.7 72.83(-) 8.0 96.91(-)

SRBCT

Bi-DFS 78.2 100.00 99.71 80.4 100.00 100.00
PSO-FS 143.2 95.42(-) 92.17(-) 145.8 90.50(-) 87.02(-)
EPSO 138.4 99.15(-) 96.78(-) 140.3 89.70(-) 89.13(-)
PPSO 107.7 100.00(≈) 94.99(-) 110.9 100.00(≈) 100.00(≈)
CC-DFS 220.1 100.00(≈) 99.34(-) 222.5 100.00(≈) 95.55(-)
MChi2 85.3 100.00(≈) 87.9 100.00(≈)
MDL-CFS 77.6 100.00(≈) 80.6 100.00(≈)
MDL-CON 4.9 84.19(-) 6.5 94.69(-)
MDL-LFS 6.3 86.95(-) 8.1 98.80(-)

9Tumor

Bi-DFS 106.6 70.02 67.57 110.7 90.99 88.21
PSO-FS 945.8 60.12(-) 49.01(-) 953.8 70.98(-) 69.11(-)
EPSO 140.7 66.23(-) 58.96(-) 147.6 75.92(-) 73.23(-)
PPSO 120.1 67.35(-) 59.24(-) 123.8 80.22(-) 79.18(-)
CC-DFS 282.6 63.33(-) 55.16(-) 286.3 87.43(-) 83.47(-)
MChi2 55.7 48.09(-) 61.7 85.93(-)
MDL-CFS 34.2 53.20(-) 41.8 83.90(-)
MDL-CON 7.9 29.08(-) 9.0 67.95(-)
MDL-LFS 13.5 41.50(-) 15.2 65.10(-)

Brain Tumor 1

Bi-DFS 65.1 89.26 82.17 70.7 100.00 100.00
PSO-FS 315.6 75.96(-) 69.12(-) 321.4 93.00(-) 90.78(-)
EPSO 153.2 76.11(-) 70.57(-) 155.9 96.11(-) 96.02(-)
PPSO 70.4 80.26(-) 76.48(-) 73.6 100.00(≈) 99.90(-)
CC-DFS 178.5 81.47(-) 77.19(-) 193.0 100.00(≈) 100.00(≈)
MChi2 284.2 70.44(-) 290.1 82.00(-)
MDL-CFS 110.6 78.67(-) 114.0 100.00(≈)
MDL-CON 5.7 56.13(-) 7.5 92.77(-)
MDL-LFS 9.4 59.82(-) 12.3 75.89(-)

Leukemia 1

Bi-DFS 77.4 100.00 99.49 81.9 100.00 100.00
PSO-FS 159.6 92.10(-) 81.74(-) 165.3 90.32(-) 88.47(-)
EPSO 140.5 94.11(-) 92.52(-) 150.0 93.57(-) 92.19(-)
PPSO 83.7 95.37(-) 93.28(-) 90.5 100.00(≈) 100.00(≈)
CC-DFS 169.7 95.93(-) 94.55(-) 177.4 100.00(≈) 100.00(≈)
MChi2 45.5 90.73(-) 50.3 98.72(-)
MDL-CFS 54.7 91.20(-) 60.0 100.00(≈)
MDL-CON 4.2 88.32(-) 5.9 98.11(-)
MDL-LFS 5.7 81.17(-) 6.8 100.00(≈)

Dataset Algorithm Without feature bias With feature bias
NOF Best Median NOF Best Median

Leukemia 2

Bi-DFS 75.0 100.00 98.63 77.1 100.00 99.93
PSO-FS 160.2 92.62(-) 86.55(-) 164.5 94.26(-) 94.39(-)
EPSO 149.6 93.17(-) 87.11(-) 152.7 98.11(-) 97.64(-)
PPSO 89.3 100.00(≈) 94.25(-) 92.4 100.00(≈) 99.86(-)
CC-DFS 137.1 100.00(≈) 96.68(-) 140.7 100.00(≈) 100.00(≈)
MChi2 170.5 91.76(-) 173.7 100.00(≈)
MDL-CFS 82.1 90.01(-) 85.9 100.00(≈)
MDL-CON 4.7 84.67(-) 97.91(-)
MDL-LFS 6.9 90.11(-) 100.00(≈)

Prostate

Bi-DFS 47.6 100.00 99.77 51.3 100.00 100.00
PSO-FS 780.7 88.98(-) 83.02(-) 784.1 92.16(-) 90.36(-)
EPSO 54.3 90.62(-) 84.19(-) 58.9 92.94(-) 91.14(-)
PPSO 69.2 97.36(-) 91.30(-) 72.1 99.15(-) 95.17(-)
CC-DFS 180.4 94.33(-) 89.15(-) 185.6 98.59(-) 94.11(-)
MChi2 36.1 84.26(-) 38.0 94.72(-)
MDL-CFS 53.2 97.09(-) 55.0 98.62(-)
MDL-CON 5.9 71.58(-) 7.1 100.00(≈)
MDL-LFS 6.1 73.88(-) 7.5 97.62(-)

Brain Tumor 2

Bi-DFS 62.1 87.98 80.19 64.3 100.00 100.00
PSO-FS 126.3 77.52(-) 67.43(-) 130.7 93.47(-) 90.10(-)
EPSO 155.0 79.75(-) 68.14(-) 157.9 94.17(-) 92.19(-)
PPSO 70.1 73.02(-) 64.22(-) 73.7 100.00(≈) 99.13(-)
CC-DFS 145.2 88.20(+) 80.56(+) 147.0 100.00(≈) 100.00(≈)
MChi2 165.1 65.63(-) 169.4 92.21(-)
MDL-CFS 64.1 67.10(-) 67.6 100.00(≈)
MDL-CON 6.8 58.34(-) 8.0 93.12(-)
MDL-LFS 7.9 50.06(-) 8.8 100.00(≈)

11Tumor

Bi-DFS 95.8 90.92 85.69 102.4 100.00 100.00
PSO-FS 1610.9 88.59(-) 82.99(-) 1630.0 87.19(-) 86.05(-)
EPSO 151.2 85.47(-) 79.62(-) 157.7 90.26(-) 89.34(-)
PPSO 160.7 86.03(-) 79.33(-) 169.3 98.11(-) 95.16(-)
CC-DFS 1885.3 89.67(-) 84.11(-) 1911.1 100.00(≈) 100.00(≈)
MChi2 2102.2 82.64(-) 2110.0 95.65(-)
MDL-CFS N/A N/A N/A 100.00(≈)
MDL-CON 9.9 52.18(-) 11.9 72.03(-)
MDL-LFS 12.7 59.30(-) 15.0 77.90(-)

Lung Cancer

Bi-DFS 140.6 95.26 90.93 147.1 100.00 99.90
PSO-FS 680.7 88.82(-) 75.97(-) 691.3 87.55(-) 75.37(-)
EPSO 153.7 87.11(-) 75.70(-) 157.9 88.09(-) 76.69(-)
PPSO 206.2 86.14(-) 73.17(-) 210.1 93.00(-) 84.90(-)
CC-DFS 160.0 90.10(-) 79.86(-) 163.2 95.11(-) 91.28(-)
MChi2 N/A N/A N/A N/A
MDL-CFS N/A N/A N/A 99.02(-)
MDL-CON 7.9 70.25(-) 9.5 93.00(-)
MDL-LFS 13.8 75.50(-) 14.9 94.80(-)

However, Bi-DFS is able to outperform these two approaches
in terms of the classification accuracy results.

Concerning the results with feature bias, Bi-DFS achieves
100% accuracy on nine datasets. On all datasets, Bi-DFS has
similar or better accuracy results when compared to traditional
approaches. For instance, traditional approaches obtain a lower
number of features on 9Tumor, but, Bi-DFS achieves 90.99%
accuracy which is the best result on this dataset. On 11Tumor,
MDL-LFS selects a lower number of features than Bi-DFS.
However, Bi-DFS achieves 100% median accuracy. Further-
more, the proposed Bi-DFS approach has the best accuracy
on three datasets. For the other datasets, Bi-DFS has the same
best accuracy which is 100%.

All the previous results and observations are explained by
the added value of our proposed model that removes the
dependency between the feature selection event and its number
of cut-points. This fact helps Bi-DFS to ensure a more precise
quality evaluation of feature subsets. Furthermore, Bi-DFS is
able to solve the multimodal issue by its diversification method
used in the migration process of I-CEMBA. In this way, our
proposed Bi-DFS approach is able to improve the performance
of several classifiers such as KNN and NB.

VI. FURTHER DISCUSSION AND THREATS TO VALIDITY

A. Further discussion

Concerning the generalization ability assessment, the ob-
tained training accuracy results show that our proposed Bi-
DFS approach obtains the best or similar training accuracy
results compared to other approaches on the majority of the
adopted datasets. More details are provided in Section VI of

the Supplementary Material. Furthermore, analysis of the ex-
periment on key features selection are provided in Section IX
of the Supplementary Material. Indeed, our results show the
ability of Bi-DFS in selecting decisive features for lung and
prostate cancer.

It is also important to investigate the effectiveness of both
bi-level modeling and the improved version of CEMBA. For
this reason, an experimental study was performed in order
to compare Bi-DFS in which we adopt I-CEMBA, Bi-DFS-C
that applies the basic CEMBA, BL-GA, and SL-GA. From
the obtained classification accuracy results, we can observe
that the worst performance is given by SL-GA compared to
BL-GA, Bi-DFS-C, and Bi-DFS. This observation is explained
by the fact that SL-GA is based on a single level model that
cannot ignore the relation of dependency between the feature
selection task and the number of cut-points which is not the
case for BL-GA, Bi-DFS, and Bi-DFS-C. In fact, the best
performance is given by Bi-DFS due to the use of the I-
CEMBA approach. All details are provided in Section VII of
the Supplementary Material. Another analysis was conducted
in order to test the running time of Bi-DFS compared to the
two best approaches (i.e., CC-DFS and PPSO). It is shown
from Fig. 6 that CC-DFS and PPSO consume less CPU time
than Bi-DFS because the bi-level scheme is computationally
costly. The obtained results are provided in Section VIII of
the Supplementary Material.

B. Threats to validity

In this section, we discuss the threats to validity that are
related to our proposed approach, Bi-DFS. It is important
to mention that we focus on three types of threats: (1)
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Fig. 6: Comparison of running time (in seconds) for all the
adopted datasets.

internal validity, (2) construct validity, and (3) external validity.
Indeed, internal validity refers to the relationship between the
outcome and the treatment. Construct validity concerns the
relationship between the observation and the theory. External
validity concerns the generalization of the obtained results.
First, the stochastic behavior of Bi-DFS concerns to internal
validity. Indeed, a Taguchi method was used to tune the
parameters of the proposed algorithm, obtaining encouraging
results. However, there is a need for a control strategy in
order to manage the adopted parameters of the proposed
approach. Second, construct validity occurs because we have
used the classification accuracy to test the performance of the
proposed approach. In the following, it is interesting to use
additional metrics in the evaluation of the proposed approach.
Finally, it is important to test the generalization of the obtained
results that represent the external threats to validity. In fact,
our proposed approach has the best performance compared
to other algorithms. However, it would be interesting to test
the performance of our proposed Bi-DFS approach on other
datasets.

VII. CONCLUSIONS AND FUTURE WORK

The aim of this paper was to tackle the dicretization-
based feature selection problem in which the two tasks are
simultaneously performed. The main contributions are given as
follows. On the one hand, we have proposed a bi-level model
of the discretization-based feature selection that optimizes the
quality of a feature subset at the upper level while performing
the discretization task at the lower level. This bi-level scheme
allows a more precise evaluation of any feature subset since
we are approximating the optimal sequence of cut-points of
each feature subset. Also, the feature selection event no longer
depends on the number of its generated potential cut-points.
On the other hand, we have designed an improved version
of the CEMBA algorithm (I-CEMBA) in order to ensure
the variation of the number of features during the migration
process. The main goal was to deal with the multimodality
issue in feature selection.

Compared to state-of-the-art methods, the conducted ex-
periments on ten datasets show the ability of Bi-DFS in

selecting a small number of informative and relevant features
while determining their best combination of cut-points. These
results are obtained due to the use of a bi-level model for the
discretization-based feature selection that makes Bi-DFS able
to ignore the dependency between the feature removal event
and the number of its generated cut-points.

In the future, it would be interesting to tackle first the feature
construction problem and the discretization task as a joint
problem. The main goal is to investigate bi-level modeling
in order to search for optimal constructed features. Second,
it would be interesting to propose a data reduction approach
by performing feature selection and instance selection si-
multaneously. The main goal is to consider the interaction
between instances and selected features while improving the
learning performance. Third, it would be interesting to tackle
feature selection for multi-label data. This direction is worth
investigation as it presents more challenges in the interaction
between attributes when the instance belongs to several classes
at the same time. Fourth, it would be interesting to investigate
the causal knowledge in order to ensure a better understanding
of the adopted data mechanisms.
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