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Abstract: Next-generation alkaline water electrolyzers will be based on zero-gap configuration
to further reduce costs related to technology and to improve performance. Here, anodic porous
transport layers (PTLs) for zero-gap alkaline electrolysis are prepared through a facile one-step
electrodeposition of Ni,Fe,Co-based layered double hydroxides (LDH) on 304 stainless steel (SS)
meshes. Electrodeposited LDH structures are characterized using Scanning Electron Microscopy
(SEM) confirming the formation of high surface area catalytic layers. Finally, bi and trimetallic
LDH-based PTLs are tested as electrodes for oxygen evolution reaction (OER) in 1 M KOH solution.
The best electrodes are based on FeCo LDH, reaching 10 mA cm−2 with an overpotential value of
300 mV. These PTLs are also tested with a chronopotentiometric measurement carried out for 100 h at
50 mA cm−2, showing outstanding durability without signs of electrocatalytic activity degradation.

Keywords: oxygen evolution reaction; water splitting; layered double hydroxide; porous transport
layer; zero-gap; stainless steel; electrode stability

1. Introduction

Electrochemical water splitting is one of the most studied and promising ways to
produce high purity green hydrogen, which could become the main energy carrier for the
next future society [1]. In electrochemical water splitting, electrical energy is delivered to
the system to electrochemically produce gaseous hydrogen and oxygen at the cathode and
at the anode, respectively [2]. Nevertheless, cell efficiency can be low mostly because of the
sluggish kinetics of the oxygen evolution reaction (OER), which is a four-electron process
with a complex reaction mechanism. Therefore, finding highly active, stable, and low-cost
materials for OER is still an existing challenge [3–6]. Usually, IrO2 is the electrocatalyst
used for OER in Proton Exchange Membrane Water Electrolyzers (PEMWEs), leading to
relatively low overpotential values, but it is expensive and Ir is a Critical Raw Material
(CRM), hindering a worldwide deployment of water electrolysis. One of the strategies
to avoid the usage of noble metals as electrocatalysts for OER is working in an alkaline
environment [7]. Indeed, Alkaline Water Electrolyzers (AWEs) employ an aqueous alkaline
solution, generally KOH-based with concentration 1–7 M at 40–90 ◦C, using a diaphragm
or an anion exchange membrane (AEM) to separate the cathode and anode [8]. In the past,
AWEs used gap-cells, i.e., there was a gap between the electrode and the cell separator,
leading to a reduced efficiency, mostly at high current density where produced gases can
produce a non-conducting layer over the surface of the electrodes. For this reason, gap-
based AWEs are not capable to produce high pressure hydrogen, and the materials’ stability
can be an important issue [8,9]. Zero-gap configuration leads to higher efficiency, and it
foresees the usage of a so-called porous transport layer (PTL), which ensures electrical
continuity between the catalytic layer and the current collector, and that is crucial to remove
bubbles from the catalytic layer [10,11]. Functionalizing PTLs with a catalytic layer can be
a way to further increase the cell efficiency [12,13].

Nanomaterials 2024, 14, 407. https://doi.org/10.3390/nano14050407 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14050407
https://doi.org/10.3390/nano14050407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-4185-8308
https://orcid.org/0000-0002-5548-1783
https://doi.org/10.3390/nano14050407
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14050407?type=check_update&version=1


Nanomaterials 2024, 14, 407 2 of 13

Recently, Layered Double Hydroxides (LDHs) have been proposed as suitable elec-
trocatalysts for OER, because of their activity and, most of all, because of their intrinsic
stability in an alkaline environment [14,15]. LDHs can be prepared through several syn-
thesis techniques, e.g., hydrothermal process, sol-gel, and urea hydrolysis [16–19], but
usually these techniques are time-consuming, complex, and difficult to be scaled at in-
dustrial level. Electrochemical techniques, whether they can be coupled to renewable
energy, can represent sustainable methods to produce materials at lab scale as well as at
the industrial level because of their intrinsic scalability. In particular, electrodeposition
is a mature technology, being used at industrial level for preparing high-throughput and
large-scale functional coatings for many applications, that can be also carried out with a
continuous roll-to-roll process further reducing manufacturing costs. Therefore, electrode-
position can be efficiently used to synthesize LDHs to be used to catalyze OER in alkaline
environment [20–22].

Among all the possible LDHs, NiFe and FeCo LDHs are among the most active
electrocatalysts for OER, and are used for industrial water electrolysis [2,23]. For this reason,
here a facile and scalable electrodeposition process is used to functionalize 304 stainless
steel meshes with Ni,Fe,Co-containing LDH to prepare PTLs for zero-gap-design AWEs.
The prepared electrodes were studied using Scanning Electron Microscopy (SEM) and
Raman spectroscopy, and then characterized with electrochemical techniques to assess
their electrocatalytic activity toward OER in 1 M KOH aqueous solution. Durability of
LDH/SS PTL electrodes was studied under harsh conditions at 50 mA cm−2 for 100 h to
demonstrate their suitability to be used as electrodes for zero-gap AWEs.

2. Materials and Methods
2.1. Ni,Fe,Co-LDH Synthesis

Electrodes for OER were prepared using a one-step electrodeposition process carried
out in a three-electrode cell. The substrate was a 304 AISI SS mesh, i.e., the effective PTL,
pretreated before the electrodeposition with a chemical etching carried out in an aqueous
solution 0.5 M H2SO4 for 10 min and then rinsed in acetone and milliQ water [12]. The LDH
electrodeposition was carried out using FeSO4·7H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O
salts with a concentration of 0.1 M in water as solvent, solution pH = 3. For bi-metallic
LDH, only two salts were used, whilst for the tri-metallic LDH, all the salts were used
during the electrodeposition process. LDH synthesis was carried out by a potentiostatic
deposition applying −1 V vs. Ag/AgCl/KCl sat., the latter used as a reference electrode,
for 5 min. Two platinum nets with high surface areas were used as counter electrodes to
have a uniform distribution of current density lines during the electrodeposition. All the
samples were then thermally treated at 130 ◦C in air for 16 h.

2.2. PTLs Characterization

To study the morphological features of the electrodes, we used a FEI Quanta 200 FEG
SEM (FEI Company, Hillsboro, OR, USA) coupled to an EDX (X-ray energy dispersive
system) for compositional analysis. SEM micrographs were usually taken working at 30 kV
without any metallization of the samples.

Raman spectra were acquired by means of a Renishaw InVia Raman Microscope
(Renishaw, Wotton-under-Edge, UK), equipped with a 532 nm Laser and focused on the
sample with a Leica MSDS microscope (Leica Microsystems, Wetzlar, Germany) using a 50x
long working distance magnification lens. Maximum laser power was equal to 140 mW,
and it was reduced by means of Holographic filters ranging from 1 to 10% according to
the sample’s response, with an accumulation time equal to 10 s and averaged for four
accumulations for each spectrum.

2.3. Electrochemical Characterization

OER performances of LDH-based electrodes were studied through Linear Sweep
Voltammetries (LSVs) measurements carried out between 0.1 V and 1 V Hg/HgO/1 M
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KOH, the latter used as a reference electrode. The electrolyte was an aqueous solution 1 M
KOH, and it was fed in a flow-through configuration to mimic the operating conditions of
an AEMWE working with a zero-gap configuration. All the electrode potential, measured
with respect to Hg/HgO reference electrode, were converted with respect to the Reversible
Hydrogen Electrode (RHE) to make a reliable comparison with the literature data. The
conversion of electrode potentials was done according to the following equation:

ERHE = EHg/HgO + 0.1 V + 0.059 pH (1)

An iR compensation of 95% was applied to all the LSVs shown below. EIS spectra were
recorded at several electrode potential to study the behavior of the electrodes in different
operating conditions. Impedance spectra were then fitted using ZSimpWin software with
equivalent electrical circuits described below.

2.4. Stability Test

Stability tests were carried out through galvanostatic measurements, with the same
three-electrode configuration as for the electrochemical measurements, applying a current
density of 50 mA cm−2 for 100 h in an aqueous solution 1 M KOH. Every 25 h, a stability
test was stopped to record the LSV and impedance spectra to evaluate the electrocatalytic
activity of the electrode.

3. Results and Discussion
3.1. Ni,Fe,Co-LDH Electrodeposition

To prepare functionalized PTLs with LDH structures, we carried out cathodic elec-
trodeposition using SS mesh as substrate. LDH electrodeposition mechanism foresees, as a
first step, the local increase of pH close to the substrate surface due to the reduction reaction
of nitrate ions:

NO3
− + H2O + 2e− → NO2

− + 2OH− (2)

The equilibrium potential of reaction (2) is 0.63 V SHE considering electrodeposition
conditions [24], we thus applied −1 V Ag/AgCl to drive nitrate ions reduction. Once OH−

ions are generated, bi or tri-metallic hydroxide precipitation occurs at the electrode surface
to form an LDH structure as soon as the solubility product of the metal oxides is locally
reached, according to the following reactions [21,25]:

Mx+ + Ny+ + (x + y)OH− → MN(OH)x+y (3)

or
Mx+ + Ny+ + Qz+ + (x + y + z)OH− → MNQ(OH)x+y+z (4)

where Mx+, Ny+, and Qz+ can be Fe2+, Ni2+, and Co2+ ions, in our case. It is noteworthy to
mention that, during electrodeposition, at the applied electrode potential, other reduction
processes can occur, i.e., water and metal ions reduction. The former can occur, leading to a
pH increase:

2H2O + 2e− → H2 + 2OH− (5)

being the equilibrium potential of reaction (5) Eeq = −0.18 V SHE. Metal cations can be
reduced to the zero-oxidation state, since the applied potential is negative with respect to
the corresponding equilibrium potential [24].

3.2. LDH Morphological Characterization

Morphologies of bi-metallic LDH layers, i.e., FeCo and NiFe LDHs, are reported in
Figures 1 and 2, respectively.
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Figure 1. FeCo LDH micrographs taken with SEM at (a) 250x and (b) 20,000x magnification.
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Figure 2. NiFe LDH micrographs taken with SEM at (a) 250x and (b) 20,000x magnification.

Bi-metallic LDHs present nanosheets morphology, which is a common feature of the
LDH layers [21,22,25,26]. This morphology is very suitable for electrocatalytic application
since it provides very high surface area, therefore exhibiting a high number of active sites for
OER. Moreover, the space between the nanosheets can provide a path for evolved oxygen
once it is produced, reducing eventual voltage drop due to a difficult bubble removal,
decreasing the available surface area hindering the mass transport. It is worth noting that
both FeCo-LDH and NiFe-LDH layers are uniform along the SS mesh substrate.

Figure 3 shows the morphology of NiFeCo-LDH synthesized using electrodeposition.
Nanosheets morphology is preserved also in tri-metallic LDH [27–31], but nanosheets
have lower dimension (see Figure 3b) and are organized in clusters/nanospheres, instead
forming a compact layer, as in the case of bi-metallic LDHs.
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Figure 3. NiFeCo LDH SEM images taken at (a) 8000x and (b) 20,000x magnification.
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In Table 1, we report the compositional data derived from the EDX analysis.

Table 1. Atomic composition of all the LDH-based electrodes obtained by EDX.

Sample O
[at.%]

S
[at.%]

Cr
[at.%]

Fe
[at.%]

Ni
[at.%]

Co
[at.%]

NiFe-LDH 47.6 2.1 8.4 34.4 7.6 -
FeCo-LDH 53.4 3.0 6.5 27.2 2.4 7.5

NiFeCo-LDH 50.0 2.5 7.4 28.7 6.0 5.6

However, data derived from the EDX analysis cannot be considered directly related to
the composition of the LDH layer since the SS substrate contains both Fe and Ni.

In Figure 4, we report the Raman spectra related to bi and tri-metallic LDHs studied
in this work.
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Figure 4. Raman spectra of electrodeposited NiFe, FeCo, and NiFeCo LDHs.

The Raman spectrum of NiFeCo LDH shows peaks at 449 cm−1 and 530 cm−1 associ-
ated with stretching vibrations of Co(OH)2 and Ni-OH, particularly the first to M-O and the
second to M-OH stretching, where M can be Co, Ni, and Fe, while the peak at 970 cm−1 can
be attributed to both the presence of some sulphate ion, deriving from the electrodeposition
bath, or to the stretching of the Ni(OH)2 [32].

The spectrum of FeCo LDH shows broad peaks at 290, 454, 601, and 657 cm−1. The
main peak at 657 cm−1 can be attributed to the symmetric stretching of M-O tetrahedral
bonds, while the one at 601 cm−1 can be assigned to Fe3+-O stretching, and the one at
454 cm−1 be attributed to the asymmetric stretching of M-O bonds [33].

Finally, the spectrum of NiFe LDH only shows two broad peaks, at around 680 and
515 cm−1, that can be attributed, respectively, to symmetric and asymmetric vibration M-O
bonds, considering the low quality of the spectrum.

3.3. OER Performance of Electrodeposited PTLs

Electrochemically prepared LDH-based PTLs were then characterized as OER elec-
trodes in 1 M aqueous solution in a flow-through cell, i.e., electrolyte flows across the PTLs
mimicking the real operating conditions of a PTL in a zero-gap electrolyzer. Figure 5a
shows LSVs recorded for all the electrodes at 10 mV s−1.
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Figure 5. (a) LSVs recorded in 1 M KOH electrolyte of NiFe, FeCo, and NiFeCo-LDH-based electrodes
in flow-through configuration. (b) Tafel plots derived from LSVs in (a).

As disclosed in Figure 5a, for FeCo LDH-based PTL, current density is very close to
zero before the onset of O2 evolution, due to the presence of only non-faradaic processes.
Whilst, in the case of Ni-containing LDH electrodes, an oxidation peak is present in the
LSVs (see inset of Figure 5a) because of the oxidation of Ni2+ to Ni3+ (i.e., from Ni(OH)2
to NiOOH) in alkaline environment [15,25,34,35]. As reported by Louie and Bell [34], the
composition of the electrocatalytic layer deeply influences the Ni oxidation peak, and in
particular the Fe content in NiFe-LDH electrodes. When Fe content increases, the peak
current density decreases, and the peak potential is more anodic with respect to those
recorded with pure Ni electrode. This is because, for a pure Fe electrode, dissolution of
Fe oxide/hydroxide almost coincides with the onset of OER, not showing any oxidation
peak in LSV measurement. In the case of NiFeCo, Fe content is lower and Co presence
adds a little contribution to the oxidation current because of Co2+/Co3+ oxidation [36],
leading to a higher current density and a shift of oxidation peak toward cathodic direction.
Overpotential corresponding to the onset of a current due to OER is also called onset
overpotential, ηonset, namely the difference between the measured electrode potential and
the equilibrium potential of OER (i.e., 1.23 V RHE). The value of the onset overpotential
is similar for all the electrodes, i.e., 250 mV, regardless of the bi or tri-metallic nature of
LDH in the electrocatalytic layer. To compare the performance of the different prepared
electrodes, the overpotential measured at 10 mA cm−2 was estimated as a function of
the catalytic layer composition [37]. Using NiFeCo-LDH-based PTL, an overpotential of
290 mV is required to reach 10 mA cm−2, while 300 and 330 mV are required to reach
the same current density using FeCo-LDH and NiFe-LDH-based electrodes, respectively.
These overpotential values are comparable or slightly higher than those recorded for other
d-metal-based LDHs [21], but they are obtained using a cheaper SS mesh substrate with
respect to the usual expensive Ni foam, and a facile electrodeposition process that could be
easily scaled to an industrial level.

Tafel slope is another important parameter for the evaluation of the electrocatalytic
performance of a material. This value also gives information about the reaction mechanism
related to a specific material for a specific reaction. Tafel plots related to the LSVs discussed
before are reported in Figure 5b. First, the lowest Tafel slope is that related to the FeCo
LDH-based electrode, i.e., 90 mV dec−1. This result implies that working with high current
density values using a FeCo LDH-based electrode will require a lower overpotential, as it is
possible to notice from the LSV curves shown in Figure 5a. Therefore, looking at the plots
reported in Figure 5, the highest OER performances were assessed for the FeCo LDH-based
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electrode, reaching 50 and 100 mA cm−2 by applying 346 and 380 mV as overpotential
values, respectively.

To have more information about the electrocatalytic activity of LDH-based electrodes,
EIS-based investigation was carried out, recording impedance spectra at two different
electrode potentials, i.e., 1.53 V RHE and 1.68 V RHE, in 1 M KOH aqueous solution [38,39].
Nyquist plots of the recorded impedance spectra are shown in Figure 6a,b for all the inves-
tigated electrodes. The overall impedance, regardless of the studied electrode, significantly
decreases the increasing anodic overpotential, i.e., from 1.53 to 1.68 V RHE, suggesting that,
at 1.68 V RHE, OER is fully activated (see Figure 5a). To get more quantitative informa-
tion about OER kinetics related to every electrode, impedance spectra were fitted using
ZSimpWin software, where a suitable equivalent electrical circuit can be used to model
the electrochemical behavior of the LDH/SS mesh system. From Nyquist plots shown in
Figure 6a,b, the presence of two time constants can be assessed; therefore, the proposed
equivalent circuit (see Figure 6c) consists of the electrolyte resistance, Rel, in series with
two parallel (RQ), where R is a resistance and Q is a Constant Phase Element (CPE) [40].
The impedance of a CPE can be expressed as [41]:

ZCPE =
1

(jω)nQ
(6)

where n is a frequency-independent parameter. When n = 1, Q has units of a capacitance,
whilst when n = 0, Q has units of 1/(Ω cm2). Generally speaking, when n ̸= 1, system
behavior can be attributed to surface inhomogeneity or to a distribution of time constants
related to charge transfer reactions. One of the parallel accounts for the non-ideal double
layer capacitance, Qdl, of the electrode, and for the charge transfer resistance, Rct, of the
OER. Rct provides information about the electrocatalytic activity of the electrode, since it is
inversely proportional to the exchange current density of the process and the overpotential.
The other (RQ) parallel accounts for the presence of LDH layers that can contribute to
the measured impedance due to their electrical resistance (i.e., RLDH) and with non-ideal
capacitance modelled with a CPE, QLDH [42]. Therefore, it is expected that Rct strongly
depends on potential, while RLDH is not significantly affected by the overpotential value.
Fitting parameters are reported in Tables 2 and 3.

Table 2. Fitting parameters related to the spectra recorded at 1.53 V RHE (Figure 6a).

Sample Rel
[Ω cm2]

RLDH
[Ω cm2]

QLDH
[S sn cm−2] n Rct

[Ω cm2]
Qdl

[S sn cm−2] n

NiFe-LDH 0.26 0.33 2.1 × 10−3 1 9.86 0.012 0.81
FeCo-LDH 0.24 0.01 4.5 × 10−3 0.9 1.82 0.21 0.93

NiFeCo-LDH 0.32 0.34 8.5 × 10−3 0.87 2 0.13 0.80

Table 3. Fitting parameters related to the spectra recorded at 1.68 V RHE (Figure 6b).

Sample Rel
[Ω cm2]

RLDH
[Ω cm2]

QLDH
[S sn cm−2] n Rct

[Ω cm2]
Qdl

[S sn cm−2] n

NiFe-LDH 0.26 0.18 2.7 × 10−3 1 0.16 0.04 0.83
FeCo-LDH 0.24 0.02 5.0 × 10−3 0.93 0.10 0.23 1

NiFeCo-LDH 0.32 0.13 4.1 × 10−3 1 0.13 0.21 0.73
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RHE in 1 M KOH electrolyte of NiFe, FeCo, and NiFeCo-LDH-based electrodes in flow-through
configuration. (c) Equivalent electrical circuit used for fitting EIS spectra.

In agreement with the LSVs, at 1.53 V RHE, the reaction is not activated, thus the main
contribution to the overall impedance arises from Rct, the highest being measured with
the Co-free electrodes. Notably, using Brug formula to calculate double layer capacitance
(Cdl) from Qdl [42,43], the highest Cdl values were assessed for a FeCo LDH-based layer
(∼=0.2 F cm−2). This result is very important because the Cdl value is directly related to the
Electrochemical Active Surface Area (ECSA) leading to enhanced OER performance. At a
higher overpotential (i.e., at 1.68 V RHE), Rct is one order of magnitude lower. Conversely,
RLDH and QLDH are almost independent of potential, thus confirming that this contribution
arises from the LDH layer, as above suggested, and in agreement with previous results re-
ported in the literature [42]. Notably, the lowest RLDH is measured for the FeCo-containing
layer, i.e., the LDH with the best electrocatalytic activity. This experimental finding suggests
that the FeCo-based catalyst is active toward oxygen evolution, but it is also more conduc-
tive with respect to the other layers, probably due to a lower thickness and/or to a lower
hydroxide resistivity. These results are in agreement with the literature, where the crucial
role of Fe in enhancing Ni and Co-based hydroxide activity is reported [44–46]. Moreover,
a substrate of LDH-based electrocatalytic layer is SS, and it has been demonstrated that
stainless steel can represent a good electrocatalyst for OER due to its capacity of forming
active (oxy)hydroxides under oxidizing conditions [2,13].

3.4. Stability Test

A good electrode for water electrolysis also needs a high stability in alkaline environ-
ment under strongly anodic polarization. To evaluate the electrocatalytic stability of the
best electrode, i.e., the FeCo LDH-based one, a long-term galvanostatic measurement at
50 mA cm−2 was carried out for 100 h in 1 M KOH aqueous solution. The stability test
curve is reported in Figure 7.



Nanomaterials 2024, 14, 407 9 of 13

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 13 
 

 

contribution arises from the LDH layer, as above suggested, and in agreement with pre-

vious results reported in the literature [42]. Notably, the lowest RLDH is measured for the 

FeCo-containing layer, i.e., the LDH with the best electrocatalytic activity. This experi-

mental finding suggests that the FeCo-based catalyst is active toward oxygen evolution, 

but it is also more conductive with respect to the other layers, probably due to a lower 

thickness and/or to a lower hydroxide resistivity. These results are in agreement with the 

literature, where the crucial role of Fe in enhancing Ni and Co-based hydroxide activity is 

reported [44–46]. Moreover, a substrate of LDH-based electrocatalytic layer is SS, and it 

has been demonstrated that stainless steel can represent a good electrocatalyst for OER 

due to its capacity of forming active (oxy)hydroxides under oxidizing conditions [2,13]. 

3.4. Stability Test 

A good electrode for water electrolysis also needs a high stability in alkaline environ-

ment under strongly anodic polarization. To evaluate the electrocatalytic stability of the 

best electrode, i.e., the FeCo LDH-based one, a long-term galvanostatic measurement at 

50 mA cm−2 was carried out for 100 h in 1 M KOH aqueous solution. The stability test 

curve is reported in Figure 7. 

 

Figure 7. Potential vs. time curve related to the stability test for FeCo-based electrode carried out at 

50 mA cm−2 for 100 h in 1 M KOH aqueous solution. 

The overpotential is almost constant for (at least) 100 h during the stability test, with 

a value of 346 ± 20 mV. That is an outstanding result considering the harsh conditions of 

the stability test (i.e., current density and electrolyte composition). Moreover, the overpo-

tential is comparable or even better with respect to many of the data reported in the liter-

ature for the stability test of LDH-based electrodes for OER in alkaline conditions that are 

summarized in Table 4. As a final remark, it is also important to stress that the stability 

test was stopped after 100 h without any failure. 

Table 4. Stability performance of LDH-based electrodes for OER in alkaline conditions. n.s.: not 

specified. 

LDH 
Synthesis 

Method 

Test Duration 

[h] 

Current Density 

[mA cm−2] 
Electrolyte 

Overpotential 

[mV] 
Reference 

FeCo 
Electrodeposi-

tion 
50 10 1 M KOH 260 [26] 

3D NiFe 
Electrodeposi-

tion 
2 10 1 M KOH 260 [47] 

NiFe, NiCo 

NiCu, CuCo 

Electrodeposi-

tion 

3 

0.3 

10 

100 
0.1 M KOH n.s. [22] 

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Time [h]

P
o

te
n

ti
a
l

[V
 R

H
E

]

Figure 7. Potential vs. time curve related to the stability test for FeCo-based electrode carried out at
50 mA cm−2 for 100 h in 1 M KOH aqueous solution.

The overpotential is almost constant for (at least) 100 h during the stability test, with a
value of 346 ± 20 mV. That is an outstanding result considering the harsh conditions of the
stability test (i.e., current density and electrolyte composition). Moreover, the overpotential
is comparable or even better with respect to many of the data reported in the literature
for the stability test of LDH-based electrodes for OER in alkaline conditions that are
summarized in Table 4. As a final remark, it is also important to stress that the stability test
was stopped after 100 h without any failure.

Table 4. Stability performance of LDH-based electrodes for OER in alkaline conditions. n.s.: not specified.

LDH Synthesis
Method

Test Duration
[h]

Current
Density

[mA cm−2]
Electrolyte Overpotential

[mV] Reference

FeCo Electrodeposition 50 10 1 M KOH 260 [26]
3D NiFe Electrodeposition 2 10 1 M KOH 260 [47]

NiFe, NiCo
NiCu, CuCo
FeCo, FeCu

Electrodeposition 3
0.3

10
100 0.1 M KOH n.s. [22]

NiFe Hydrothermal 95 100 1 M KOH 240 [48]
NiCo Electrodeposition 36 13 1 M KOH 270 [49]

Ru-doped NiFe Hydrothermal 6 10 1 M KOH 240 [50]
NiFeW Solvothermal 6 10 1 M KOH 270 [51]

Rh-NiFe Hydrothermal 7 10 1 M KOH 210 [52]
NiFe LDH@NiCoP Hydrothermal 100 10 1 M KOH 230 [53]

NiFe-rGO Precipitation 10 10 1 M KOH 240 [54]
FeCo Electrodeposition 100 50 1 M KOH 346 This work

The stability of the FeCo LDH-based electrode was also studied with a morphological
characterization by using electron microscopy. The SEM image acquired after 100 h stability
test is shown in Figure 8.
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As it is possible to notice, despite the fact that the coating is more cracked with
respect to the sample before 100 h galvanostatic measurement (see Figure 1), nanosheets
morphology is still preserved, in agreement with preserved electrocatalytic activity, as
shown by the stability test results. The high stability of our FeCo LDH-based electrode
can be due to the peculiar behavior of Fe. In fact, recently, Chung et al. [55] suggested that
Fe can dissolve and re-deposit over hydroxides clusters, generating continuously stable
Fe active sites. We also believe that this mechanism can be aided also by the presence of
304 stainless steel as a substrate of our FeCo LDH-based electrode, producing very active
material even when the LDH layer dissolves during long-term measurements.

4. Conclusions

Facile and scalable electrodeposition processes were used to prepare functionalized
304 stainless steel porous transport layers for oxygen evolution reactions to be used in zero-
gap alkaline water electrolyzers. Electrocatalytic layer was composed of bi and tri-metallic
LDH composed of Ni, Fe, and Co. SEM investigation allowed us to assess a nanosheet-like
morphology, as typical of LDH, prone to efficiently produce gaseous oxygen due to a very
porous structure, rich of active sites for the water oxidation.

Prepared LDH-based electrodes exhibited excellent performance toward OER, being
FeCo LDH-based PTL, the best electrode reaching 10 mA cm−2 with an overpotential value
of 300 mV and a Tafel slope of 90 mV dec−1. This performance is due to the low charge
transfer resistance, assessed using electrochemical impedance spectroscopy, related to the
composition of the layer and to the highest electrochemical active surface area between the
investigated electrodes.

The FeCo-LDH electrode also exhibited a high durability, withstanding a 100 h sta-
bility test carried out at 50 mA cm−2 in 1 M KOH aqueous solution without any sign of
degradation of electrocatalytic activity, still preserving nanosheet-like morphology. This
study provides a green, facile, and scalable strategy to design highly active and stable
electrocatalyst-coated porous transport layers for next-generation zero gap alkaline wa-
ter electrolyzers.
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