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Abstract

Single-cell RNA-sequencing (scRNA-seq) allows for obtaining genomic and transcriptomic profiles of individual cells. That data make it
possible to characterize tissues at the cell level. In this context, one of the main analyses exploiting scRNA-seq data is identifying the cell
types within tissue to estimate the quantitative composition of cell populations. Due to the massive amount of available scRNA-seq data,
automatic classification approaches for cell typing, based on the most recent deep learning technology, are needed. Here, we present the
gene ontology-driven wide and deep learning (GOWDL) model for classifying cell types in several tissues. GOWDL implements a hybrid
architecture that considers the functional annotations found in Gene Ontology and the marker genes typical of specific cell types.
We performed cross-validation and independent external testing, comparing our algorithm with 12 other state-of-the-art predictors.
Classification scores demonstrated that GOWDL reached the best results over five different tissues, except for recall, where we got
about 92% versus 97% of the best tool. Finally, we presented a case study on classifying immune cell populations in breast cancer using

a hierarchical approach based on GOWDL.
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INTRODUCTION

Recent development in single-cell RNA-sequencing (scRNA-seq)
technology allowed innovative discoveries in the biomedical field.
scRNA-seq refers to the sequencing of single-cell genomic or
transcriptomic profiles from a specific tissue of origin [1] to study
quantitative variations in RNA compositions into a particular cell
type. scRNA-seq has many advantages: for example, it evidences
the cell heterogeneity of a specific tissue sample, both in terms
of gene expression patterns inside a single cell population and in
terms of the quantitative representation of different cell popula-
tions into a particular sample. Moreover, scRNA-seq characterizes
rare cell types, such as rare tumor cells or hyper-reactive immune
cells; it can compare different expression patterns in different cell
types within different tissues or different biological conditions
[2]. It is also possible to evidence and analyze different sub-
classes of the same cell class, for instance, different T or B cell
sub-populations [3]. Indeed, the analysis of the variation of the

quantitative composition of different sub-populations of immune
cells in different tissues (healthy versus disease) is a relevant
biological task [4], as it represents an essential milestone for
medicine in studying diseases and their treatments (i.e. immune
cell behavior in cancer treatment). Automatic cell classification
tasks, also known as cell typing, through clustering, classification
and lineage tracing, have proven to be a valid instrument for
scRNA-seq analysis [5-7]. In particular, cell typing is applied to
easily and quickly characterize the different cell-type compo-
sitions in a specific tissue [7]. Cell-type classification methods
can be described by two, not mutually exclusive, points of view:
biological knowledge-based and computational-based. From the
biological knowledge point of view, there are cell-type classifi-
cation strategies that compare similarities between a single cell
and a bulk or single-cell RNA-seq profile reference database. In
these cell-type classification strategies, it is possible to include
SingleR [8], SCINA [9], SciBet [10], scPred [11], scmap [12], CHETAH
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[13], Garnett [14], scID [15] and SCSA [16]. All of these approaches,
on the one hand, allow fully automatic and rapid classification
of cell types on a wide variety of test datasets; nevertheless, on
the other hand, they severely limit the extrapolation of cell types,
which is highly dependent on the reference dataset. Furthermore,
gene relationship-based classification techniques integrate infor-
mation about the relationships between genes within a cell into
an algorithm. Among them, it is possible to include scDeepSort
[17] and sigGCN [18]. Finally, the a priori knowledge-based tech-
niques exploit knowledge of marker genes or, more generally,
biologically relevant to a case study. SCSA [16] and scCATCH [19]
belong to this category. From the computational point of view,
the exponential growth in the number of cells and samples has
led to the adaptation and development of several methods for
automatic cell identification. Some of these approaches exploit
statistical models [10, 16]. Moreover, recently developed artificial
intelligence approaches based on machine learning and deep
learning architectures have been demonstrated to learn com-
plex relationships and integrate existing knowledge and big data.
Among them, two possible approaches relate to the learning
strategy. In unsupervised learning, the input not labeled data are
grouped together based on their similarities or differences, and
each cluster is given a class label. Cell-type clustering algorithms
using these techniques are scmap [12], scCATCH [19] and scID
[15]. The other approach is supervised learning, where the training
data are labeled, and the algorithm assigns directly test data
to a specific category. Cell-type classification algorithms using
that approach are SingleR [8], scClassify [20], scAnnotatR [21] and
ACTINN [22].

This paper presents a new computational architecture for cell-
type classification called gene ontology-driven wide and deep
learning (GOWDL). According to the above-mentioned concepts,
it exploits the knowledge provided by a set of reference genes
implementing a supervised classification model with no need
for a preliminary clustering procedure. GOWDL is based on two
main features to be exploited to build our cell-type predictor.
First of all, we consider the semantic similarity among genes
in terms of functional proximity. For this reason, we compute
a similarity distance based on the gene functional annotations
provided by the Gene Ontology (GO) repository [23]. Secondly, we
take advantage of the focused knowledge supplied by a set of
marker genes, also called bio-relevant genes, that characterize as
a signature of a specific cell type. The proposed computational
model, then, integrates both kinds of data using a wide and deep
learning (WDL) architecture [24], where the deep neural network
represents the supervised classification system. It is implemented
through a customized version of a convolutional neural network
(CNN) [25], dealing with functional information. In contrast, the
wide layer is implemented with a linear model that analyzes the
gene signature. Original WDL, which considers a feed-forward
deep neural network as the deep layer, has been used for cell
typing in the work of [26].

This paper represents an extension and an improved version
of our previous work [27]. The main improvements of this
work are the following: we introduce a novel computational
layer, namely the kernel dataset creation (KDC) layer, that
allows embedding into the input dataset some functional
annotations; we test our predictor with external independent
datasets; we compare with 12 other state-of-the-art predictors;
we present a case study about the classification of closely related
T cells in breast tissue using a hierarchical structure of our
classifier.

MATERIALS AND METHODS
Datasets

We selected different datasets containing scRNA-seq expression
profiles from several human tissues to evaluate the ability
of the proposed architecture to classify different cell types in
several contexts. We used data from both solid and liquid tissues,
including blood, breast, kidney, lung, pancreas and melanoma.
Datasets are split into training sets and test sets to validate
the proposed classifier with external data never seen by the
model during the training phase, including the cross-validation
procedure. We did not consider a breast tissue test set because
we introduced a specific case study involving immune cell
populations in breast cancer. Datasets were downloaded from
several repositories such as Gene Expression Omnibus (GEO)
database (https://www.ncbinlm.nih.gov/geo/), Human Kidney
Atlas database (kidneycellatlas.org), Human Cell Landscape
(CHL), Immune Cell Atlas (http://immunecellatlas.net/), Single
Cell Portal (https://singlecell.broadinstitute.org/single_cell). The
leading information about the datasets is summarized in Table 1,
whereas in Supplementary materials S2 (Tables T1 and T2), we
reported more details, including the number of cells, the number
of genes and the cell types for each train and test dataset. All data
were normalized using the ‘Log normalize’ function implemented
in the Seurat package [28]. Bio-marker genes were considered for
each tissue to characterize a specific gene signature associated
with a particular cell type using the CellMatch database [19].

CellMatch is a comprehensive cell taxonomy reference
database for healthy and cancerous tissues, providing informa-
tion on human and mouse marker genes in different cell types
and related cell subtypes.

Proposed pipeline

Figure 1 shows our proposed pipeline. Here, we briefly describe
it, then each block will be detailed in the following subsections.
The initial preprocessing step is composed of three consecutive
stages. The number of cells and genes is filtered due to different
criteria. Then the filtered dataset is split into two training sets
with the same number of cells: one with the expression values
of only the relevant genes and the other with the remaining
genes. After the preprocessing, we implement the learning model
through the GOWDL architecture, which integrates a customized
version of a convolutional neural network (CNN layer) and a linear
model (wide layer). GOWDL uses GO terms to encode functional
annotations into the network.

Preprocessing

Training datasets have been preprocessed as follows. Preprocess-
ing comprises three consecutive steps: cell filtering, gene filtering
and dataset splitting (Figure 1). In cell filtering, we removed cells
belonging to underrepresented cell types (<5 %), as done in [17].
Then we removed cells belonging to cell types that do not contain
any marker gene provided by the CellMatch DB. In gene filtering,
we considered only the genes having GO annotations for each
sample. GO provides a framework and a set of concepts, called
GO terms, for describing the functions of gene products from
all organisms. All genes not present in GO are discarded. This
filtering step is essential for further analysis, which involves the
computation of a functional distance among GO terms. In the last
preprocessing stage, we split the filtered dataset into two new
datasets. One dataset contains all the expression values of the
genes marked as relevant genes according to CellMatch. The other
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Table 1. Overview of 11 chosen scRNA-seq human tissue datasets, six for training and five for external testing.

Dataset  Tissue Source Dimensions # of Cell-types
cells x genes Cell-types
Training Blood [29] retrieved from 13 316 % 21 814 7 T cell, CD144+CD16- monocyte, CD14+CD16+ monocyte,
Single Cell Portal: Natural killer cell, Naive B cell, Dendritic cell, Memory B
SCP345 cell
Breast [30] retrieved from 24271 % 28118 16 Myeloid, Epithelial cell, CD8+ T cell, T helper cell, Plasma
Single Cell Portal: cell, CAF,
SCP1106 B cell, T Reg, T cell, Endothelial cell, T cell Cycling,
Follicular Helper,
PVL, Myoepithelial, Natural killer cell, Natural killer (NKT)
T cell
Kidney [31] retrieved from 7803 % 33 694 7 Natural killer cell, T cell, B cell, CD8+ T cell, Neutrophil,
Kidney Cell Atlas: Natural killer T (NKT) cell, Mast cell
mature human
Lung [17] retrieved from 24051 % 20021 11 AT? cell, Macrophage, Endothelial cell, T cell, Dendritic
Human Cell Landscape cell, Mast cell, Muscle cell, B cell, Basal cell, Epithelial cell,
Monocyte
Melanoma  [26] retrieved from 4645 % 23 686 6 T cell, B cell, Macrophage, Endothelial cell,
GEO: GSE72056 Cancer-associated fibroblast, NK cell
Pancreas [32] retrieved from 8569 % 20 125 6 Alpha cell, Acinar cell, Ductal cell, Beta cell, Delta cell,
GEO: GSE84133 Mesenchymal cell
External Blood [33] retrieved from 12 786 % 32 738 5 T cell, CD14++CD16- monocyte, Natural killer cell, Naive B
testing 3k PBMCs, 10x Genomics cell, Dendritic cell
Kidney [34] retrieved from 22,964 % 25 720 4 Natural killer cell, T cell, B cell, Natural killer T (NKT) cell
GEO: GSE169285
Lung [35] retrieved from 129 340 % 33 538 7 Macrophage, Endothelial cell, T cell, B cell, Dendritic cell,
ENA: PRJEB52292 Basal cell, Monocyte
Melanoma  [36] retrieved from 7186 x 23 686 5 T cell, B cell, Macrophage, Endothelial cell,
GEO: GSE115978 Cancer-associated fibroblast
Pancreas [37] retrieved from 2544 % 15 123 5 Alpha cell, Acinar cell, Ductal cell, Beta cell, Delta cell

GEO: GSE81547

dataset contains the expression values of the remaining genes.
This operation is necessary because, as we will see in the following
sections, our computational model needs two different types of
inputs.

GOWDL architecture

Our proposed architecture extends the WDL model [24, 26]. Orig-
inal WDL is a hybrid network composed of two computational
modules. The deep module comprises a deep feed-forward neural
network, whereas the wide module is implemented through a
generalized linear model. A concatenation operator merges both
modules’ output weights.

Our version of the WDL, GOWDL, takes as input the expres-
sion values of the relevant genes and the expression values of
the remaining genes (see previous Section). The former is fed
to the generalized linear model to exploit the gene signatures
that characterize the available cell types. The latter is fed to the
gene ontology-driven CNN (GOCNN) and will be enriched with
functional annotations. GOCNN replaces the feed-forward deep
neural network of the original WDL and takes advantage of the
CNN defined in [38]. In particular, in [38], authors demonstrated
that for a similar classification problem, CNN outperformed other
traditional machine learning algorithms such as SVM, KNN, Ran-
dom Forest and FFN. CNN is usually used to extract features that
share topological or proximity properties, such as groups of close
pixels in an image [39, 40]. In our case, the features represented
by the expression values of the genes in a cell do not have any
evident proximity or similarity relationships among each other.
For this reason, we introduced the KDC layer to define a GOCNN.

The detailed layer architecture of GOWDL is shown in Figure 2.
The input of GOCNN is the expression matrix of the non-relevant
genes; then, the firstlayer is the KDC layer responsible for arrang-
ing the input matrix according to a similarity metric based on GO
annotations. The KDC layer is better explained later on in this
section. The following layers comprise three dropout layers, a 1D
convolution with kernel size and stride equal to the size k of the
kernel dataset, a max pooling, a flatten and a final dense fully
connected layer with ReLU activation. Conversely, the wide layer
takes the expression matrix of the relevant genes as input, and
they are merged with the output of the GOCNN using a concate-
nate layer. This way, the expression of relevant genes is directly
fed into the output layer, preceded by another dropout layer, a
dense, fully connected network with a number of neurons equal
to the number of cell types to predict, and softmax activation. The
network is trained by backpropagation, considering categorical
cross-entropy loss and Adam optimizer.

The KDC layer, depicted in Figure 3, can rearrange the set of
features of the expression matrix so that each input gene is sur-
rounded by its closest genes according to a functional similarity
metric. To do that, we applied the GOGO algorithm [41] that,
starting from the GO terms of each gene, computes a functional
distance among them, called GO distance. Then, for each input
gene, it is possible to obtain a list of its neighbors, sorted by
increasing values of the GO distance, which we call a genes
dictionary. For a given kernel size k, then, the input expression
matrix is rearranged so that each gene is surrounded by its k-
1 closest genes (bottom part of Figure 3). This way, using the
same size k for the CNN kernel and considering a k stride, the
CNN kernel is always centered on one gene and its neighbors,
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Figure 1. Proposed pipeline. The cell typing pipeline is reported starting
from scRNA-seq expression data of a human tissue dataset. The main
components are (A) the preprocessing ((1) cell filtering, (2) gene filtering,
(3) CellMatch dataset splitting) and (B) the proposed GOWDL model.
A: In (1), different cells are filtered according to their abundance and
the presence of cell marker genes. The green and blue-colored cells
are filtered in this step as they satisfy both cell filtering criteria. In (2),
annotated genes are filtered. The oval-colored shapes represent different
GO annotations. The DNA symbols represent different genes. The DNA
symbols within oval shapes represent annotated genes. In (3), the filtered
dataset is split into two new different datasets: the former (red matrix)
consists of expression values of genes marked as relevant according to
CellMatch db, and the latter (blue matrix) is formed by expression values
of not relevant genes. B: After the preprocessing step, the scRNAseq
profiles of the two different datasets are processed into the GOWDL
model, producing a cell-type classification as the final output.

preserving their functional proximity. GOWDL is implemented in
Python 3.9.7 using the Keras framework [42] with Tensorflow 2
backend [43].

RESULTS

Classification results have been computed in terms of several
scores, including accuracy, precision, recall, F1 score and Matthew
correlation coefficient (MCC) [44] (Eq. 1-5 in Supplementary
material S1). Internal validation has been done through 10-fold
cross-validation over the selected training datasets (Table 1).
GOWDL confusion matrices for each training dataset are reported
in Supplementary material S1 (Figures S1-S6). In our previous
work [27], we showed that the proposed approach can classify

Table 2. Results of 10-fold cross-validation over training
datasets.

Dataset Accuracy Precision  Recall Fl-score = MCC
(%) (%) (%) (%) (%)
Blood 95.57 95.72 95.57 95.60 92.60
Breast 91.50 91.67 91.50 91.49 87.22
Kidney 92.53 92.77 92.53 92.55 92.54
Lung 95.10 94.89 95.10 94.80 84.09
Melanoma 99.58 99.58 99.58 99.55 98.33
Pancreas 98.40 98.40 98.39 98.39 97.52

cell types better rather than using the GOCNN or the linear layer
in a separate way. We also showed how GOWDL outperformed
the original WDL model for cell typing [26]. During the cross-
validation, we aimed at optimizing some hyper-parameters, such
as the number of neurons of the CNN layer, the size of the kernel
for the kernel dataset (see Section 2.4), the number of epochs
and the optimizer for minimizing the loss function during the
learning phase. We adopted a grid search strategy and reported
the best-found parameters in Supplementary Material S1 (Table
S1). Here we report in Table 2 the results, averaged per fold,
corresponding to the best parameters obtained during the 10-
fold cross-validation procedure of the complete GOWDL pipeline.
For each tissue and every score, we got results more excellent
than 90%, except for MCC for breast and lung (about 87% and
84%, respectively).

Comparison with other classifiers

We compared our proposed classifier with 10 other state-of-the-
art tools for cell classification: SingleR [8], SCINA [9], Scibet [10],
scPred [11], scmap [12], CHETAH [13], scClassify [20], Garnett [14],
scAnnotatR [21], ACTINN [22]. These classifiers, briefly presented
in Section 1, implement different computational models and
learning strategies and represent a well-balanced benchmark,
as already done in the work of [21]. Moreover, we compared
GOWDL with two general-purpose tree-based classifiers, namely
XGBoost [45] and CatBoost [46]. All classifiers were trained and
tested with the same train and external test datasets, summa-
rized in Table 1, including pancreas, lung, kidney, melanoma and
blood tissues. Concerning the test datasets, we considered only
the cells belonging to the same cell types of the training sets
(Table T2 of Supplementary material S2). For each tissue, we
trained the GOWDL model with the best hyper-parameters given
by cross-validation over the whole training dataset. We used
default parameters for the other classifiers. In order to run all
the experiments, we adapted the R scripts developed in the work
of [21]. Tables with complete results of 12 classification algo-
rithms over the external datasets, tissue by tissue, are reported
in Supplementary Materials S2 (Tables T3-T7). Here, we displayed
results as a series of boxplots (Figure 4). We produced a chart
for each prediction score, namely accuracy, precision, recall, F1
score and MCC; each boxplot represents the average results over
the five tissues for a given tool. From the chart, it is noteworthy
that our predictor provides very stable results regardless of the
tissues. The area of the corresponding boxplot is always narrow
for every score. That means there is a low variance concerning the
tissue because the lines representing the first quartile (upper line),
median (middle line) and third quartile (bottom line) are close.
Other tools, such as scClassify, although they reach some very
high scores, like MCC, have a wider area. Globally, GOWDL and
Scibet provide the best performances, with our predictor reaching

20z Ateniqad | g uo 3sanb Aq 017/ 182//2€EPEAN/9/Z/31911B/qIq/WO0D"dNO"DlWBpede//:SdY WOl papeojumo(q


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad332#supplementary-data

Non-relevant genes

‘ Dropout 1 ‘

v

‘ 1D convolution ‘

v

‘ Dropout 2 ‘

v

i
!
i
i
!
!
!
!
!
!
)
1
)
)
1
I
I
]
]
I
]
]
' -
1 Max pooling
]
]
]
]
]
'
'
i
I
I
]
I
|
1
'
|
'
'
I
!
!
1
I

v

‘ Flatten ‘

v

Dense fully-connected network
(activation function: ReLu)

‘ Dropout 3 ‘

Gene
Ontology
Driven CNN

GOWDL | 5

Relevant genes

[ Concatenate ]

v

‘ Dropout 4

{ Dense fully-connected network
(activation function: softmax)

Gene Ontology
] WIDE & DEEP

[ Cell type classification output ]

Figure 2. GOWDL model architecture. It takes as input two RNA-seq expression data matrices. The green dotted box shows the gene ontology-driven
CNN (GOCNN), composed of a kernel dataset creation (KDC) layer and a convolutional neural network.

higher median values, except for the recall score (Figure 4(C)).
Generally speaking, improving precision without hurting recall in
multiclass classification problems with unbalanced datasets is
challenging since, to increase the false positive for the minority
class, the true positives are also often increased, resulting in a
decreased recall. For this reason, we used the F1 score measure,
which provides a way to combine both measures into a single
score that incorporates the properties of precision and recall. 4(D)
clearly shows that the proposed algorithm performs better than
the others regarding the F1 score.

In Figure 5, we presented a detailed bar plot that shows the
classification scores for every predictor, considering each tissue
separately. From the graph, we can see that GOWDL, Scibet and
ACTINN reach overall the best scores, ranging from about 80%
for kidney to 95% for blood. In contrast, other tools, like SingleR
and scClassify, have achieved interesting results for some tissues

(e.g. melanoma and pancreas). Still, if we look at the boxplot
(Figure 4), they are very tissue-dependent. From this point of view,
experimental results demonstrated cell types of lung tissue are
the most difficult to predict when dealing with external data,
with GOWDL reaching about 75% for accuracy and recall and
about 70% for precision, F1 score and MCC. However, GOWDL
is less affected by this performance drop concerning the other
predictors considering all the classification scores. Also, to test the
advantage introduced by a proximity measure among genes, we
compared the GOWDL algorithm with a modified version without
the gene ontology-driven component. Results in Supplementary
materials S2 (Tables T8) show how GOWDL performs better in
accuracy with all the tissues and almost always reaches the
best results in terms of F1-score and MCC. Figure 6 shows ROC
curves and the corresponding AUC scores for five tissues. We
calculate them for the proposed algorithm and compare it with
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the other five algorithms that provide a probability value for
their prediction, i.e. SingleR, SCINA, scPred, scAnnotatR, ACTINN,
XGBoost and CatBoost. GOWDL can reach a higher value of AUC
for each tissue, but the kidney, where ACTINN performs slightly
better (0.98 versus 0.97). Considering the AUC average value over
all tissues, the GOWDL algorithm results best.

Case study on immune cells population: a
hierarchical approach on T cell classification

Immune cells are fundamental defenders of innate and adaptive
immunity, protecting the host against endogenous and exogenous
agents, including malignant cells. Immunosorveillance mecha-
nisms are essential both in normal and cancer tissues. Different
cell sub-types of the immune system include T cells, B cells,
dendritic cells, monocytes and macrophages. They share distinct
duties in regulating innate and adaptive immune functions [47].
Studying these distinct cell classes is essential to understand the
molecular mechanisms of the immune system in normal tissue
and cancer disease [48]. Indeed the immune cell profiles of differ-
ent tissue types, such as normal and cancer tissue, can indicate
a status of immune activation in the tumor, which includes both
pro- and anti-inflammatory features [49]. Moreover, among the
different immune cell populations, the T cells are considered a
parent cell class, including other sub-classes, for instance, CD4+
T cells, Cd8+, memory T and Regulative T cells [30]. Their com-
position in terms of quantity and cell sub-types characterizes
a specific immune profile, reflecting the heterogeneity of the
disease, from morphology to molecular alterations, with specific
genotype-phenotype correlations [S0]. Therefore, a deeper study
on breast cancer T cell type classification could help estimate
patients’ prognoses and outcomes in breast cancer to design
targeted therapies.

Considering the above, it seems interesting to exploit the pro-
posed GOWDL algorithm in a different configuration that could
emphasize T cell types more. We introduce a hierarchical ver-
sion of the GOWDL algorithm called Hier-GOWDL to reach this
goal. This approach represents a hierarchical problem as a set
of independent flat classification problems by performing a two-
level analysis. Hier-GOWDL considers a first level that predicts
all the ancestor labels and a second level that classifies all the
corresponding descendant labels. In classifying immune cell pop-
ulations, the two levels of Hier-GOWDL are trained on generic T
cells as ancestor labels and T cell sub-types as descendant labels,
respectively. We can perform this analysis because among the
16 cell types contained in the Breast tissue dataset (Table T1 in
Supplementary materials S2), we used to train the GOWDL model,
there are six T cell sub-types, i.e. CD8+ T, T helper, T Reg, T cell
Cycling, Natural killer T and ‘other T’ cells, that are undefined
T cells sub-types. This way, the Hier-GOWDL model of the first
level is trained with 11 cell types (we add a generic ‘T cell’ type
that aggregates all the T cells to the other 10 different cell types),
and the second one is trained with the six T cell sub-types. The
‘Flat’ GOWDL model is the same one learned with 10-fold cross-
validation (see Section 3) using the full 16-class breast dataset. To
compute the classification results, we considered all the T cells
as a unique class for comparison with level 1 of Hier-GOWDL; we
then considered only the six T cells sub-types for comparison with
level 2 of Hier-GOWDL.

To compare the Hier-GOWDL approach to the ‘flat’ GOWDL
model, we produced the confusion matrices shown in Figure 7.
As for the flat GOWDL model, we started from the confusion
matrix obtained during the 10-fold cross-validation process, and
then we aggregated as a unique T cell class the six T cell sub-
types (Figure 7(A)) to perform the comparison with the confusion
matrix obtained at the first level of the Hier-GOWDL (Figure 7(B)).
On the other hand, we extracted the sub-matrix with only the six
T cell sub-types (Figure 7(C)) to allow the comparison with the
confusion matrix obtained at the second level of the Hier-GOWDL
(Figure 7(D)). With regards to the first two confusion matrices
(Figure 7(A) and (B)), we can notice how they are very similar, with
Hier-GOWDL capturing more true T cells, even if some other cells
are misclassified, such as Epithelial cells. It is noteworthy, in turn,
the behavior of the models for the classification of the six T cell
sub-types (Figure 7(C) and (D)). Hier-GOWDL can capture more
true cells in almost each T cell type, including T Reg, T helper, T
cell cycling and generic T cell classes. That could confirm the
hypothesis that a hierarchical structure for learning specific
sub-classes provides better classification results. This per-
formance improvement was evident when we computed the
classification scores of both models.

To estimate the performances of the hierarchical multilabel
classification method, we used the average accuracy and
three measures defined in [51] i.e. the hierarchical precision,
hierarchical recall and hierarchical f-score (Eq. 6-8 in Supple-
mentary material S1). Table 3 reports the comparison results.
The first two rows report the higher level (11 classes), whereas
the last two refer to the lower level (six T cell sub-type classes).
The Hier-GOWDL approach performs slightly better in both
cases than the proposed GOWDL model: more in detail, at the
first level, we have a few advantages in using the hierarchical
approach, with a deviation lower than 0.2 percent in terms of
hierarchical F1-score, whereas, at the second level, the gain is
more significant, with a deviation greater than 1 percent in
terms of hierarchical F1-score. As expected, we recorded the main
advantages at level 2 because the model has to distinguish among
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Figure 5. Comparison among GOWDL and other 12 cell typing algorithms, over five different tissues.

six classes instead of considering all the 16 classes as done by
the ‘flat’ GOWDL algorithm. In general, this case study shows
that, in the future, the discovery of new gene markers related to
different subtypes could improve the proposed flat algorithm's
performance, which can be easily adapted in a hierarchical
model to investigate the classification of cell types and subtypes
deeper.

CONCLUSION

We presented GOWDL, a gene ontology-driven WDL architecture
for classifying cell types in scRNA-seq data. As demonstrated
in this work, the proposed algorithm exploits the advantages of
information extracted from the Gene Ontology resource and from
the CellMatch database to predict cell types in different tissues.
Based on the WDL model, the proposed architecture allowed us to

combine this information and perform equal to or better than the
other 12 state-of-the-art algorithms on five independent scRNA-
seq datasets belonging to five different human tissues. Also, look-
ing at the near future, accordingly to the prevision of increasing
availability of scRNA-seq data and marker genes, we introduced
a case study to extend GOWDL at the cell sub-types level with a
hierarchical version of the proposed algorithm. As discussed in
this work, we believe the proposed algorithm can be considered
a valuable contribution to the cell type classification task, as it
performs equal to or better than the other 12 state-of-the-art
algorithms in cell type classification. Indeed our model can be
integrated into more complex bioinformatics pipelines developed
for specific biomedical tasks, which are addressed to understand
the behavior and the variation of distinct phenotypes associated
with different physiological and pathological conditions, such as
cancer pathology.
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Figure 7. Confusion matrices for the immune cells population case study. At the top, there is (A) the rearranged version of the original confusion matrix
of the GOWDL algorithm trained with the Breast dataset, where all T cells are considered as a unique ‘T cell all’ class, against (B) the confusion matrix
of the first level of the Hier-GOWDL algorithm. At the bottom is (C) the submatrix containing only the T cells sub-types of the original confusion matrix
of the GOWDL algorithm trained with the Breast dataset, against (D) the confusion matrix of the second level of the Hier-GOWDL algorithm.



Table 3. Comparison between the standard and the hierarchical
version of the GOWDL algorithm for Breast dataset.
‘Acc’,'hP’,'hR’ and ‘hF’ stand for T cells accuracy, hierarchical
precision, hierarchical recall and hierarchical F1-score. To
perform the comparison with the first and second level of
Hier-GOWDL, we got results of GOWDL on the Breast dataset.
Then we aggregated 16 cell types to 11 (with all T classes
together) and extracted six cell types from 16 (only T cell
sub-types), respectively.

Algorithm Cell Level Acc hP hR hF
types (%) (%) (%) (%)
GOWDL 16— 11 - 98.22 97.48 97.38 97.43
Hier-GOWDL 11 1 98.30 97.24 97.86 97.55
GOWDL 16 - 6 - 85.90 81.54  80.23 80.87
Hier-GOWDL 6 2 87.01 82.08 8199 82.04

Key Points

e We present GOWDL, a deep learning model for cell-type
prediction using scRNA-seq data.

e GOWDL implements a hybrid computational model that
considers both gene functional annotations, using an
ontology-driven CNN, and the gene signature that char-
acterizes the cell types, using a generalized linear model.

e We compared the performances of GOWDL with 12
state-of-the-art classifiers, considering five independent
test sets belonging to different tissues and including sev-
eral cell types. GOWDL outperformed the other classifier
and obtained the most stable results across each test set.

e We present a case study on immune cell populations
where we propose a two-level hierarchical configura-
tion of GOWDL, namely Hier-GOWDL, to classify closely
related T cells. Hier-GOWDL reached slightly better
results than the flat configuration, especially at the
second classification level, which deals with the identi-
fication of close sub-types of T cells.
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