
Effective Algorithm for Building and Solving Linear Systems

Sebastian Pena Serna
Fraunhofer-IGD

sebastian.pena.serna@igd.fraunhofer.de

João Silva
University of Minho / Fraunhofer-IGD

jsilva@igd.fraunhofer.de

Andre Stork
Fraunhofer-IGD / TU-Darmstadt
andre.stork@igd.fraunhofer.de

Adérito Fernandes Marcos
University of Minho
marcos@dsi.uminho.pt

Abstract
Several mesh-based techniques in computer graphics such as shape deformation, mesh editing, animation and
simulation, build and solve linear systems. The most common method to build a linear system consists in traversing
the topology (connectivity) of the mesh, producing in general a representation of the set of equations in form of a
sparse matrix. Similarly, the solution of the system is achieved, by means of iterating over the set of equations in
the default sequence of the vertices (unknowns). This paper presents a new algorithm, which optimizes the build of
the linear system and its storage, and which allows the iteration over the set of equations in any arbitrary order.
Additionally, our algorithm enables rapid modifications to the linear system, avoiding a complete rebuild.

Keywords
Effective memory handling, rapid simulation, solver acceleration, dynamic linear systems, mesh-based applications

1. INTRODUCTION

Several computer graphics algorithms successfully use
techniques from other disciplines such as physics, numer-
ical analysis, linear algebra, among others, in order to
make graphics and interaction more realistic and power-
ful for the needs of the application. Nevertheless, some of
the adopted techniques are applied without major changes,
which restricts or neglects its proper applicability and its
versatility for computer graphics applications. There are
several mesh-based methods such as shape deformation,
mesh editing, animation and simulation, which require the
build and the solution of a linear system, however the pro-
cessing time and the memory consumption are very high.
These high consumptions are caused because of the assem-
bly of the linear system, which requires the computation of
the set of equations for the unknowns.

Although the computation of the equations needs in any
case to be performed, it is possible to minimize the con-
sumption of resources, by means of using the neighbor-
ing information of the mesh. This neighboring informa-
tion can help us avoiding the assembly of the linear system
and therefore reducing the processing time and the mem-
ory consumption. On the other hand, it also generates flex-
ibility for handling the equations, enabling their iteration
and solution in any arbitrary order. This flexibility can
also benefit other techniques, where the topology of the
mesh is constantly changed. In this case, the linear system
does not need to be recomputed every time the topology is
changed, since these changes can independently be applied

to the corresponding elements without affecting the rest of
the system, which also minimizes the computation time for
every iteration.

In order to find a solution, which can accelerate the em-
ployment of linear systems and minimize its needed re-
sources, we first studied different applications within the
computer graphics community, which could provide us
some hints regarding their utilization of this kind of sys-
tems. Afterwards, we started analyzing how the discretiza-
tion methods for physical problems work, as well as dif-
ferent solvers, aiming at understanding their requirements
(Section 2). This information helped us developing a
methodology, which can effectively improve the build and
solution of linear systems and which can also reduce the
consumption of resources (Section 3). We also started with
the implementation of the algorithm, in order to evaluate
and compare its performance, however we still need to ad-
vance forward in this direction (Section 4). Finally, we
summarized our contribution and we outlooked our future
work in this field.

2. RELATED WORK

As we stated in the previous section, we started study-
ing different techniques in computer graphics such
as deformable models ([Nealen 06]), shape modeling
([Alexa 06]), animation ([Müller 08]) and simulation
([Bridson 06]), in order to understand how linear systems
are used within this community. The study of this tech-
niques revealed us, that linear systems are used in a clas-



sical way and there is no optimization procedures to re-
duce its build time. Hence, we decided to analyze partial
differential equations ([Langtangen 03]) and discretiza-
tion techniques, particularly the Finite Element Method
([Hughes 00] and [Smith 04]), in order to analyze the re-
quirements for building linear systems.

Additionally, we wanted to understand how the solution of
a linear system is computed, hence we revised the liter-
ature regarding iterative solvers ([Saad 00]) and specially
the conjugate gradient method ([Shewchuk 94]). Based on
this information, we realized that we need to concentrate
in a physical problem, since the generated systems could
present different properties concerning symmetry, definite-
ness, among others, and depending on this properties, there
are solvers which are better suited than others. Hence, we
decided to concentrate our effort in the solid mechanics
problem [Bower 09] and to investigate the build and the
solution of the linear system for this kind of physics.

Augarde et al. [Augarde 06] explained that in the linear
elasticity problem, the Galerkin method causes the stiff-
ness matrix to be symmetric and positive definite. This fact
makes the Conjugate Gradient Method a suitable solver for
the linear system of equations yielded in the linear elastic-
ity problem. Saad and Vorst presented, in [Saad 00], an
in-depth historical perspective of iterative solutions to lin-
ear systems. They attribute the origin of iterative solution
of linear systems to the work of Gauss in the early nine-
teenth century and show how the main contributions over
the years led to the iterative solvers we have nowadays.

The studied related work suggested us, that the Conjugate
Gradient method is currently the most appropriate solver
for computing the solution of a linear system of equa-
tions in an iterative form and without using a hierarchy
of discretizations or adaptivity methods. Hence, we de-
cided to implement the Conjugate Gradient Method based
on [Shewchuk 94]. He presented a practical explanation
on how the Conjugate Gradient works and explained the
building blocks, i.e. the method of Steepest Descent, the
method of Conjugate Directions and finally their relations
within the Conjugate Gradient method.

There are some techniques, dealing with the simulation of
changing meshes ([Klingner 06]). These techniques usu-
ally remesh the whole model after every iteration (or mesh
change), hence they also rebuild the linear system. We be-
lieve, that the algorithm proposed in this paper, will also
contribute to the rapid simulation of dynamic meshes. To
the best of our knowledge, there are no investigations in
the same direction as the proposed in this paper. There
have been made several efforts regarding the improvement
of solvers, either with new methods or with parallelization
techniques on the CPU or the GPU, but there is not enough
information about the intelligent handling and processing
of linear systems.

3. METHODOLOGY

The algorithm, which we are proposing, aims at effectively
building and solving linear systems, by means of reducing

the processing time and of minimizing the memory con-
sumption. A linear system represented in the matrix form
is:

Ax = b (1)

where A is the matrix of coefficients, x is the vector of
unknowns and b is the vector of solutions. Based on the
study of the related work, we have understood the ob-
jective of this system in getting the solution of the prob-
lem. The matrix of coefficients aims at collecting the in-
formation for the equations regarding the connectivity of
the vertices (edge topology) and of the unknowns (vertices
without boundary conditions) themselves. The process for
building the matrix of coefficients is normally based on
traversing the given mesh (element by element), in order
to identify the neighboring elements, which need to con-
tribute to an edge (non diagonal positions) or to a vertex
(diagonal positions). This process is expensive and when
the geometry and the topology of mesh is changed, the ma-
trix of coefficients needs to be also changed.

Hence, we realized, that if we could have the information
concerning the elements around an edge, we could easily
collect and build the information of the non diagonal posi-
tions of the linear system. Moreover, if we store the infor-
mation for every edge (elements around the edge) within a
small edge matrix, we will have enough flexibility to mod-
ify or recompute only the incident edges to a vertex, when
the vertex changes, without affecting the rest of the linear
system. Analogically, we can perform the same strategy
for storing the information of the diagonal positions of the
linear system, computing a small diagonal matrix for ev-
ery unknown. These two sets of matrices are an equivalent
representation of the matrix of coefficients, which we will
refer to as the equivalent matrix.

Structure wise, we no longer use the traditional sparse ma-
trix to store the matrix of coefficients. Instead, we have
divided it into two vectors (see Figure 1 for a visual repre-
sentation). In one vector we store the edge matrices and on
the other we store the diagonal matrices. Every element of
both vectors is a nxn matrix where n is the dimension (1D,
2D or 3D) of the problem.

The two main characteristics of a matrix of coefficients,
sparsity and symmetry, are used by the equivalent matrix to
minimize memory consumption: only the non-zero values
are stored and only one instance of every edge is stored
for every pair of connected vertices. In order to explain
how our algorithm uses these characteristics for building
the equivalent matrix and for the sake of clarity, we have
subdivided the process into three steps:

1. Constructing the needed neighboring information

2. Computing the set of edge matrices

3. Computing the set of diagonal matrices

These three simple steps enable the minimization of the
space in memory and the reduction of the processing time.



Figure 1. Graphic representation of a matrix
of coefficients (left). The same matrix of co-
efficient represented as the equivalent ma-
trix (right).

In addition, the new representation of the matrix of coeffi-
cients allows the flexible handling and modification of in-
dividual vertices or edges, without affecting the rest of the
matrix.

3.1. Build of the Equivalent Matrix

The equivalent matrix replaces the matrix of coefficients
by a set of small matrices, which can be computed faster
and which requires less space in memory. In order to avoid
traversing the whole mesh, when computing the matrix of
coefficients, we precompute the neighboring information.
We also precompute the element matrices, which are the
basis for computing the edge and diagonal matrices.

3.1.1. Constructing the neighboring information

We need to precompute two kinds of neighboring informa-
tion: i) elements around an edge and ii) elements around
an unknown. This information is computed during the ini-
tialization process and it is updated, if some changes to the
topology of the mesh are made. The neighboring informa-
tion allows us computing the non diagonal and the diag-
onal positions of the matrix of coefficients independently.
We are using a mesh data structure, which automatically
constructs the neighboring information, however we will
explain this process for the sake of completeness. During
the loading process of the mesh, we initialize two double
arrays (db), where we store the needed information for the
edges (dbEdg) and for the unknowns (dbUkn). When we
read an element, we append its index to its six correspond-
ing edges in dbEdg and to its four corresponding vertices
(unknowns) in dbUkn. By the end of the loading process,
the neighboring information is also ready.

The example mesh shown in Figure 2 will be used in asso-
ciation with Figure 3 and Figure 4 to accompain the expla-
nations given in sections 3.1.2 and 3.1.3 respectively.

3.1.2. Computing the edge matrices

Given the neighboring information of the elements around
an edge and the element matrices, we can easily compute

Figure 2. A 2D mesh composed of three ele-
ments.

the non diagonal positions, by means of traversing the el-
ements around the edge and adding the contribution of the
corresponding element. On Figure 3 it is shown the com-
putations involved in the build of Edge2. Since both el-
ements Elem0 and Elem1 share Edge2, the components
of both elements regarding this edge (colored in gray) are
added to the Edge2’s matrix. Note that each element has
two contributions to every used edge and since one is the
transposed of the other, only one is added to the edge ma-
trix. The used contribution is chosen based on the direction
of the edge.

Figure 3. Element contributions to the build
of the third edge matrix (E2).

3.1.3. Computing the diagonal matrices

In a similar way, we compute the diagonal positions of the
linear system. In this case, we use the neighboring infor-



mation regarding the elements around an unknown and we
consider the contribution of every involved element to the
diagonal.

Consider Figure 4, where the build of the diagonal of ver-
tex V1 is being performed. From Figure 2 it is clear that
vertex V1 is shared by the three elements. Therefore, D1
is calculated by adding up the three contributions to V1 of
the three elements.

The union of the edge matrices and the diagonal matrices
is equivalent to a matrix of coefficients. Although, we need
to consider these two sets of matrices, in order to solve the
system, we can arbitrary decide the order in which we want
to solve it. This flexibility could be advantageous for a
rapid convergency, since it is equivalent to having a linear
system with an optimized ordering of the unknowns, lead-
ing to an improvement of the performance of the solver
([Oliker 02]). Moreover, since the matrices within the two
sets are independent, we can change or update them with-
out a major effort, because we would only need to recom-
pute a small set of matrices, avoiding the computation of
the whole set of equations.

Figure 4. Element contributions to the build
of the second diagonal matrix (D1).

3.2. Solution of the Equivalent System

The implemented algorithm to solve the linear system of
equations is the Conjugate Gradient as it was proposed in
[Shewchuk 94]. The only noticeable change done so far is
the way we multiply the equivalent matrix with a vector.

3.2.1. Multiplication of the equivalent matrix with
a vector

Having the matrix of coefficients stored in the equivalent
matrix form requires a special method for its multiplication

with a vector.

foreach rst in resultVector do1

resultVector[rst] = 02

end3

foreach edge in edgeVector do4

edgeStartVertex = start vertex of this edge5

edgeEndVertex = end vertex of this edge6

resultVector += (edgeVector[edge] * multiVector)7

resultVector += (edgeVector[edge]T * multiVector)8

end9

foreach diag in diagVector do10

resultVector += (diagVector[diag] * multiVector)11

end12

Algorithm 1: Multiplication of the equivalent matrix with
the vector multiVector and store the result in resultVector.

Algorithm 1 shows the main steps we perform to multiply
the equivalent matrix with a vector. We start by setting the
resultV ector to zero so that the results of the multipli-
cations performed over the matrix can be added to it. For
every edge, we find the vertices that form that edge (edgeS-
tartVertex and edgeEndVertex) by consulting the neigh-
borhood information. This is done to know which is this
edge position on the matrix. Doing so it is known with
which position of multiV ector this edge should be mul-
tiplied and in what position of the resultV ector it should
be stored.

Also notice that for every edge two multiplications are
done. This is due to the symmetry of the matrix. To pro-
vide a better understanding of this procedure consider the
example shown in Figure 5. Assuming that we are iterat-
ing on edge E1 and that this edge has vertex 0 as a starting
vertex and vertex 3 as an ending vertex. In line 7 of the
algorithm we would multiply E1 by V3 and store its result
in R0 (single underlined boxes). And since E1 also con-
nect vertex 3 to vertex 0 with the same value, in line 8 we
store in R3 the multiplication of the transposed E1 with V0
(double underlined boxes).

Figure 5. Multiplication of the equivalent ma-
trix (represented as a normal matrix for sim-
plification) with a vector. The single and dou-
ble underlined boxes indicate the used val-
ues when the multiplication iterates on edge
E1.

After processing all the edges, we iterate on the diagonals.
The process is similar but simpler for each diagonal relates



Figure 6. Mesh models for the measurement.

a vertex to itself.

4. RESULTS

We have implemented the build of the equivalent matrix
(DEM ) and its multiplication with a vector, as proposed
in the previous section. This implementation is not com-
plex and it can easily be reproduced following the given
indications. In order to compare the performance of our
algorithm, we have also implemented the classical form to
represent the matrix of coefficients, the sparse matrix. We
made two implementations of the sparse matrix: i) without
the symmetric characteristic (CSM ) and ii) with the sym-
metric characteristic (SSM ). Since, the implementation of
the sparse matrix was only for the sake of comparison, we
decided to make a simple implementation based on an ar-
ray of linked lists. In the same way, the implementation of
the multiplication with a vector for CSM and SSM was
made.

In order to measure the performance of the three imple-
mentation, we have used two different tetrahedral meshes:
i) a gargoyle with 50,000 elements and ii) a hand with
100,000 elements. The Table 1 presents the relevant topo-
logical information of the meshes.

Table 1. Topological information of the
meshes for the measurement.

Mesh Vertices Edges Elements
Gargoyle 13,044 71,873 49,996

Hand 26,649 144,669 99,995

We have made two kinds of measurements, one for the
build process and one for the multiplication process. We
have considered 20 multiplications, in order to be able to
measure the time, since the measurement for a single mul-
tiplication is not accurate. Table 2 shows the results in mil-
liseconds for the mesh models and the two processes.

The results show, that our algorithm is faster than the other
two implementations. Our algorithm is much faster than

Table 2. Measurements for the build and mul-
tiplication processes (in milliseconds).

Process Mesh CSM SSM DEM
Gargoyle 213 125 120Build

Hand 459 292 271

Gargoyle 224 141 58Multiplication
Hand 526 380 140

the CSM implementation, since the latter requires almost
two times the space in memory than ours. Although for
the build process, the SSM implementation is similar to
our algorithm, we are still more or less 5% faster. For the
multiplication process, our algorithm performs in average
2.5 times faster than the SSM implementation.

In terms of memory consumption, the CSM implemen-
tation uses more memory than the SSM and the DEM
implementations, since it stores the total non zero values
entries of the matrix of coefficients. The SSM and the
DEM implementations have the same memory consump-
tion, because both use the symmetric characteristic of the
matrix of coefficients and therefore, they only need to store
either the upper or the lower part of the matrix.

5. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm, which uses the neighbor-
ing information of the mesh to effectively build and solve
linear systems. Our algorithm avoids the assembly of the
matrix of coefficients and it also reduces the processing
time and the memory consumption. The proposed method
also enables the handling of the set of equations with more
flexibility, allowing their iteration and solution in any ar-
bitrary order. This flexibility is a step forward towards the
simulation of meshes with dynamic topology or dynamic
meshes. We will further continue with the implementation
of our algorithm and we also plan to develop a framework,
where the modification of meshes and its real time sim-
ulation will be feasible, aiming at integrating design and



analysis of mechanical objects within the same environ-
ment. We will also investigate how our could fit within a
parallelization scheme.

6. ACKNOWLEDGEMENTS

This work is partially supported by the European projects
3D-COFORM (FP7-ICT-2007.4.3-231809) and FOKUS
K3D (FP7-ICT-2007-214993).

References

[Alexa 06] Marc Alexa, editor. Interactive shape
editing. ACM SIGGRAPH 2006
Courses, 2006.

[Augarde 06] CE Augarde, A. Ramage, and J. Stau-
dacher. An element-based displacement
preconditioner for linear elasticity prob-
lems. Computers and structures, 84(31-
32):2306–2315, 2006.

[Bower 09] A.F. Bower. Applied Mechanics of
Solids. Taylor and Francis, 1st edition,
August 2009.

[Bridson 06] Robert Bridson, Ronald Fedkiw, and
Matthias Muller-Fischer. Fluid sim-
ulation: Siggraph 2006 course notes.
In SIGGRAPH ’06: ACM SIGGRAPH
2006 Courses, pages 1–87, New York,
NY, USA, 2006. ACM.

[Hughes 00] T.J.R. Hughes. The finite element
method: linear static and dynamic finite
element analysis. Dover Publications,
2000.

[Klingner 06] B. M. Klingner, B. E. Feldman, N. Chen-
tanez, and J. F. O’Brien. Fluid Anima-
tion with Dynamic Meshes. In Interna-
tional Conference on Computer Graph-
ics and Interactive Techniques. ACM
New York, NY, USA, 2006.

[Langtangen 03] H.P. Langtangen. Computational partial
differential equations: numerical meth-
ods and diffpack programming. Springer
Berlin, 2nd edition, 2003.

[Müller 08] Matthias Müller, Jos Stam, Doug James,
and Nils Thürey. Real time physics:
class notes. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 classes, pages 1–90,
New York, NY, USA, 2008. ACM.

[Nealen 06] A. Nealen, M. Müller, R. Keiser, E. Box-
erman, and M. Carlon. Physically
Based Deformable Models in Computer
Graphics. Computer Graphics Forum,
25(4):809–836, 2006.

[Oliker 02] L. Oliker, X. Li, P. Husbands, and
R. Biswas. Effects of ordering strategies
and programming paradigms on sparse
matrix computations. SIAM Review,
44(3):373–393, 2002.

[Saad 00] Y. Saad and H.A. Van Der Vorst. It-
erative solution of linear systems in the
20th century. Journal of Computational
and Applied Mathematics, 123(1-2):1–
33, 2000.

[Shewchuk 94] J.R. Shewchuk. An introduction to the
conjugate gradient method without the
agonizing pain. Computer Science Tech.
Report, pages 94–125, 1994.

[Smith 04] I.M. Smith and DV Griffiths. Program-
ming the finite element method. Wiley,
4th edition, 2004.


