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2 

ABSTRACT 20 

The objective of this study was to create a new semisoft sheep’s milk cheese called “Ovino 21 

Belmontese” cheese (OBCh) by applying the “Italico” cheese-making technology. The cheese 22 

production took place under industrial conditions, with the addition of a commercial starter 23 

formulation containing Streptococcus thermophilus. The microbiological, physicochemical, and 24 

sensory characteristics of OBCh were assessed and compared to those of a commercially available 25 

cow’s Italico cheese (CICh). Streptococcus thermophilus dominated the microbial community 26 

during the cheese-making process, reaching levels of approximately 9.0 Log CFU/g in both OBCh 27 

and CICh. Among physical characteristics, no statistically significant difference (p ≥ 0.05) was 28 

registered in terms of lightness, redness, yellowness, and hardness between the two cheeses. OBCh 29 

exhibited a twofold higher short-chain fatty acid content compared to CICh. Both cheeses displayed 30 

similar classes of volatile organic compounds, although their relative percentages differed. The 31 

application of Italico cheese technology to process sheep’s milk did not negatively affect sensory 32 

attributes. This study highlighted that utilizing a cheese-making technology not commonly used for 33 

processing sheep’s milk represents a promising strategy to diversify Sicilian dairy productions. 34 

 35 

Keywords: Sheep’s milk; Streptococcus thermophilus; Novel cheeses; Physicochemical properties; 36 

Fatty acids; Sensory evaluation 37 
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1. Introduction 39 

Cheese, a culinary staple with a rich global history, has been produced for centuries (Praça et al., 40 

2023). Archaeological evidence, including cave paintings, traces cheese making back to the 41 

Palaeolithic era (Harboe et al., 2010). Over time, cheese production techniques have evolved due to 42 

various factors, including population growth, lifestyle changes, and the integration of cheese as a 43 

fundamental ingredient in the food service industry (Szafrańska & Sołowiej, 2020). 44 

Sicily, strategically positioned in the Mediterranean Sea, has significantly influenced European 45 

cheese history (Dalby, 2009). Here, sheep farming prevails over cattle breeding due to the arid 46 

climate and rugged soil conditions (Sitzia et al., 2015). Ovine breeding plays a crucial role in the 47 

regional economy (Todaro et al., 2023). Sicilian ewe’s cheeses are intrinsically tied to their specific 48 

production areas and remain niche products due to their ancient and traditional methods (Scintu & 49 

Piredda, 2007). Among these cheeses, Pecorino Siciliano, Piacentinu Ennese, and Vastedda della 50 

valle Belìce have earned the prestigious protected denomination of origin (PDO) status. While 51 

Vastedda della valle Belìce thanks to its stretching phase can be enjoyed soon after production 52 

(Mucchetti et al., 2008), the other two cheeses, made from raw milk as well, require a minimum 53 

ripening period of four months (Giammanco et al., 2011). During this ripening period, the cheeses 54 

develop a robust and enduring aromatic profile, which may not be fully appreciated by all 55 

consumers, especially those with post-modern tastes (McSweeney & Sousa, 2000). To address this, 56 

the Sicilian sheep dairy industry is actively exploring innovative approaches. Developing ewe’s 57 

milk products that can be marketed shortly after production while satisfying modern consumer 58 

preferences is a priority. 59 

Traditionally, the production of typical cheeses has limited opportunities for innovation within the 60 

sheep’s milk sector. However, diversifying dairy products remains a crucial competitive strategy to 61 

adapt the ever-changing market dynamics (Fusté-Forné & Mundet i Cerdan, 2021). Recently 62 

advancements have explored the application of Crescenza cheese technology, commonly used for 63 

cows’ milk, to create a novel Sicilian ewes’ cheese (Garofalo et al., 2021). This innovative 64 
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approach has yielded quality characteristics that resonate well with consumers. Beyond product 65 

diversification, this initiative also serves a broader purpose: revitalizing sheep breeding in rural 66 

marginal areas marked by significant land abandonment (O’Rourke, 2019). By embracing new 67 

cheese making techniques, Sicily aims to encourage sustainable sheep farming practices. 68 

This research represents an initial endeavour to produce innovative ewe dairy products, drawing 69 

inspiration from the well-established and beloved Italico-cheese, a soft-rind, short-ripened cows’ 70 

cheese (Mucchetti & Neviani, 2006). 71 

Cheese making trials were performed on an industrial scale using commercial Streptococcus 72 

thermophilus starter cultures. The focus was on creating a new semisoft ewe’s milk cheese “Ovino 73 

Belmontese” (OBCh), hailing from the homonymous municipality in Palermo province (Belmonte 74 

Mezzagno, Palermo, Italy), which was evaluated for its microbiological, physicochemical, and 75 

sensory characteristics. This research is part of a broader project aimed at promoting the value of 76 

Sicilian ewes’ milk by developing innovative dairy products. 77 

 78 

2. Materials and methods 79 

2.1. Milk and milk starter culture preparation 80 

The bulk milk used for cheese production came from several farms within Palermo province (Sicily, 81 

Italy). These farms raised sheep of the Valle del Belìce and Comisana breeds. Collected milk was 82 

transported in a refrigerated road tanker (4–6 °C) to the “Il Caciocavallo” industrial dairy factory in 83 

Belmonte Mezzagno (Italy). The whole milk underwent pasteurization at 75 °C for 15 s using a 84 

Comat PS 15351 system (Bellizzi, Italy), previously sanitized with a UNIPLUS solution (Sydex 85 

S.p.A., Cercola, Italy). The characteristics of pasteurized milk (average data of the bulks used in 86 

this study) were: pH 6.62 ± 0.02, lactose 4.03% ± 0.29%, fat 6.26% ± 0.21%, protein 5.09% ± 87 

0.23%, casein 3.86% ± 0.25%, and urea 33.91 ± 1.21 mg/dL. Freeze-dried cheese lactic acid 88 

bacteria (LAB) starter culture LYOBAC-D (Alce International s.r.l., Quistello, Italy) was employed 89 

to start the fermentation process. This starter culture consisted of various strains of Streptococcus 90 
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thermophilus. Specifically, a package containing 5 units of freeze-dried starter preparation was 91 

reactivated in 2 L of pasteurized milk. After incubation at 44 °C for 50 min, this mixture became the 92 

Milk Starter Culture (MSC), the essential fermenting agent for cheese production. 93 

 94 

2.2. Cheese production and sample collection 95 

The production of Ovino Belmontese cheese (OBCh) followed the principles of the “Italico” 96 

semisoft cheese technology (Fig. 1). Five hundred liters of pasteurized ewe’s milk were transferred 97 

to a multi-purpose cheese vat (Comat mod. POL15P12, Bellizzi, Italy). The milk was cooled to 42 98 

°C and then gently stirred (20 rpm) for 10 min while inoculating it with the MSC. Coagulation was 99 

initiated by adding 225 mL of Astro Chymosin 200 liquid rennet (Calza Clemente s.r.l., Acquanegra 100 

Cremonese, Italy). After 20 min, the coagulum was manually crosscut using a stainless-steel rod, 101 

called “lira”. An additional 20 min of mechanical agitation broke the curd into nut-size grains. 102 

Partial whey was drained, and the curd was promptly transferred into rectangular perforated plastic 103 

containers (20 cm × 13 cm × 11 cm) purchased from GR s.r.l. (Trapani, Italy). The curds underwent 104 

an initial 30 min steam stewing at 45 °C. They were then inverted in the molds and stewed for an 105 

additional 30 min. After 24 h of stewing, all cheeses were immersed in 18 °Bé brine for 20 min. 106 

The cheeses were then stored for 10 d at 6 °C and 90% relative humidity (RH) in a seasoning 107 

cabinet model 701 Glass (Everlasting s.r.l., Suzzara, Italy). Experimental cheese production was 108 

performed in triplicate over three consecutive months (three independent experimental replicates). 109 

Samples were collected at various stages: pasteurized milk, freeze-dried starter preparation, 110 

inoculated milk with MSC, curd, and final cheese after 10 d of storage. Three commercial cow’s 111 

Italico cheese (CICh), with the same maturation period of OBCh, produced by Lactalis Galbani 112 

(Milan, Italy) and purchased from a retail store were used as control cheeses. 113 

 114 

2.3. Microbiological analyses of cheeses 115 
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All samples collected throughout the production chain of OBCh were subjected to the serial decimal 116 

dilution procedure (Garofalo et al., 2021). Cell suspensions at decreasing cell densities were plated 117 

on: Plate Count Agar (PCA) incubated aerobically for 3 d at 30 °C for the enumeration of total 118 

mesophilic microorganisms (TMM); Sucrose Peptone Yeast pH 9.3 (SPY9.3) agar incubated 119 

anaerobically for 2 d at 42 °C for S. thermophilus (Shani et al., 2021); Kanamycin esculin Azide 120 

Agar (KAA) incubated aerobically for 1 d at 37 °C for enterococci; Coliforms Chromogenic 121 

Medium (CHROM) agar incubated aerobically for 1 d at 37 °C for Escherichia coli; Listeria 122 

Selective Agar Base (LSAB) added with SR0140E supplement, incubated aerobically for 1 d at 37 123 

°C for Listeria monocytogenes; Baird Parker (BP) agar with rabbit plasma fibrinogen (RPF) 124 

supplement, incubated aerobically for 2 d at 37 °C for coagulase-positive staphylococci (CPS); 125 

Xylose Lysine Deoxycholate (XLD) agar incubated aerobically for 1 d at 37 °C for Salmonella spp.. 126 

Detection of L. monocytogenes, and Salmonella spp. was carried out on 25 mL of milk samples or 127 

25 g of curd and cheese samples after enrichment on selective broth media as reported by Scatassa 128 

et al. (2015). All media, except for CHROM (provided by Condalab, Madrid, Spain) were 129 

purchased from Oxoid (Basingstoke, United Kingdom). Analyses were performed in duplicates for 130 

all samples. 131 

 132 

2.4. Isolation, typing and identification of thermoduric milk LAB 133 

All presumptive S. thermophilus and enterococci developed on SPY9.3 and KAA, respectively, 134 

inoculated with the cell suspensions of pasteurized milk were purified and subjected to Gram 135 

reaction and catalase activity tests (Barbaccia et al., 2021). Differentiation of the collected isolates 136 

was carried out using random amplification of polymorphic DNA (RAPD)-PCR analysis as 137 

described by Garofalo et al. (2023). Genotypic identification of the distinct strains was performed at 138 

the AGRIVET Centre (Palermo, Italy), following the approach reported by Gaglio et al. (2016). 139 

 140 

2.5. Monitoring of commercial starter culture 141 
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The dominance of commercial S. thermophilus starter culture over LAB resistant to pasteurization 142 

was carried out by RAPD-PCR analysis. Specifically, RAPD profiles obtained from bacteria 143 

isolated from SPY9.3 at the various stages of the OBCh production chain were compared with a 144 

pure cultures of the S. thermophilus strains originating from the freeze-dried starter preparation. 145 

 146 

2.6. Physicochemical analyses of cheeses 147 

The colorimetric parameters of the cheese samples were determined using a tristimulus 148 

chromometer Minolta CR-400 (Minolta, Osaka, Japan), measuring the values of L* (lightness), a* 149 

(redness/greenness), and b* (yellowness/blueness), according to the Commission Internationale de 150 

l’Éclairage standard (CIE, 1986). 151 

The pH was measured by immersing a portable Hanna HI98161 pH meter (Hanna Instruments, 152 

Woonsocket, RI, USA) into homogenized cheese sample. Hardness analysis was carried out using a 153 

TA.XTplus Texture Analyser (Stable Micro Systems, Godalming, UK). The cheeses were cut into 154 

cubes (3 cm × 3 cm × 3 cm) using a sharp knife and then compressed at a constant crosshead speed 155 

of 2 mm/s. The centesimal chemical composition of the samples was analyzed, and the dry matter 156 

(DM), fat, protein, and ash content were determined according to AOAC International methods 157 

(AOAC, 2012a; AOAC, 2012b; AOAC, 2012c; AOAC, 2012d). Physicochemical determinations 158 

were performed in duplicate. 159 

 160 

2.7. Determination of cheeses fatty acids 161 

The fatty acid composition of the cheeses was analysed using Gas Chromatography-Mass 162 

Spectrometry (7890B GC - 7010B MS/MS, Agilent Technologies Inc., Santa Clara, CA, USA). 163 

Grated cheese samples weighing 10 g underwent fatty acid esterification following the method 164 

outlined by De Jong and Badings (1990) with modifications. Specifically, a 1 μL aliquot of the 165 

sample with a split ratio of 1:40 was injected into a GC-MS/MS system. Separation of the fatty 166 

acids was conducted using a capillary DB-WAX column (60 m x 0.25 µm x 0.25 µm, J&W 167 
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Scientific, Folsom, CA, USA) with helium as the carrier gas flowing at a rate of 1 mL/min. The 168 

oven temperature program started at 50 °C for 1 min, then increased to 200 °C at a rate of 25 169 

°C/min, held for 10 min, further increased to 230 °C at a rate of 3 °C/min, and maintained at this 170 

temperature for 26 min. The inlet temperature and detector were set to 250 °C and 300 °C, 171 

respectively. Identification of fatty acids was confirmed by comparing the retention times of sample 172 

peaks with those of reference standards (Supelco 37 Component FAME Mix, Sigma-Aldrich, St. 173 

Louis, MO, USA). 174 

 175 

2.8. Analysis of volatile organic compounds emitted from cheeses 176 

The volatile organic compounds (VOCs) of cheeses were determined using the headspace solid-177 

phase microextraction method (HS-SPME) and analysed via Gas Chromatography (Agilent 7890B 178 

GC, Agilent Technologies Inc.) coupled with mass spectrometry (7010B MS, Agilent Technologies 179 

Inc.). Initially, the samples were heated to 30 °C for 15 min, allowing the volatile compounds to be 180 

adsorbed onto a coated fiber (Carboxen TM/PDMS StableFlexTM) for 30 min. Subsequently, the 181 

samples were desorbed for 5 min through a splitless GC injector and injected into a capillary 182 

column (60 m x 0.25 mm i.dx 0.25µm, J&W Scientific). 183 

The column temperature was programmed to increase gradually from 40 °C to 90 °C at a rate of 3 184 

°C per min, followed by maintaining an isothermal hold at 130 °C for 4 min with a ramp of 4 °C per 185 

min. Afterwards, the temperature was further raised to 240 °C at a rate of 5 °C per min and held for 186 

8 min. Helium served as the carrier gas at a flow rate of 1 mL/min. The acquisition was conducted 187 

under scanning conditions within a mass range spanning from 40 to 600 m/z. The partition ratio was 188 

1:10. 189 

Identification of volatile compounds was accomplished using the NIST 05 library, and the results 190 

were expressed as percentages of the peak area relative to the total area of significant peaks. 191 

 192 

2.9. Sensory evaluation of cheeses 193 
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A group of 13 judges (comprising six women and seven men, aged between 27–62 years) assessed 194 

the sensory characteristics of OBCh and CICh cheeses. The evaluation followed EN ISO 22935–195 

2:2023 guidelines. These evaluators were chosen based on their familiarity with cheese 196 

consumption and were unaware of the experimental setup. The cheeses, cut into 2 cm cubes, were 197 

allowed to acclimate at room temperature (approximately 20–22 °C) for 1 h. They were then served 198 

in a random order on white plastic plates, each labeled with a unique digit code unrelated to the 199 

experimental batches. The sensory evaluation took place in individual chambers illuminated by 200 

white light. An iPad connected to the Smart Sensory Box software (Smart Sensory Solutions S.r.l., 201 

Sassari, Italy) facilitated the assessment. The judges evaluated the following sensory traits of the 202 

cheeses: colour, uniformity, intensity of odour, odour of milk, odour of butter, unpleasant odour, 203 

salty, sweet, acid, bitter, spicy, chewiness, solubility, grittiness, unpleasant aroma, taste persistency 204 

and overall acceptability. Their scores were recorded using a line scale ranging from 1 to 9 cm, as 205 

previously described by Garofalo et al. (2021). 206 

 207 

2.10. Statistical analyses 208 

Microbiological, physicochemical, and sensory characteristics were analysed using One-Way 209 

Variance Analysis (ANOVA) and pairwise comparisons with Tukey’s test at a significance level of 210 

p ≤ 0.05. Heat map cluster analysis was used to identify the distribution of VOCs emitted from 211 

OBCh and CICh. All analyses were conducted using XLSTAT software version 2020.3.1 212 

(Addinsoft, New York, NY, USA) evaluating only the effect of cheese (OBCh and CICh). 213 

 214 

3. Results and discussion 215 

3.1. Evolution of microbiological parameters during cheese production 216 

The results of the microbiological investigation carried out throughout the production chain of 217 

OBCh cheese, from ewes’ milk to curd samples, are reported in Table 1. The targeted search for E. 218 

coli, CPS, L. monocytogenes, and Salmonella spp., which are relevant for monitoring food hygiene 219 
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and safety standards (EFSA, 2005), yielded no colonies in any of the analyzed samples. Notably, 220 

the commercial dried starter culture was predominantly composed of S. thermophilus (10.36 Log 221 

CFU/mL). The levels of TMM, streptococci and enterococci of pasteurized milk were 3.34, 3.05 222 

and 2.07 Log CFU/mL, respectively. This aligns with the typical microbial levels found in 223 

pasteurized ewes’ milk used for cheese production (Barbaccia et al., 2022; Salmerón et al., 2022). 224 

The occurrence of TMM and LAB primarily results from the inability of the pasteurization process 225 

to completely inhibit the growth of thermoduric milk microbiota (Grappin & Beuvier, 1997). The 226 

analysis of inoculated milk with MSC showed an increase in S. thermophilus up to 6.91 Log 227 

CFU/mL. Blaiotta et al. (2017) observed the same behavior by analysing bovine milk inoculated 228 

with the same starter culture used to produce Italico-type cheese. Following curdling, the cell 229 

densities of these microorganisms reached approximately 8.0 Log CFU/g. The observed increase in 230 

curd samples is an anticipated phenomenon attributed to whey drainage (Settanni et al., 2013). 231 

Interestingly, no statistically significant differences (p ≥ 0.05) were detected in the levels of TMM 232 

and S. thermophilus between CICh and OBCh samples (Fig. 2). The results of the CPS, E. coli, L. 233 

monocytogenes, and Salmonella spp. are not included in Fig. 2, because no CICh and OBCh 234 

samples were scored positive for their presence. Both cheeses exhibited S. thermophilus levels of 235 

approximately 9.0 Log CFU/g, consistent with the patterns commonly observed in pressed ovine 236 

and bovine cheeses (Bonanno et al., 2019; Gaglio et al., 2021). 237 

 238 

3.2. Identification of thermoduric milk LAB 239 

After enumeration, all presumptive S. thermophilus isolates from pasteurized ewes’ milk underwent 240 

strain typing using RAPD-PCR. The identification via 16S rRNA gene sequencing revealed that the 241 

LAB community isolated from pasteurized ewes’ milk consisted of six distinct strains belonged to 242 

the to the species Enterococcus faecium (Ac. No. PP789677-PP789678) and S. thermophilus (Ac. 243 

No. PP621851-PP621854) (Fig. 3). These LAB species are characteristic of sheep milk microbiota 244 

(Quigley et al., 2013) and are part of the common dairy starter and non-starter LAB cultures 245 
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(Grujović et al., 2022). Despite their typical association with sheep milk, the presence of En. 246 

faecium and S. thermophilus in pasteurized milk primarily stems from its remarkable ability to 247 

withstand the conventional heat pasteurization process (Delgado et al., 2013; McAuley et al., 2012). 248 

 249 

3.3. Dominance of S. thermophilus starter cultures 250 

The prevalence of commercial starter cultures in relation to thermoduric milk LAB was monitored 251 

throughout the cheeses-making process. To achieve this, 107 isolates were collected and subjected 252 

to a comprehensive characterization using both microscopic inspection and RAPD-PCR analysis. 253 

This approach is commonly used to assess the dominance of added starter cultures in cheese 254 

productions (Fusco et al., 2019). Upon microscopic inspection, all isolates exhibited a characteristic 255 

arrangement: cells organized in long chains, a typical feature of streptococci (Barbaccia et al., 256 

2020). The RAPD-PCR analysis conducted on isolates obtained from the commercial freeze-dried 257 

starter revealed the presence of three distinct S. thermophilus strains (Fig. 3). The strategic use of 258 

multiple-strain combinations of LAB is of paramount importance in mitigating phage-related 259 

challenges (Parente et al., 2017). Furthermore, a direct comparison of the polymorphic profiles of 260 

all LAB isolated along the OBCh production chain unequivocally demonstrated the dominance of 261 

the added S. thermophilus strains originating from freeze-dried commercial starter (Fig. 3). These 262 

strains effectively outcompeted the thermoduric milk LAB. 263 

 264 

3.4. Physicochemical characterization of cheeses 265 

The physicochemical characteristics of CICh and OBCh are summarized in Table 2. Notably, no 266 

statistically significant differences (p ≥ 0.05) were observed between the two cheeses regarding 267 

color parameters (L*, a*, and b*) and hardness. These physical attributes play a defining role in 268 

determining visual acceptability and influencing consumer purchase decisions, especially for fresh 269 

cheeses (Comi et al., 2001). Our findings align with those reported by Mohamed et al. (2021) in 270 

fresh cheeses made from both sheep’s and cow’s milk. While the pH values exhibited variation 271 
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between CICh and OBCh, they remained within the typical range of 5.06 to 5.52, commonly 272 

observed for rennet-curd cheeses (Filipczak-Fiuta et al., 2021). Regarding the chemical composition 273 

of the cheeses, significant differences (p ≤ 0.05) were evident only in terms of dry matter and ash 274 

content. In particular, CICh showed higher values than those of OBCh, which can be attributed to 275 

the different milk types used in cheese production (Barłowska et al., 2011). Both cheeses shared an 276 

average fat content of 57.91% and a protein content of 21.81%. These results are consistent with 277 

previous findings reported by Gobbetti et al. (2018) for fresh cow’s milk cheeses and by Garofalo et 278 

al. (2021) for sheep’s milk cheeses. 279 

 280 

3.5. Fatty acid composition of cheeses 281 

The fatty acid composition of cheeses is influenced by various factors, and distinct characteristics 282 

emerge between the two productions (Table 3). Specifically, during OBCh production, significantly 283 

higher average percentages of short-chain fatty acids (SCFA) (17.35%) and medium-chain fatty 284 

acids (MCFA) (20.32%) were observed, while the average percentage of long-chain fatty acids 285 

(LCFA) was lower (62.30%) compared to CICh (SCFA = 7.78%; MCFA = 18.71%; LCFA = 286 

73.93%). Comparable trends were observed in similar productions (Paszczyk & Łuczyńska, 2020; 287 

Prandini et al., 2011). Among the long-chain polyunsaturated fatty acids (PUFA), the isomer cis-9, 288 

trans-11 of linoleic acid (LA) (commonly known as rumenic acid) exhibited higher levels in OBCh 289 

production, corroborating existing literature from Contarini et al. (2009), Cruz-Hernandez et al. 290 

(2006), and Prandini et al. (2001). Notably, PUFA levels are not synthesized by ruminant tissues 291 

and strongly depend on animal feeding practices (Boland et al., 2001; Chilliard et al., 2000; Griinari 292 

& Bauman, 1999). Interestingly, previous studies indicate that among cows, goats, and sheep, the 293 

highest LA concentration is found in ewe’s milk, even when these ruminant species are fed similar 294 

forages (Banni et al., 1996; Jahreis et al., 1999). This aspect holds significant health benefits, as 295 

rumenic acid is associated with anticarcinogenic, immunomodulatory, and anti-atherosclerotic 296 

properties (Kelley et al., 2007; Martin & Valeille, 2002). Additionally, both productions 297 
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prominently featured the long-chain monounsaturated fatty acid oleic acid (C18:1 cis9). The 298 

presence of this compound is noteworthy due to its documented to possess anti-carcinogenic and 299 

anti-atherogenic properties, making it beneficial for inclusion in daily diets (Hanuš et al., 2018). 300 

In OBCh cheese, higher contents of short-chain fatty acids, such as caproic (C6:0), caprylic (C8:0), 301 

capric (C10:0), and lauric (C12:0) acids, were found compared to CICh, following classic fatty acid 302 

profiles of sheep’s milk cheeses (Hernández et al., 2005; Park et al., 2007). The increased presence 303 

of short-chain fatty acids not only improves the digestibility of the product but also contributes to 304 

the distinctive flavors found in cheeses from small ruminant animals. 305 

 306 

3.6. Volatile organic compounds profile of cheeses 307 

Results of the analysis for the volatile organic profile of OBCh and CICh are presented in Fig. 4. 308 

These VOCs encompass a variety of chemical classes, including acids, alcohols, esters, aldehydes, 309 

and ketones. Carboxylic acids constituted the primary class of VOCs in both CICh (70.9%) and 310 

OBCh (39.1%). Alcohols followed in descending order, accounting for 16.7% in CICh and 29.9% 311 

in OBCh. Ketones contributed 6.3% in CICh and 20.8% in OBCh, aldehydes 4% in CICh and 10% 312 

in OBCh, while esters 1.9% in CICh and 0.2% in OBCh. Among the acids, hexanoic, butyric, and 313 

acetic acids were prominent volatile compounds in CICh, and these same compounds were also 314 

detected in OBCh. Carboxylic acids significantly contribute to the overall flavor of cheese (Tomar 315 

et al., 2020). Specifically, hexanoic acid imparts a sour note, butanoic acid adds a cheesy flavor, and 316 

acetic acid contributes to vinegar and acidic notes (McSweeney & Sousa, 2000). However, while 317 

acids are important in cheese aroma, they also serve as precursors for other compounds, including 318 

ketones, alcohols, aldehydes, and esters (Collins et al., 2003; Thierry et al., 2017). Ketones, 319 

commonly found in dairy products, originate from the β-oxidation of fatty acids (Guillén et al., 320 

2004). These compounds possess a distinctive odor and are detectable at low levels (Silva et al., 321 

2023). Among the ketones, 2-butanone, 2-heptanone, and 2-nonanone were present in higher 322 

amounts (6.0%, 5.6%, and 4.6%, respectively, in the OBCh sample; and 0.3%, 3.2%, and 2.1% in 323 
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the CICh sample). Similar findings have been observed in other PDO cheeses made from raw milk 324 

(Delgado et al., 2011), suggesting that these ketones play a crucial role in the final aroma of these 325 

cheeses. In particular, 2-butanone imparts a buttery odor, while 2-heptanone exhibits an herbaceous 326 

odor (Curioni & Bosset, 2002). Various methyl ketones, like nonanone, contribute fruity and floral 327 

notes, enhancing cheese flavor (Delgado et al., 2011). Despite the prevalence of carboxylic acids in 328 

all cheese samples, esters were poorly detected, likely due to the fresh nature of the investigated 329 

cheeses (Fernández-Garcı́a et al., 2004; Todaro et al., 2018). In OBCh, additional odor-active 330 

compounds such as alcohols (1-butanol-3-methyl) and aldehydes (hexenal and heptanal) were also 331 

identified. Overall, the volatile composition in OBCh aligns with the profile observed in cheeses 332 

produced from sheep's milk in various studies (Busetta et al., 2022; Gaglio et al., 2021; Kırmacı et 333 

al., 2015). 334 

 335 

3.7. Sensory traits of cheeses 336 

The spider plot depicted in Fig. 5 illustrates the outcomes of the descriptive sensory evaluation 337 

conducted on OBCh and CICh. This evaluation is essential for assessing consumer satisfaction with 338 

new food products before their market launch (Świąder & Marczewska, 2021). While it is widely 339 

recognized that the sensory characteristics of dairy products are primarily influenced by factors 340 

such as the type of milk used, animal diet (Carpino et al., 2004), and raw milk characteristics 341 

(Martin et al., 2005), the comparison between OBCh and CICh did not reveal statistically 342 

significant differences (p ≥ 0.05) for most of the evaluated attributes. However, some distinctions 343 

were observed: color, intensity of odor, spiciness, and taste persistency were higher for OBCh. 344 

These results are not surprising, since ovine milk imparts greater sensory complexity to the final 345 

products compared to cows’ milk (Ryffel et al., 2008). However, the scores registered in this study 346 

are similar to those reported by Blaiotta et al. (2017) for bovine Italico cheese. Interestingly, 347 

unpleasant odors, a critical factor affecting consumers’ acceptance of new products (Herz, 2006), 348 

were not detected in either of the evaluated cheeses. Overall, both OBCh and CICh received similar 349 
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overall satisfaction scores, affirming that the transformation of sheep’s milk using the Italico cheese 350 

technology does not adversely impact sensory characteristics. 351 

 352 

4. Conclusion 353 

In this comprehensive investigation, a novel Sicilian semisoft cheese made from sheep’s milk 354 

underwent several analyses. The microbiological assessment confirmed the safety of the final 355 

cheeses and validated the use of a commercially available S. thermophilus formulation as a starter 356 

culture for OBCh production. Elevated levels of short-chain fatty acids were detected in OBCh, 357 

potentially enhancing product digestibility. OBCh exhibited higher values of the cis-9, trans-11 358 

isomer of linoleic acid, known for its numerous health benefits. Despite varying proportions, both 359 

cheeses displayed comparable classes of VOCs, which did not significantly alter their aromatic 360 

profiles. Remarkably, the sensory analysis revealed that OBCh was on par with commercially 361 

available Italico cheese in terms of overall appreciation. This work has not only led to the creation 362 

of an unconventional dairy product in the Sicilian region but also holds promise for making sheep 363 

farming economically viable while preserving native breeds and mitigating land abandonment. 364 
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Table 1. Microbial counts of freeze-dried starter culture, milk, and curd samples 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 
 609 

Units are CFU/g for freeze-dried starter culture and curd samples; CFU/mL for milk samples. Results indicate mean values of six plate counts (carried 610 
out in duplicate for three independent productions). Abbreviations: DSC, dried starter culture; PM, pasteurized milk; IM, inoculated milk; C, curd; 611 
SEM, standard error of the mean; TMM, total mesophilic microorganisms; CPS, coagulase-positive staphylococci; E., Escherichia; L., Listeria; n.a. 612 
not analysed; n.e., not evaluated. On the row: a, b, c, d = p ≤ 0.05. 613 

614 

Microbial counts 
Samples 

SEM p value 
DSC PM IM C 

TMM 10.14 a 3.34 d 7.09 c 7.97 b 0.74 ≤ 0.0001 

S. thermophilus 10.36 a 3.05 d 6.91 c 7.83 b 0.79 ≤ 0.0001 

Enterococci n.a. 2.07 n.a. n.a. n.e. n.e. 

CPS <2 <1 <1 <2 n.e. n.e. 

E. coli <2 <1 <1 <2 n.e. n.e. 

L. monocytogenes <2 <1 <1 <2 n.e. n.e. 

Salmonella spp. <2 <1 <1 <2 n.e. n.e. 
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Table 2. Physicochemical analysis of cheeses 615 

Parameters 
Samples SEM p value 

CICh OBCh   

Color     

Lightness L* 87.76 87.59 0.07 0.637 

Redness a* -3.61 -4.53 0.14 0.106 

Yellowness b* 16.71 15.28 0.30 0.317 

Hardness (N) 0.41 0.33 0.01 0.059 

pH 5.12 b 5.21 a 0.01 0.012 

Dry matter (%) 57.37 a 51.23 b 0.80 0.003 

Fat in DM (%) 59.70 56.12 0.53 0.065 

Protein (%) 22.00 21.61 0.08 0.319 

Ash (%) 3.53 a 2.97 b 0.07 0.003 

Results indicate mean values of six determinations (carried out in duplicate for three independent productions). Abbreviations: CICh, commercial 616 
cow’s Italico cheese; OBCh, Ovino Belmontese cheese; SEM, standard error of the mean. On the row: a, b = p ≤ 0.05. 617 

618 
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Table 3. Free fatty acid profile of cheeses 619 

Fatty acids 
Samples 

SEM 
p value 

CICh OBCh  

Caproic acid (C6:0) 2.43 b 3.37 a 0.14 0.032 

Caprylic acid (C8:0) 1.57 b 3.51 a 0.26 0.011 

Capric acid (C10:0) 3.78 b 10.47 a 0.86 ≤ 0.0001 

Lauric acid (C12:0) 4.42 b 5.89 ± a 0.20 0.025 

Myristic acid (C14:0) 12.91 ± 0.33 13.16 ± 0.36 0.08 0.542 

Pentadecanoic acid (C15:0) 1.38 1.27 0.04 0.591 

Palmitic acid (C16:0) 35.89 a 26.22 b 0.85 0.000 

Palmitoleic acid (C16:1) 1.97 a 1.38 b 0.08 0.043 

Stearic acid (C18:0) 9.75 8.84 0.13 0.058 

Oleic acid (cis) (C18:1) 21.59 a 15.43 b 0.80 ≤ 0.0001 

Oleic acid (trans) (C18:1) 1.45 b 5.41 a 0.51 0.001 

Linoleic acid (C18:2) 2.87 a 3.02 a 0.03 0.272 

Linolenic acid (C18:3 n3) 0.41 b 2.02 a 0.21 0.003 

Results indicate mean values of six determinations (carried out in duplicate for three independent productions). Abbreviations: CICh, commercial 620 
cow’s Italico cheese; OBCh, Ovino Belmontese cheese; SEM, standard error of the mean. On the row: a, b = p ≤ 0.05. 621 

622 
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Legend to figures 623 

Fig. 1. Flowsheet set up to produce “Ovino Belmontese” cheese. 624 

Fig. 2. Microbiological loads of cheeses. Units are Log CFU/g. Results indicate mean values ± S.D. 625 

of six plate counts (carried out in duplicate for three independent productions). Abbreviations: 626 

CICh, commercial cow’s Italico cheese; OBCh, Ovino Belmontese cheese; TMM, total mesophilic 627 

microorganisms; S., Streptococcus. 628 

Fig. 3. Dendrogram obtained from RAPD-PCR patterns of lactic acid bacteria strains isolated 629 

during cheese productions. Abbreviations: CSC, commercial starter culture; PM, pasteurized milk; 630 

IM, inoculated milk; C, Curd; OBCh, Ovino Belmontese cheese; En., Enterococcus; S., 631 

Streptococcus. The dendrogram shows only 12 of the 107 isolates analysed. The remaining 95 632 

strains were excluded from Figure because they exhibited identical RAPD profiles as other cultures 633 

from the same sample. 634 

Fig. 4. Distribution of volatile organic compounds among cheeses. The heat map plot depicts the 635 

relative concentration of each VOCs. Abbreviations: CICh, commercial cow’s Italico cheese; 636 

OBCh, Ovino Belmontese cheese. 637 

Fig. 5. Spider chart of descriptive sensory evaluation of cheeses. Abbreviations: CICh, commercial 638 

cow’s Italico cheese; OBCh, Ovino Belmontese cheese; n.s., not significant. 639 

640 
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Fig. 1. 641 

pasteurized ewes’ milk (75 °C for 15 s)

cooling at 42 °C

addition of liquid rennet

milk curdling (40 min)

curd breaking at nut size (20 min) 

cross cut (20 min)

inoculation with milk starter culture

curd extraction and moulding

drying (24 h)

salted in 18 °Bé brine (20 min) 

curd stewing at 45 °C (60 min)

Ovino Belmontese cheese

ripening (10 d) at 6 °C, > 90% relative humidity

 642 

643 
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Fig. 2. 644 

Log CFU/g

S. thermophilus 
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Fig. 3. 647 
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Fig. 4. 650 
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Fig. 4. 653 
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