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Abstract:

In the world, breast cancer is the most commonly diagnosed cancer among women. Currently, MRI is the most sensitive breast imaging method for
detecting breast cancer, although false positive rates are still an issue. To date, the accuracy of breast MRI is widely recognized across various
clinical  scenarios,  in  particular,  staging  of  known  cancer,  screening  for  breast  cancer  in  high-risk  women,  and  evaluation  of  response  to
neoadjuvant  chemotherapy.  Since  technical  development  and  further  clinical  indications  have  expanded  over  recent  years,  dedicated  breast
radiologists need to constantly update their knowledge and expertise to remain confident and maintain high levels of diagnostic performance in
breast MRI. This review aims to detail  current and future applications of breast MRI, from technological requirements and advances to new
multiparametric and abbreviated protocols, and ultrafast imaging, as well as current and future indications.
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1. INTRODUCTION

In  the  world,  breast  cancer  is  the  most  commonly
diagnosed cancer among women. Early detection and accurate
diagnostic  and  therapeutic  management  remain  crucial  for
improved patient outcomes [1, 2]. Breast MRI is mainly used
to screen for breast cancer in women at increased risk as well
as  cancers  with  known  stages,  and  evaluate  the  response  to
neoadjuvant  chemotherapy  [1,  2].  Nowadays,  Magnetic
Resonance Imaging (MRI) is the most sensitive breast imaging
technique. In more recent large-scale studies, its sensitivity has
been  reported  to  range  from  75.2%  to  100%,  generally  over
80%, with specificity ranging from 83% to 98.4% [3]. False-
Positive Rates (FPRs) reported in recent MRI screening studies
have been found to range between 5.2% and 9.7% based on BI-
RADS scores [4 - 6]. Considering that MRI imaging findings
often  require  a  rather  complex  management,  including  MR-
guided biopsies, this is one of the main issues that limit a more
widespread use of the method. Inclusion of recently developed
sequences  in  multiparametric  protocols  could  aid  in  the
reduction  of  the  FPRs  [7].
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The purpose of this paper was to provide an overview of
the  current  status,  research,  and future  applications  of  breast
MRI by reviewing many aspects from technological advances
to MRI protocols and clinical indications.

2. TECHNICAL REQUIREMENTS FOR BREAST MRI

It  is  widely  recognized  that  high-field  strength  MR
scanners (at least 1.5T) with gradients > 20 mT/m are required
to obtain images at high spatial and temporal resolution, with
the  aim  of  detecting  and  characterizing  small  anomalies  on
MRI  [1,  2].  Obtaining  diagnostic  quality  images  requires  a
multichannel  (at  least  four  channels)-dedicated  breast  coil.
Both breasts are free to hang in the recesses of the coil while
patients  are  in  the  prone  position.  Positioning  patients  as
comfortably as possible is crucial to avoid motion artifacts and
ensure good image quality [2, 7 - 9].

2.1. Insights from Technological Advances

2.1.1. Breast Dedicated Multichannel Phased-array Coils and
Parallel Imaging

Phased-array  multichannel  coils  take  full  advantage  of
modern  parallel  imaging  (PI)  techniques,  which  are  robust
methods for accelerating the acquisition of MRI data, acquiring
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a  small  quantity  of  k-space  data.  The  most  modern  breast
dedicated  coils  have  16  channels  or  more,  as  well  as
occasionally  axillary-specific  channels.  The  Signal-to-Noise
Ratio (SNR) and speed of image acquisition increase with the
number of channels [7, 10, 11]. The most recent PI techniques
have enabled the optimization of new MR sequences, such as
the Ultrafast Dynamic Contrast-Enhanced (Ultrafast DCE) and
high-resolution  DWI  sequences  [12  -  14].  In  particular,
compressed sensing is an innovative method introduced in the
field  of  signal  processing,  acquiring  images  with  far  fewer
samplings than “needed”,  demonstrated to reduce scan times
up  to  50%,  thereby  offering  accurate  and  high-resolution
images  and  resolving  the  spatial  /temporal  trade-off  [15].

2.1.2. 3T MRI Scanners

The  high-field  strength  of  the  3T  MR  scanners  provides
numerous opportunities for improving the quality of diagnostic
images.  Compared  to  1.5T  scanners,  in  the  case  of  spatial
resolution, potential improvements in SNR and data collection
speed  have  been  reported  [16,  17].  Nevertheless,  due  to
increasing  field  intensity,  some  potential  but  solvable
limitations have been reported, such as magnetic susceptibility
artifacts  and  increased  T1  relaxation  rates  of  breast  tissues.
Magnetic susceptibility effects that manifest at soft tissue/air
interfaces, often along the breast’s circumference at the breast-
body  junction,  could  be  exacerbated  by  3T  scanners.  The
robustness  of  fat  saturation  is  improved  by  the  3T's  greater
spectral separation of water and fat, potentially reducing these
effects [18]. T1 increases from 1.5T to 3T in breast glandular
tissue by about 100 msec. Consequently, T1 sequences might
be  optimized  in  order  to  maintain  similar  T1-weighting,  for
example by slightly increasing the TR, with a penalty of scan
time or by slightly reducing the flip angle [19].

Earlier  studies  have  suggested  that  3T  MR  scanners
provide improved imaging quality or diagnostic performance
than  1.5T  scanners  [16,  17,  20  -  25].  Nevertheless,  most  of
these studies  have been retrospective or  have involved small
populations or specific clinical contexts [20 - 22].

In a recent prospective study performed by Dietzel et al.,
982  patients  undergoing  breast  MRI,  based  on  standard
indications, were randomized to one 3T or 1.5T scanner [26].
This  research  demonstrated  comparably  high  diagnostic
accuracy, without significant differences, between 1.5T and 3T
breast MRI, suggesting that the initial reported benefits of 3T
breast MRI could be attributed to study design or potential bias
in favor of newer techniques [26].

3. BREAST MRI PROTOCOL

The standard breast MRI investigation includes typically a
pre-contrast  T2-weighted sequence and a  Dynamic Contrast-
Enhanced (DCE) sequence [1, 2, 7].

T2-weighted  fast/turbo  spin-echo  with  or  without  fat
saturation  and/or  a  Short  Tau  Inversion  Recovery  (STIR)  or
Spectral  Pre-saturation  with  Inversion  Recovery  (SPIR)
sequences are used for morphological evaluation. Furthermore,
water-containing  lesions  have  an  intense  signal,  while  most
cancers show intermediate to lower signals than parenchyma
because of their elevated cellularity and reduced water content.

Only a few malignant lesions may present with very elevated
signal intensity on T2-weighted sequences, such as mucinous
or  metaplastic  carcinoma.  These  sequences  also  enhance
perifocal  or  pre-pectoral  edema,  which  is  often  related  to
malignancy  and  a  poorer  prognosis  [27,  28].

DCE  acquisition  is  obtained  with  a  T1-weighted  3D
spoiled  gradient  echo  pulse  sequence  with  or  without  fat
saturation, performed before an immediate intravenous bolus of
a Gadolinium (Gd)-containing contrast agent. This procedure is
repeated  several  times  after  the  contrast  agent  has  been
administered,  as  rapidly as possible for  5 to 7 min [29].  The
recommended dose of contrast  agent is  0.1 mmol/kg with an
injection rate of 2 ml/s, followed by saline flushing of 20 ml,
preferably using an automatic injector. After contrast material
administration, 5-7 volumetric acquisitions, each at 60-90 sec,
are obtained. Breast MRI should be able to identify all lesions
that are 5 mm or larger and provide more precise information
for morphological evaluation of lesions. If the image quality is
high,  lesions  smaller  than  5  mm  can  be  detected  and
characterized.  For  these  reasons,  images  are  acquired  in  the
axial plane, with a thickness ≤ 2.5 mm, and a pixel size or an
in-plane  resolution  (FOV/matrix)  of  no  more  than  1  mm,
necessitating a 300 mm FOV and a matrix of at least 300 mm x
300 mm. Modern MRI units  and breast  coils  allow to obtain
image  reconstruction  in  any  plane  and  considerably  higher
resolutions  (1  mm  isotropic  and  lower)  without  sacrificing
acquisition time (beyond 90 seconds), allowing the evaluation
of lesions, particularly the distribution of non-mass lesions [1,
7].  Post-processing  techniques,  such  as  subtraction  images,
maximum intensity projections, and time-intensity curves help
radiologists identify, describe, and characterize mass and non-
mass  enhancements  [30  -  32].  More  recently,  quantitative
pharmacokinetic parameters, such as ktrans (a transfer constant
that  reflects  the  rate  of  transfer  of  contrast  agent  from  the
plasma  to  the  tissue)  and  kep  (a  transfer  rate  constant  that
reflects  the  reflux  of  contrast  agent  from  the  extravascular
extracellular  space  to  the  plasma  compartment),  have  been
demonstrated to improve the differential diagnosis among the
breast  lesions  and  even  help  distinguish  between  different
breast  cancer  subtypes  [33  -  35].

3.1. Insights on Breast MRI Protocols

3.1.1. Ultrafast DCE Imaging

The term “Ultrafast” DCE imaging refers to modern MR
sequences,  sharing a  similar  new approach of  k-space filling
that enables to image the inflow of a contrast agent with a high
temporal  resolution,  also known by their  commercial  names,
such  as  Time-resolved  angiography  with  Stochastic
Trajectories  (TWIST),  4-Dimensional  Time-Resolved
magnetic resonance Angiography with Keyhole (4D-TRAK),
Time-Resolved Imaging of Contrast Kinetics (TRICKS), and
DIfferential  Sub-sampling  with  Cartesian  Ordering  (DISCO)
sequence [12, 36, 37].

Multiple  phases  (10-16)  of  Ultrafast  DCE-MRI  are
captured  continuously  for  roughly  60-90  seconds  beginning
simultaneously with the onset of contrast injection after a pre-
contrast  full  k-space  sample,  for  a  total  acquisition  time  of
102-120 seconds [12, 36 - 39]. Ultrafast sequences can be used
in combination with the conventional DCE acquisition, which
can result in a hybrid Ultrafast-DCE protocol (Fig. 1).
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Fig. (1). An example of a hybrid protocol of Ultrafast and conventional dynamic contrast-enhanced sequences. DCE: dynamic contrast-enhanced.

In contrast to conventional DCE, Ultrafast images present
moderate  spatial  resolution  with  in-plane  resolution  and
thickness  slightly  superior,  depending  on  the  MR  intensity
field, number of channels of breast coils, and vendors (Table 1)
[12,  36  -  40].  The  generation  of  a  MIP  series  from  the
subtracted Ultrafast images provides a movie of contrast inflow
in patients with cancer, and a “lightbulb” effect can be noticed,
in  which  cancer  enhances  in  an  otherwise  completely  black
breast  [12,  31,  32,  36]  (Figs.  2  and  3).  Early  enhancement
parameters  generated  from  Ultrafast  kinetic  curves,  such  as
time to enhancement (TTE) and maximum slope (MS), could

be useful in breast lesion detection and characterization. TTE,
the amount of time it takes for a lesion to become more visible
after contrast has entered the descending aorta, may be used as
a discriminatory tool since malignant lesions normally become
more visible much sooner than benign lesions, usually within
10 seconds, whereas benign lesions typically take longer (on
average  >15 seconds)  [7,  36  -  38].  The slope  of  the  steepest
part of the concentration curve (measured in mMol/sec) or the
increase in relative enhancement between three adjacent time
points  divided  by  time  (measured  in  percent  relative
enhancement per second) showed higher values in malignant
than in benign breast lesions [37, 38].

Table 1. Acquisition parameters for ultrafast and conventional DCE sequences with different MR scanners.

Sequence

Shin et al., European Radiology (2020) Onishi et al., Breast Cancer Research
(2020)

Siemens Ultrafast Conventional DCE Philips Ultrafast Conventional DCE GE Ultrafast Conventional DCE

TWIST VIBE 4 D TRAK- 3D
TFE e THRIVE DISCO VIBRANT

In-plane resolution
(mm x mm) 1.11 x 1.24 0.83 x 0.83 0,94 x 0,94 0.90 x 0.90 1.6 x 1.6 1.1 x 1.1

FOV 320 x 320 mm2 320 x 320 mm2 300 x 300 mm2 300 x 300 mm2 34 x 34 cm2 34 x 34 cm2

Matrix size 288x259 384 x384 320 x 320 332 x 332 212 x 212 300 x 300
TR (ms) 4.1 4.7 3.9 5.2 3.8 7.9
TE (ms) 1.3 1.7 2 2.4 1.1/2.2 4.3
FA (°) 10 10 12 12 12 12

Temporal resolution
(s) 3.8 88 4.5 89 2.7- 4.6 ~ 120

Parallel imaging
factor CAIPIRINHA 5 CAIPIRINHA 2 SENSE 4 (phase)×

2 (slice)
SENSE 3.2 (phase)

× 1 (slice)
ARC 4 (phase) × 2

(slice)
ASSET 2 (phase) × 1

(slice)
Abbreviations: DCE=dynamic contrast enhacend, TWIST= time-resolved angiography with interleaved stochastic trajectories, VIBE = volume-interpolated breath-hold
examination,  TRAK = time-resolved MR angiography with keyhole,  TFE = turbo field  echo,  eTHRIVE = enhanced T1-weighted high-resolution isotropic  volume
examination, DISCO= differential sub-sampling with cartesian ordering, Vibrant= volume imaging breast assessment, FOV= field of view, TR= repetition time, TE= echo
time,  FA=  flip  angle,  CAIPIRINHA=  controlled  aliasing  in  parallel  imaging  results  in  higher  acceleration,  SENSE=  sensitivity  encoding,  ARC=  autocalibrating
reconstruction for cartesian imaging, ASSET= array coil spatial sensitivity encoding.

4D-TRAK 15 phases

E-THRIVE 
Before CM

E-THRIVE dvn
(1st Phase)

E-THRIVE dvn
(2nd Phase)

E-THRIVE dvn
(3rd Phase)

E-THRIVE dvn
(4th Phase)

Full 
K-space

0 sec 60 sec

0 sec 75 sec 320 sec 380 sec

Time after  CM injection

CM

120 sec 180 sec 240 sec 300 sec 360 sec 420 sec 480 sec

Scan Time Acquisition
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Fig. (2). A 73-year-old woman with a HER2-enriched invasive ductal carcinoma. (a-d) Maximum intensity projection (MIP) images derived from the
Ultrafast series show a rounded mass, with irregular margins, in her left superior inner breast. Time to enhancement was judged at 0 sec., as the mass
was  already  detectable,  although  with  a  rim  moderate  enhancement  at  the  same  time  as  the  ascending  aorta  (a).  In  the  following  series,  the
enhancement progressively increases with a centripetal course (b-d) with a peak enhancement at 13.5 sec (d). The time-intensity curve derived from
the Ultrafast sequence showed a rapid initial rise (h). FSE T2w images revealed perilesional and pre-pectoral edema (e); The b800 DWI sequence and
ADC  map  showed  a  high  intralesional  restriction  (f-g).  Perilesional,  pre-pectoral  edema  was  also  detectable  as  a  high  signal,  posterior  to  the
malignant hypointense malignant lesion, in ADC maps.

Fig. (3). A 45-year-old woman with a radial scar in her left upper central and a fibroadenoma in her inferior inner left breast. Maximum intensity
projection (MIP) images derived from the Ultrafast series, at 9 sec (a) , 13.5 sec (b) , 18 sec (d) , and 22,5 sec (e) show the following findings: a large
focal  heterogeneous mass  enhancement  in  the upper  central  left  breast,  with  a  TTE of  9  sec,  and a  time-intensity  curve derived from Ultrafast
sequence  revealing  a  rapid  initial  rise  (c)  ;  a  sub-centimetric  oval-shaped  mass  enhancement,  with  circumscribed  margins,  showing  an  early
enhancement (with a TTE of 9 sec), and a time-intensity curve derived from Ultrafast sequence revealing enhancement as progressive (f).
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Furthermore, the goal of the study conducted by Mann et
al. was to make a comparison between MS and the BIRADS-
defined curve type. The 199 enhancing lesions included were
all detectable on the standard DCE sequence and TWIST, and
the MS allowed for a considerably better separation of benign
and  malignant  lesions  than  BIRADS  curves  (AUC  0.829  vs.
AUC 0.692, respectively; p=0.036) [12].

Both  these  Ultrafast  MRI-derived  early  enhancement
parameters, TTE and MS, were also linked to histopathologic
prognostic factors and tumour aggressiveness in breast cancer
patients [38 - 40].

Furthermore,  encouraging  results  were  recently  reported
about  the  possible  use  of  Ultrafast  parameters  in  predicting
pathologic  response  after  neoadjuvant  therapy  [41].  In
particular,  in  the  single-centre  study  of  Ramtohul  et  al.,  a
wash-in  slope  of  more  than  1.6%  per  second  was  linked  to
higher pCR rates in the HER2-positive breast cancer subgroups
(OR,  21.7;  P  =  .02)  and  lower  residual  cancer  burden  in
luminal  HER2-negative  and  triple-negative  breast  cancer
subgroups  (OR,  11.0;  P  =  .04)  [42].

Despite these promising results, both DCE and Ultrafast-
derived  quantitative  parameters’  reproducibility  needs  to  be
improved [43], and further larger studies are needed.

3.1.2. Abbreviated Protocol

A typical full breast MRI study protocol takes between 17
and 40 minutes to complete. Decreasing image acquisition and
reading  time  may  help  make  breast  MRI  screening  more
widely available. In 2014, Kuhl et al. first looked into whether
an abbreviated protocol (AP), consisting of just one pre- and
one postcontrast acquisition and the resulting images and first
postcontrast subtracted and MIP images, would be appropriate
for breast magnetic resonance imaging (MRI) in a setting for
breast cancer screening [31]. In their experience, obtaining an
AP  in  3  minutes,  an  expert  radiologist's  MIP  image  reading
time of  3  seconds,  and  an  NPV of  99.8% are  all  required  to
determine the absence of breast cancer. While interpretation of
the whole AP, as with the FDP, provided identification of all
malignancies with a reading time of less than 30 seconds [31].

Later,  other  authors  investigated  the  application  of  MRI
AP in breast cancer screening, and obtained similar results [44
-  50].  Comparing  AP  with  full  protocol,  Oldrini  et  al.
documented  no  appreciable  variations  between  two  readers'
sensitivity and specificity, differently experienced in breast MR
imaging; they reported significantly reduced reading time with
AP  for  both  reviewers  (247  vs.  329  seconds  and  59  vs.  142
seconds) [46]. Nevertheless, Grimm et al. reported a reduced
overall  sensitivity  with  their  APs  (AP  1:  86%,  AP  2:  89%)
compared to 95% sensitivity of the full  protocol,  but  in both
abbreviated  protocols,  the  cancer  missed  was  a  recurrent
invasive ductal carcinoma in a mastectomy patient on the chest
wall.  Surprisingly,  there  were  no  discernible  differences
between the AP and complete protocol interpretation times; the
authors  attributed  this  evidence  to  the  lack  of  confidence  of
radiologists  in  interpreting  MR  images  in  the  absence  of
traditional  sequences  [48].

Some studies have also included a T2 FSE in the AP, with

or without fat suppression, and/or a STIR sequence [47 - 50].
In  the  study  of  Heacoch  et  al.  the  addition  of  the  T2W
sequence  did  not  affect  the  cancer  detection  rate,  and  was
considered  helpful  in  49.5%  of  cases,  only  for  the  least
experienced  reader  (vs.  <  8%  of  cases  for  the  2  more
experienced  readers)  [47].  Missed  cancers  reported  with  AP
were  mainly  non-mass  enhancement  (NME)  or  mass
enhancement (ME) localized at the chest wall or near the axilla
[47, 48].

The “Comparison of Abbreviated Breast MRI and Digital
Breast Tomosynthesis in Breast Cancer Screening in Women
with Dense Breasts” EA1141 trial,  a randomized prospective
multi-center  study,  enrolled  1444  women  with  dense  breasts
who  underwent  both  abbreviated  breast  MRI  and  DBT  [51,
52]. Shorter breast MRIs had greater rates of invasive cancer
detection  (11.8  per  1000  vs.  4.8  per  1000,  p=0.002)  and
sensitivity for invasive cancer or DCIS than DBT (95.7% vs.
39.1%,  p=0.002).  Although  AP  MRI  showed  significantly
lower specificity  than DBT (86.7% vs.  97.4%, P<0.001),  the
PPV  of  biopsy  was  not  statistically  significantly  different
compared to DBT (19.6% - 21/107 patients vs.  31.0% - 9/29
patients,  p=0.15).  Furthermore,  no  differences  in  additional
imaging recommendation rates were noted [52]. Despite these
encouraging  findings,  significant  reservations  still  exist
regarding the utility of breast MRI as a screening technique in
individuals who are not at high risk. Breast MRI facilities are
less  accessible  than  mammography  facilities,  and  lengthier
travel  times  may  be  related  to  sociodemographic  variables,
including  living  in  a  rural  area  and  having  less  education.
Additionally,  Gadolinium-Based  Contrast  Agents  (GBCAs)
must be administered intravenously (IV) for breast MRI [53,
54].

3.1.3. Multiparametric Protocol

The  term  multiparametric  protocol  refers  to  the
combination of functional MRI techniques in breast imaging,
such  as  diffusion-weighted  imaging  and  MR  spectroscopy
(MRS), with the aim of overcoming limitations in specificity
and  improving  diagnostic  accuracy  in  breast  cancer  [33,  55,
56].

3.1.3.1. Diffusion-weighted Imaging (DWI)

Diffusion-weighted imaging (DWI), which was first used
in  the  middle  of  the  1980s,  is  now  more  frequently  used  in
clinical  MRI protocols,  particularly to look into neurological
illnesses  and  cancer  [57].  A  T2-weighted  (b0)  Echo-Planar
Imaging  (EPI)  sequence  is  subjected  to  motion-sensitizing
gradients  (b  factors)  in  order  to  produce  images  using  DWI,
which is based on the Brownian movement of water molecules
in tissues. A reliable quantitative illustration of the diffusivity
of  water  molecules  is  provided  by  the  apparent  diffusion
coefficient  (ADC)  maps  derived  from  the  DWI  sequence,
obtained with at least 2 b factor ponderations (given in s/mm2).
The term “apparent” diffusion coefficient refers to the fact that
the water diffusion coefficient in tissues is subject to a variety
of  influences,  including  non-Gaussian  diffusion  and
IntraVoxel-Incoherent Motion (IVIM), which is the perfusion
of capillary networks [58].
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Because of their intralesional decreased diffusion of water
caused by increased cell density, the majority of malignancies
exhibit higher signal intensity at DWI and low signal in ADC
maps  [7,  59].  ADC  values  are  generally  lower  in  malignant
lesions  (0.8–1.3x10-3mm2/sec)  than  in  benign  ones
(1.2–2.0x10-3mm2/sec)  [60].  Nevertheless,  T2  black-out
artifacts due to fibrotic components or viscous environment can
lead  to  low  ADC  values  in  benign  lesions,  such  as  in  radial
scar/complex sclerosing lesions and complicated cysts, and T2
shine-through artifacts due to necrotic/cystic components can
provide high ADC values in breast cancer [61, 62].

Due  to  its  lesion  characterization  capabilities,  DWI  is
emerging as an essential part of multiparametric breast MRI.
There  are  still  some  challenges  in  the  routine  use  of
quantitative DWI, which are especially related to the lack of
standardization of imaging approaches across institutions, MRI
scanner  vendors,  and  measurement  methods  to  obtain  ADC
values (from b values applied to the definition of a region-of-
interest).  Standardization  seems  crucial  to  avoid  variable
results  and  inappropriate  image  interpretations,  improve
reproducibility,  and  support  widespread  utilization  [63].

Dorrius  et  al.  performed  a  meta-analysis  including  26
studies to evaluate the effect of the choice of b values on ADC
values  of  breast  lesions  and  the  characterization  of  breast
lesions. They concluded that while ADC of breast lesions was
significantly affected by the choice of b values (the higher the
b  value  used  to  calculate  the  ADC,  the  lower  the  ADC
becomes), the latter did not impact sensitivity and specificity,
recommending  b  values  to  be  0  and  1.000 s/mm for  optimal
differentiation between benign and malignant lesions [64].

While  the  majority  of  research  concurs  that  ADC values
are not impacted by MR field strength but rather by applied b
values,  even  without  significantly  affecting  accuracy,  some
differences in the selection of b-values have been noted. The
majority of the literature [7, 56, 60, 65 - 68] suggests b-values
between 0 and 800 sec/mm2 for clinical usage, suggesting an
optimal  balance  between  adequate  diffusion  weighting  and
tolerable  signal-to-noise  ratio.  In  particular,  several  authors
have  hypothesized  that  while  0  and  1000  s/mm2  are  the
theoretically ideal combination of b values for the brain, where
diffusion is rather slow, 0 and 800 s/mm2 constitute the ideal
pair for the majority of bodily tissues, including the breast [69 -
71].

To consistently and accurately assess ADC, it is necessary
to standardize acquisition parameters and breast tumor tissue
selection techniques [by defining a Region of Interest (ROI)].
The  impact  of  various  defined  breast  tumor  tissue  selection
procedures on the accuracy of ADC to identify breast lesions
was  examined  in  a  comprehensive  review and  meta-analysis
that  included  61  studies  using  DWI  scanned  on  1.5  and  3.0
Tesla and utilizing b-values 0/50 and 800 s/mm2. The authors
categorized 4 ROI positioning methods, which are as follows:
1)  whole  breast  tumor  tissue  selection;  2)  subtracted  whole
breast  tumor  tissue  selection;  3)  circular  breast  tumor  tissue
selection; and 4) lowest diffusion breast tumor tissue selection.
The  last  three  methods  avoid  areas  with  necrosis,  cysts,  or
hemorrhages.  None  of  these  techniques  for  selecting  breast
tissue  has  been  found  to  perform  better  than  the  others  at

separating  benign  from  malignant  breast  lesions.  However,
there  has  been  found  substantial  variation  between
investigations, and information on scanning settings has been
found  to  be  frequently  incomplete  [72].  Wielema  et  al.
investigated the reproducibility of various breast tumor tissue
selection  techniques,  concluding  that  fixed-size  techniques
displayed excellent reproducibility and that the most practical
technique  for  use  in  clinical  practice  is  the  one  that  has  a
central fixed breast tumor tissue volume of 0.12 cm3 [73].

The  conventional  spin-echo  DWI  image  quality  may  be
negatively affected by ghosting artifacts, geometric distortions,
and blurring, which typically occur due to the single-shot echo
planar  imaging  readout  method  [14].  The  new  readout-
segmented  DWI  sequence,  based  on  multi-shot  echo  planar
imaging, was demonstrated to mitigate ghosting artifacts with a
slight  decrease  in  SNR,  even  with  2-mm in-plane  resolution
[14, 74, 75]. Nevertheless, this last technique requires a longer
acquisition  time.  More  recently,  parallel  imaging  solutions
have been introduced,  including the simultaneous multi-slice
(SMS) acquisition based on the blipped ‘Controlled Aliasing in
Parallel  Imaging  Results  in  Higher  Acceleration’  (blipped
CAIPIRINHA)  technique,  which  demonstrated  to  fill  these
gaps between scan times and spatial resolution [13, 76 - 79].

Furthermore, breast MR imaging at 3T enabled to obtain
higher-resolution  DWI  by  reducing  the  field  of  view  and
concentrating on a specific area of the breast with an in-plane
resolution  of  0.8  mm  [80,  81].  Reduced  field  of  view  EPI,
according to Park et al., can produce images with better lesion
conspicuity and SNR than read-out-segmented EPI [82].

Moreover, the breast imaging community is currently using
DWI as an add-on sequence in addition to DCE imaging [83]
(Figs.  4  and  5),  and  its  role  has  been  investigated  and
encouraged in various application fields: lesion detection and
characterization,  prognosis,  axillary  lymph  node  status,  and
evaluation and prediction of therapeutic response [58, 61, 62,
83  -  89].  Dietzel  et  al.  recently  investigated  whether  DWI
could  be  used  to  replace  the  DCE  sequence's  delayed  phase
(DP), assuming that both are influenced by extracellular space
properties  that  provide  overlapping  physio-pathological
information.  Their  goal  was  to  shorten  and  simplify  current
breast MRI practice without losing diagnostic information [61].
Adding ADC values to the evaluation of the initial phase (IP)
of the DCE sequence led to an increase in diagnostic accuracy
of  13.4%  (p  =  0.002),  reaching  higher  AUC  values  (0.877).
Identical  diagnostic  results  were  obtained  from  the
multiparametric  assessment  including  IP,  DP,  and  ADC,  but
requiring  an  additional  5  min of  scanning time [61].  Several
studies  have  suggested  an  important  role  of  ADC  values
before, during, and at the end of Neoadjuvant Therapies (NAT)
[62,  84  -  89].  Particularly,  compared  to  responder  patients,
non-responder patients had tumors with greater baseline ADC
values (which were also linked with higher stages of necrosis)
[62,  84,  85].  Due  to  cell  death  and  the  ensuing  decrease  in
cellularity  during  NAT,  the  ADC  values  of  breast  cancer
generally  increase,  and  these  changes  typically  occur  before
tumor size reduction [62, 86 - 88]. Additionally, Woodhams R
et al. demonstrated DWI to be more accurate than DCE (96%
versus 89%) at identifying residual tumor after NAT [89].
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Fig. (4). A 65-year-old woman with a multi-orificial brown nipple discharge in her right breast. STIR sequence (a) revealed a unilateral duct ectasia
with segmental distribution in the upper inner quadrant of the right breast. DCE sequence (b) showed a non-mass-like enhancement, with a “clustered
rings” pattern and segmental distribution. The same area revealed a high signal in both DWI sequence (c) and ADC maps (d). Histological diagnosis
confirmed chronic periductal mastitis.

Fig. (5). A 63-year-old woman with a history of invasive ductal carcinoma in her right breast underwent a breast MRI for a developing asymmetry
revealed on her upper outer left breast at mammography without abnormalities detectable on breast sonography. Asymmetry was confirmed on T2
FSE (a) and STIR (b) images, with a corresponding heterogeneous non-mass-like enhancement with segmental distribution on DCE sequence (c) and
abnormal diffusion restriction confirmed by ADC maps (d). Histological diagnosis: low-grade in situ ductal carcinoma.
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Nevertheless, as mentioned above, the most frequent and
well-known obstacles to DWI's inclusion in the Breast Imaging
Reporting and Data System (BI-RADS) lexicon were the wide
variation  in  thresholds  reported  for  ADC  in  differentiating
between benign and malignant breast lesions [60, 64] and the
absence  of  standardized  protocols  and  ADC  measurement
methods  [90].

With  the  aim  to  overcome  these  issues,  in  the  last  few
years,  the  European  Society  of  Breast  Radiology  (EUSOBI)
established an International Breast DWI working group, which
developed the first consensus recommendations, with the aim
to standardize the application of DWI sequence in breast MRI
protocols, from the acquisition parameters to the ADC values
measurement methods. The minimum acquisition requirements
are described as follows: an EPI-based sequence acquired with
axial orientation, a field of view covering both breasts and fat
saturation  (SPAIR is  recommended),  TR ≥  3000  ms  and  the
minimum  possible  TE  (obtained  by  optimizing  the  receiver
bandwidth),  in-plane  resolution  of  ≤  2×2  mm2  with  slice
thickness ≤ 4 mm, a parallel imaging factor ≥ 2 with the aim to
reduce  distortion  (loss  in  signal/noise  ratio  can  be
counterbalanced by increasing the number of excitations), 2 b
values  (more  is  optional),  the  lowest  0  s/mm2  (however  not
exceeding  50  s/mm2)  and  the  highest  800  s/mm2.  Experts
recommend obtaining the ADC value by drawing a region of
interest  (ROI)  on  the  darkest  part  of  the  lesion  on  the  ADC
map, containing at least 3 voxels and avoiding necrotic, noisy,
or  non-enhancing  lesion  voxels.  Then,  the  mean  ADC value
within  the  ROI  should  be  reported  with  the  units  in  10-3
mm2/s.  On  the  basis  of  ADC  measurements  and  lesion
appearance,  the  working  group  also  proposed  a  descriptive
classification of diffusion level in lesions, including very low
(≤ 0.9 × 10-3 mm2/s), low (0.9–1.3 × 10-3 mm2/s), intermediate
(1.3–1.7 × 10-3 mm2/s), high (1.7–2.1 × 10-3 mm2/s), and very
high  (>  2.1  ×  10-3  mm2/s),  remarking  that  lesion
characterization should always be done in conjunction with all
morphological  and  functional  information  derived  from  all
other imaging data and not solely based on diffusion level [71].

Finally,  the  survey  recently  conducted  by  the  EUSOBI
International  Breast  Diffusion-Weighted  Imaging  working
group  revealed  that  most  breast  radiologists  use  nowadays
DWI  as  part  of  their  routine  protocol,  including  lesion
characterization  (using  an  ADC  threshold  of  1.2-1.3  ×  10-3

mm2/s)  and  assessment  of  response  to  chemotherapy  as
common indications. Nevertheless, report integration of DWI
results  is  not  uniform,  with  most  radiologists  mentioning
hindered diffusivity in the MRI report, and only 57% reporting
ADC values [91].

Other  new  advanced  modelling  approaches  for  DWI  are
currently under investigation, classified as “Gaussian models”,
such as Diffusion Tensor Imaging (DTI),  and “non-Gaussian
models”,  such as  Intra-Voxel  Incoherent  Motion (IVIM) and
Diffusion Kurtosis Imaging (DKI) [14, 33, 55].

3.1.3.2. Diffusion Tensor Imaging (DTI)

Diffusion  tensor  imaging  (DTI)  builds  on  the  DWI
technique by using six or more additional diffusion-encoding
directions.  It  is  possible  to  calculate  anisotropic  diffusion

within each voxel using a diffusion tensor, which is a matrix of
directional diffusion coefficients. According to the hypothesis,
the  ductal  and  glandular  microarchitecture  in  breasts  directs
and clearly defines the motion of water molecules [14, 33, 55,
92 - 94].

The two primary parameters that DTI quantifies are mean
diffusivity (MD) and fractional anisotropy (FA). FA describes
the  level  of  anisotropy,  whereas  MD  reflects  the  average
anisotropy  [92  -  95].  Diffusion  anisotropy  was  found  to  be
much  lower  in  breast  tumors  than  in  normal  tissues  by
Partridge et al. [92, 93]. This finding may be due to changes in
the  organization  of  the  tissue  microstructure.  Baltzer  et  al.
discovered that although FA did not have an incremental value
when  compared  to  ADC,  DTI  enabled  them  to  see  the
microanatomical  distinctions  between  benign  and  malignant
breast cancers [96]. Finally, a more recent study containing the
largest prospective cohort of patients evaluated DTI features of
238 suspicious breast lesions detected on MRI, and concluded
higher FA to be significantly associated with malignancy (OR
= 1.45, p = 0.007) [97].

Other  authors  have  investigated  the  correlation  between
DTI parameters and breast cancer prognostic factors. Onaygil
et al. found lower FA values in ER-negative breast cancer (p<
0.05) and that Ki-67 showed a significant, negative correlation
with FA, whereas Ozal et al.  demonstrated that patients with
lymph node metastasis and/or lymphovascular invasion and/or
histologic  grade  3  tumors  had  statistically  significantly  low
MD. The main limitations of this “Gaussian method” are non-
standardized protocols, fitting methods, and ROI placements,
and not always optimal image quality related to the echo-planar
imaging sequence.

3.1.3.3. Intravoxel Incoherent Motion (IVIM)

Through the IVIM effect, blood flow in randomly oriented
capillaries  simulates  a  diffusion  process  and  can  be  used  to
detect tissue diffusivity and microcapillary perfusion without
the need for contrast agents [57]. Recent research suggests that
the IVIM effect can be exploited to gather useful data on the
microvasculature  and tissue  microstructure  that  contribute  to
the characterisation of breast masses [98 - 100]. The perfusion
fraction (or  blood volume fraction of  the vasculature),  tissue
diffusion coefficient, and pseudodiffusion coefficient related to
water  flow  inside  the  microvasculature  are  the  three  main
parameters  of  the  IVIM.

Perfusion  fraction  of  malignant  tumors  was  shown to  be
substantially  higher  than that  of  benign lesions,  according to
Liu et al. [101]. Other authors investigated the role of IVIM in
the  differentiation  of  different  breast  cancer  subtypes  and
molecular  prognostic  factors;  in the study of  Kim et  al.,  low
tissue  diffusivity  was  significantly  observed  in  high  Ki-67
tumours  and  luminal  B  (HER2-negative)  tumours  [102].
Lastly,  Cho  et  al.  found  that  the  pseudodiffusion  parameter
significantly  differentiated  RECIST  responders  from  non-
responders  [103].

However, it has taken longer for the potential of IVIM to
be understood since it requires very good image quality and an
accurate  estimate  of  IVIM  parameters  linked  to  perfusion.
Recent  improvements  in  MR  technology  and  software  have



MRI Insights in Breast Imaging Current Medical Imaging, 2024, Volume 20   9

increased  the  signal-to-noise  ratio  in  IVIM  MRI,  making  an
improvement  in  image  quality  easier  to  achieve  [104].  The
poor  repeatability  and  reproducibility  of  IVIM  parameters,
which are largely a result  of their  dependence on acquisition
factors,  including  b-values,  TE,  and  fitting  methods  [104  -
108],  may  yet  be  overcome.  To  solve  these  problems,
standardized  IVIM  data  collection  and  reliable  IVIM  fitting
must be developed.

3.1.3.4. Diffusion Kurtosis Imaging (DKI)

Diffusion  kurtosis  imaging  quantifies  the  deviation  of
tissue diffusion from a Gaussian pattern; in living tissues, due
to  barriers  from  complex  tissue  structures,  Brownian
incoherent  motion  and  microperfusion  or  blood  flow
demonstrate  non-Gaussian  phenomena  [109].  The  diffusion
kurtosis  imaging  technique,  sensitive  in  the  breast  imaging
competition  to  intracellular  structures,  like  membranes  and
organelles, provides a diffusion heterogeneity index sensitive
to the tumor microstructure by acquiring additional, higher b-
value images, in the order of b = 1000-3000 s/mm2 and at least
15 diffusion gradient directions [110, 111]. The mean kurtosis
(MK) and mean diffusivity (MD), two parameters of the DKI
that  give  microscopic  information  on  the  water  diffusion's
departure  from  a  Gaussian  distribution,  are  corrected  for
kurtosis  [112].

The investigation of breast tumors using DKI has become
an  important  research  area  [113  -  119].  The  diagnostic
performance of DKI and its applications remain controversial.
Some  studies  have  demonstrated  a  substantially  higher
sensitivity and specificity compared to ADC values for breast
cancer diagnosis [120, 121]. In particular, in the study of Sun et
al.,  kurtosis  coefficients  were  positively  linked  with  tumor
histologic  grade  and  Ki-67  protein  expression  and  were
considerably greater in malignant lesions than benign lesions
(1.05 0.22 vs. 0.65 0.11, respectively; p.0001) [121]. However,
Palm  et  al.  discovered  that  DKI  did  not  enhance  the
performance  of  differentiating  breast  tumors  in  clinical
protocols  [114].  Additionally,  there  was  disagreement  over
DKI  parameters.  Park  et  al.  claimed  that  there  was  no
discernible  difference  between  benign  and  malignant  tumors
[115],  although  the  majority  of  research  has  revealed  breast
cancer  to  have  a  higher  MK  and  a  lower  MD  than  benign
lesions  [113,  117,  119].  Finally,  a  recent  meta-analysis
including 867 malignant and 460 benign breast lesions found
that  breast  cancer  showed  a  significantly  (P  <  0.001)  higher
MK  and  lower  MD  than  benign  tumors,  and  that  MK  (P  =
0.006) can further differentiate invasive ductal carcinoma from
ductal carcinoma in situ [112]. DKI shares the same limits as
other Gaussian models, including a lack of standardization in
data acquisition, protocol parameters, and fitting methods.

3.1.3.5. Proton MR Spectroscopy

MRS  is  a  non-invasive  method  that  reflects  a  tissue's
chemical  composition.  The  ability  to  see  spatially  localized
signal spectra with spectral peaks reflecting the structure and
concentration  of  several  detectable  metabolites  enables  the
identification of various tissue states, such as normal, benign,
malignant, necrotic, or hypoxic tissue, by selecting a region of
interest [122].

Although  the  method  for  in  vivo  MRS  is  not  yet
standardized, it may be useful in the context of multiparametric
MRI.

Proton  (1H)  MRS,  performed  as  single-voxel  or  multi-
voxel  MRS,  offers  the  greatest  sensitivity  and  simplest  data
acquisition,  with  the  greater  contribution  provided  by  the
detection of choline peak. The choline peak, observed at 3.32
ppm,  is  the  result  of  many  different  choline-containing
metabolites,  such  as  free  choline,  phosphocholine,
phosphoethanolamine, and glycerophosphocholine [122 - 124].

In  breast  cancer,  the  elevated  total  choline  peak  reflects
increased cell density in the tumor and cell membrane turnover,
serving as a biomarker for differentiating malignant and benign
breast  lesions  [125  -  127].  A  meta-analysis,  conducted  by
Baltzer and Dietzel, including 19 studies with a total of 1193
patients, found for 1H-MRS a pooled sensitivity and specificity
of,  respectively,  73%  and  88%.  No  significant  influences  of
field  strength  (3.0  T  or  1.5  T),  multivoxel  over  single-voxel
techniques,  or  qualitative  versus  quantitative  MRS
measurements, were reported, whereas main limitations were
found in small breast tumors and non-mass-enhancing lesions
[128]. Montemezzi et al. reported analogue specificity results,
reaching also a sensitivity of 90%, considering only invasive
cancers and mass lesions ≥1 cm and excluding lesions close to
the skin or pectoral muscle [129].

1H-MRS  could  also  play  a  potential  role  in  the  early
assessment of the response to NAT. Preliminary small sample
size  studies  suggested  a  correlation  between  a  reduction  in
choline peak and response to NAT, due to treatment-induced
alterations in cell proliferation, which could be captured before
any changes in tumor size [130, 131]. Nevertheless, the recent
ACRIN 6657 MRS clinical trial found discordant results, with
no evidence of significant ability to predict both pathological
or radiologic responses for choline peak. However, the authors
have found numerous limitations in collecting analyzable data,
including variability in the placement of the MRS voxel within
or encompassing the tumor, leading to a definitive sample size
of only 29 cases, insufficient to accurately evaluate 1H-MRS
measurements as a predictor of response to NAT [132].

Besides  choline  metabolites,  lipid  metabolites  are
detectable with 1H-MRS and this has been evaluated in in vivo
MRS studies; cancer showed higher water concentrations and
lower methylene lipid peaks at 1.3 ppm [133, 134].

In addition to the 1.3 ppm fat peak, Thakur et al. recently
used MRS to identify 5–6 lipid peaks [135]. They looked into
the  usefulness  of  different  lipid  concentrations  for  prognosis
prediction  as  well  as  for  differentiating  between  molecular
subtypes  (luminal  A/B  vs.  others;  luminal  A  vs.  others)  and
characterizing breast distinguishing lesions. Additionally, they
discovered  that  a  clearer  separation  of  the  lipid  peaks  at  2.1
ppm and 2.3 ppm was revealed with greater field strength (3T)
and  the  STEAM  sequence,  enabling  the  calculation  of
polyunsaturated  and  saturated  fatty  acid  fractions.

Nowadays,  MRS  studies  suffer  from  a  large  variability
related to MR field strength (1.5T or 3T) and adoption of breast
receiver coils, sequence performance (PRESS – Point Resolved
Spectroscopy  or  STEAM  –  Stimulated  Echo  Acquisition
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Mode), acquisition parameters (TR, TE, etc.), parallel imaging
factors,  adoption of  single-  or  multi-voxel  approaches,  voxel
size and position software, and quantitative methods available
for  spectra  analysis  (EPRM  -  External  Phantom  Reference
Method or IWRM - Internal Water Reference Method). Other
limitations  include  a  relatively  long  acquisition  time  (10–15
minutes) and the possibility of a low-quality spectrum in breast
MRS related to poor shimming and chest wall motion [133].

3.1.3.6. Emerging MRI Parameters

Recently,  novel MRI parameters have been developed in
research applications, including sodium imaging (23Na MRI),
phosphorus  spectroscopy  (31P  MRS),  Chemical  Exchange
Saturation  Transfer  (CEST)  imaging,  Blood  Oxygen  Level-
Dependent (BOLD) MRI, Hyperpolarized MRI (HP MRI), and
MR elastography [14, 33, 55].

23Na MRI relies on the abundance of 23Na in the body and
on elevated tissue sodium concentration in malignant lesions
due  to  disruption  of  the  sodium-potassium  pump  in  cell
membranes. Sodium concentration also correlates well with the
ADC of DWI [136 - 138].

Phosphorus spectroscopy (31P MRS) identifies the signals
of  catabolites  and  phospholipid  precursors  involved  in  the
metabolism  of  cell  membranes  [139].  Increased  levels  of
phosphocholine  (PC)  and  phosphoethanolamine  (PE)  have
been seen in a variety of solid tumors, including breast cancer,
in both in vitro and in vivo 31P MRS studies. Today, despite
evidence  that  31P  MRS  can  be  utilized  for  breast  cancer
detection, tumor staging, and therapeutic response monitoring,
clinical application is restricted due to the scarcity of ultrahigh-
field magnets and the need for specialized coils [140, 141].

Chemical Exchange Saturation Transfer (CEST) imaging
enables visualization of chemical exchange processes between
protons  bound  to  solutes  and  surrounding  bulk  water
molecules, providing for example images through the Amide
Proton Transfer (ATP) effect. In some studies, ATP-CEST has
been  found  to  be  able  to  differentiate  benign  and  malignant
breast tumors [142, 143]. Although in preclinical studies, other
applications  of  CEST  imaging  in  breast  cancer  have  been
investigated,  such  as  dynamic  CEST  imaging  after  the
administration of glucose (glucoCEST), which could depict the
kinetics of glycolysis, typically enhanced in malignant lesions
[144].

Blood  Oxygen  Level-Dependent  (BOLD)  micro-
environmental  perfusion  and  hypoxia  can  be  assessed  using
MRI.  For  imaging  tissue  hypoxia,  which  is  associated  with
tumor  growth,  angiogenesis,  treatment  resistance,  local
recurrence, and metastasis, deoxyhemoglobin is a paramagnetic
molecule  that  functions  as  an  intrinsic  BOLD contrast  agent
[145 - 147].

Hyperpolarized  MRI  (HP  MRI)  allows  a  quick,  non-
invasive  investigation  of  tumour  metabolism  by  exploiting
exogenous  contrast  agents  that  have  been  “hyperpolarized”.
The most popular probe for HP MR research is (13C) pyruvate,
which has a long T1 relaxation time, is quickly taken up by the
cell,  and processed during glycolysis,  tricarboxylic  acid,  and
amino  acid  production  [148].  It  is  polarized  to  obtain

enhancements  of  the  13C  nuclear  MR  signals.  The  ability  to
distinguish between benign and malignant tumors and to assess
the  course  of  cancer  using  real-time  measurements  of  the
relative transformation of pyruvate into lactate and alanine with
HP  MRI  has  been  demonstrated  in  preclinical  studies  [149,
150].

MR elastography (MRE) images a low-frequency acoustic
wave  as  it  propagates  throughout  tissue  to  characterize  the
biomechanical  characteristics  of  breast  tissue,  including
variations in stiffness, or to record known prognostic factors,
such as desmoplasia associated with breast cancer, stiffening of
the surrounding stroma, and necrosis [44, 45]. Currently, MRE
research and techniques are still developing [45].

3.1.4. Noncontrast-enhanced Abbreviated MRI of the Breast

Emerging imaging techniques show the possibility to pave
the  way  for  a  new  avenue,  the  so-called  “non-contrast
enhanced abbreviated MRI of the breast”, especially diffusion-
weighted imaging (DWI) techniques. Although DWI increases
specificity, it currently only has therapeutic utility when used
in  conjunction  with  DCE-MRI  and  not  as  a  stand-alone  test
[151,  152].  Particularly  discordant  results  are  now  being
reported. Baltzer et al. found comparable AUC values for both
techniques  when  they  compared  full  diagnostic  protocol
dynamic  contrast-enhanced  MRI  (DCE-MRI)  with  non-
contrast MRI with DWI in 113 patients with BI-RADS 4 and 5
lesions [153]. In a retrospective investigation by McDonald et
al.,  three  readers  who  were  blind  to  the  CE-MRI  results
assessed unenhanced sequences, and the average performance
showed a low sensitivity (45%) but a better specificity (91%),
suggesting only a potential utility in a supplemental screening
context [154].

However,  Bu  et  al.,  who  investigated  the  relationship
between  DWI  and  Turbo  Inversion  Recovery  Magnitude
(TIRM),  recently  discovered  encouraging  evidence.  An
inversion  pulse's  subsequent  turbo  spin  echo sequence  is  the
independent part of the Turbo Inversion Recovery Magnitude
(TIRM) measurement that is taken into account. In contrast to
DCE-MRI,  which  showed  no  significant  differences,  DWI
combined with TIRM was shown to be a safe,  sensitive,  and
useful alternative for screening women with dense breasts. It
also  showed  higher  accuracy  (AUC=  0.935)  and  sensitivity
(93.68%) for breast cancer detection than MG (AUC = 0.783,
sensitivity = 46.32%) [155].

4. IMAGE EVALUATION

For  image  evaluation  and  diagnostic  interpretation,  the
Breast Imaging Reporting and Data System (BI-RADS) created
by the American College of Radiology is widely recommended
[1,  2,  7,  90].  Radiologists  are  required  to  report  the  clinical
indication,  the  MRI  sequences,  and  post-processing  methods
adopted, as well as the quantity and type of contrast agent used.
It is important to note the breast composition and Background
Parenchymal Enhancement (BPE). In particular, BPE (Fig. 6)
has been widely studied in different settings and observed to be
related to higher abnormal interpretation rates, although there
has not been a discernible decrease in the sensitivity and rate of
cancer  detection  in  women,  according  to  various  studies
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looking at the impact of BPE on diagnostic performance [156].
At  the  DCE  sequence,  any  findings  should  be  described
accordingly with the BI-RADS lexicon (Table 2; Fig. 7 - 9) as
masses  (space-occupying  lesions),  non-mass  enhancement
(NME) (areas of enhancement without a clear space-occupying
lesion present) or focus (a dot of enhancement so small that it
cannot be otherwise characterized; its shape and margin cannot

be  seen  clearly  enough  to  be  described).  An  accurate
description of any other non-enhancing findings or associated
features,  relative  to  the  nipple,  skin,  chest  wall,  and  axillary
lymph node, should be added. The report's conclusion should
include a final BI-RADS category (ranging from 0 to 6) and a
consequent practical recommendation [157].

Fig. (6a-d). Background parenchymal enhancement: (a) minimal, (b) mild, (c) moderate, (d) marked.

Table 2. MRI BI-RADS lexicon: findings and descriptors.

Findings Feature Terms
Focus - -

Masses Shape
Oval

Round
Irregular

- Margin

Circumscribed
Not circumscribed

- Irregular
- Spiculated

- Internal enhancement characteristics

Homogeneous
Heterogeneous

Rim enhancement
Dark internal septations

Non-mass enhancement Distribution

Focal
Linear

Segmental
Regional

Multiple regions
Diffuse

- Internal enhancement patterns

Homogeneous
Heterogeneous

Clumped
Clustered ring
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Fig. (7a-d). Mass enhancement – internal enhancement patterns: (a) homogeneous (fibroadenoma); (b) heterogeneous (invasive ductal carcinoma
high-grade); (c) rim enhancement (invasive ductal carcinoma); (d) dark internal septations (fibroadenoma).

Fig. (8a-f). Non-mass enhancement – distribution: (a) focal (invasive ductal carcinoma); (b) linear (ductal carcinoma in situ); (c) segmental (ductal
carcinoma in situ  low grade);  (d)  regional  (invasive ductal  carcinoma);  (e)  multiple regions (invasive ductal  carcinoma high-grade);  (f)  diffuse
(inflammatory breast cancer in invasive ductal carcinoma high-grade).
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Fig. (9a-d). Non-mass enhancement - internal enhancement patterns: (a) homogeneous (sclerosing adenosis); (b) heterogeneous (radial scar); (c)
clustered rings (ductal carcinoma in situ); (d) clumped (ductal carcinoma in situ).

Most  breast  cancers  manifest  as  a  mass  typically  with
irregular shape and margin, heterogeneous or rim enhancement
patterns,  with  or  without  wash-out  detectable  in  the  delayed
DCE phase of time/intensity curves [158, 159]. Nevertheless,
some  malignant  lesions  may  appear  as  masses  with
circumscribed  margins,  such  as  triple  negative  (frequently
rounded)  or  mucinous  carcinoma  (sometimes  with  gradual
enhancement  pattern  and  often  with  elevated  ADC  values)
[160, 161].

NME characteristics are typically less specific than mass
characteristics  [158,  162].  Recently,  Aydin  et  al.,
retrospectively analyzing 129 NME, found that at multivariate
logistic  regression,  only segmental  distribution and diffusion
restriction were associated with malignancy [163].

4.1. Insights from Breast MR Imaging Evaluation

Despite  its  fundamental  role  in  standardizing  and
structuring  reports,  the  BI-RADS  lexicon  does  not  provide
clinical decision rules. However, the recently released Kaiser
score,  which  integrates  five  distinct  diagnostic  BI-RADS
lexical  criteria  (margins,  SI-time  curve  type,  internal

augmentation, and presence of edema) in an easy-to-read tree
flowchart, provides such a clinical decision rule [164 - 166]. In
a recent study, the Kaiser score was able to rule out cancer in
more  than  45%  of  contrast-enhancing  lesions  that  had
previously  been  categorized  as  BI-RADS  4,  potentially
preventing  needless  biopsies  [167].

5.  INSIGHTS  FROM  CURRENT  AND  FUTURE
CLINICAL APPLICATIONS

We  have,  herein,  reviewed  current  known  and  already
established indications [1, 2], looking at more recent evidence
and resuming future indications and direction [168].

5.1. Staging Before Treatment Planning

An accurate preoperative staging is necessary in cases of
newly diagnosed breast cancer in order to determine the extent
of the cancer and to optimize the treatment plan. Preoperative
breast MRI is unquestionably crucial in determining the extent
of primary cancer as well as any additional malignant foci that
may exist, identifying multicentric and contralateral disease. It
is also crucial in determining whether the nipple, skin, and/or
chest wall are involved as well as any local nodal metastases.
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Several  advantages  and  consequent  limitations  of  breast
cancer  staging  with  MRI  are  still  debated.  Invasive  interval
cancers  are  thought  to  be  more  likely  to  develop  in  the
postoperative period in people who are young, have tumors that
do not express hormone receptors, or have dense breasts [169,
170]. Furthermore, patients with lobular carcinoma have been
found  to  have  the  highest  rate  of  accurately  diagnosed  extra
ipsilateral or contralateral foci [171].

The Pre-Operative MRI of the Breast (POMB) trial results,
which assessed the accuracy of incremental preoperative breast
MRI  findings,  suggested  that  empirical  AUC  for  the
incremental findings in the entire MRI group was 85%, with a
PPV  of  74%  (95%  CI  60-84%),  in  39  patients  with  MRI-
related  changes  of  initial  treatment  plans,  and  27% (95% CI
14-44%) in 39 patients without [172]. Due to true positive and
false  positive  incremental  findings,  the  conversion  rate  from
breast  conservative  surgery  to  mastectomy  in  the  ipsilateral
breast was comparable to that reported by Houssami et al. in
their  meta-analysis  involving  19  preoperative  investigations
[172, 173].

According  to  a  recent  meta-analysis  by  Houssami  et  al.
[174],  the  main  debated  concern  regarding  the  utilization  of
breast MRI for BC staging is the potential for increased odds of
receiving ipsilateral mastectomy and contralateral prophylactic
mastectomy,  with  the  exception  of  patients  with  invasive
lobular  carcinoma,  who  showed  a  decreased  likelihood  of
reoperation  (OR  0.65),  though  not  significantly.

The European Network for the Assessment of Imaging in
Medicine (EuroAIM) has approved the MIPA study, a large-
scale  observational  multicenter  international  prospective
analysis.  The  aim  was  to  compare  the  surgical  and  clinical
endpoints  of  two  groups  of  patients,  respectively,  i.e.,  those
who  have  undergone  (MRI  group)  and  not  (noMRI  group)
breast  preoperative  MRI  according  to  local  practice.
Researchers  hypothesized  that  MRI  reduces  the  reoperation
rate,  not  being  responsible  for  additional  mastectomies
compared to conventional imaging [175]. Recently published
results demonstrated an additional planned mastectomy rate of
11.3% in the MRI group. Notably, in 14% of the noMRI group
and  22%  of  the  MRI  group,  mastectomy  was  previously
planned based on conventional imaging. The fact that MRI was
commonly used in this last group of patients who were already
candidates  for  mastectomy as  a  confirmation  procedure  may
have contributed to the 11% rise in mastectomy rates noted in
the breast MRI group. Additional very relevant evidence of this
study  was  that  the  MRI  group  had  a  considerably  lower
reoperation  rate  among  women  who  underwent  conserving
surgery  (8.5%  versus  11.7%,  p  0.001)  [176].

5.2. Screening of High-risk Women

According  to  the  American  Cancer  Society  and  the
American College of Radiology, the term “high risk” refers to
women who have a lifetime risk of more than 20%, including
patients  with  genetic  mutations  (such  as  BRCA1,  BRCA2,
PALPB2, TP53, PTEN, CHECK2, CDH1, ATM, and STK11) or
who have received mantle radiotherapy before the age of 30.
For  this  patient  group,  annual  screening  MRI,  in  adjunct  to
mammography, is not only recommended but strongly advised

by several societies [177, 178]. Breast MRI plays a crucial role
for  this  patient  group,  as  evidenced  by  the  fact  that  it  is
sensitive  enough to  detect  breast  cancer  in  high-risk patients
(sensitivity varies from 75–100%) [177 - 183]. Previous studies
have  reported  that  women  with  a  BRCA  mutation  have  a
60-85% cumulative lifetime risk of developing breast cancer,
with  44.7%  of  cases  being  identified  by  MRI  rather  than
mammography and more than half  being less than 10 mm in
size  [179].  Breast  MRI  had  a  much  greater  cancer  detection
rate  in  high-risk  women  than  mammography  (21.8
malignancies  per  1000  women  screened  vs.  7  per  1000),
according to Lo et al. [180]. Radiation can have harmful effects
on  people  who  carry  the  BRCA1  mutation.  Recent  studies
suggest  that  mammography  be  given  a  second  look  when
patients  undergo  annual  breast  MRIs  because  there  is  no
evidence  that  mammography  increases  the  rate  of  cancer
diagnosis in all high-risk people under the age of 40 [180, 184 -
186].

5.3. Screening of Intermediate-risk Women

According  to  the  American  Cancer  Society  and  the
American College of Radiology, women who have a lifetime
risk of breast cancer between 15% and 20%, a personal history
of  cancer,  dense  breasts  on  mammography,  or  a  history  of
high-risk  lesions  at  biopsy  (specifically,  atypical  ductal
hyperplasia,  atypical  lobular  hyperplasia,  and  lobular
carcinoma in situ) are considered to be at “intermediate risk”
[177].  Although  the  American  Cancer  Society  did  not
recommend annual breast MRI screening in this patient group,
further research backed this advice.

In  a  recent  large  cohort  retrospective  analysis,  2637
women with various increased breast cancer risk indicators had
their screening breast MRI CDRs analyzed. With a CDR of 12
per 1000 and 15 per 1000 examinations, respectively, and no
statistically significant difference for either when compared to
the  high-risk  category,  the  authors  concluded  that  screening
breast MRI should be taken into consideration for women with
a personal history of breast cancer or high-risk lesions [181].

Women with lobular carcinoma in situ  benefit more than
those with atypical lobular hyperplasia or ADH from screening
MRI cancer detection rates, which are reported in the literature
to  vary  from  10.5  to  22.7  malignancies  per  1000  exams.
Nevertheless,  MRI  may  be  responsible  for  unnecessary
increases  of  biopsies  and/or  follow-up  examinations
recommended  for  benign  lesions,  with  a  PPV  of  biopsies
performed  ranging  from  13%  to  28.6%  [187  -  190].

According  to  several  studies,  screening  MRI  cancer
detection rates for women with a prior history of breast cancer
range from 1.9 to 30.1 malignancies per  1000 exams,  with a
PPV of conducted biopsies ranging from 10% to 75.8% [187 -
194].  Furthermore,  in  patients  with  a  history  of  cancer  who
have dense breasts or if the cancer was discovered before the
age of 50, updated ACR guidelines recommend selective MRI
surveillance [178].

5.4. Dense Breasts

Breasts  on  mammography  are  classified  by  BI-RADS as
almost  entirely  fatty  (category  a),  scattered  areas  of
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fibroglandular  density  (category  b),  heterogeneously  dense
(category c), or extremely dense (category d) depending on the
ratio  of  radiopaque  tissue  (fibroglandular  tissue,  FGT)  to
radiolucent  tissue  (fat).  'Dense'  breasts  is  the  term  most
frequently  used  to  describe  the  latter  two  groups.
Histologically,  areas  of  collagen  and  epithelial  glandular
components,  such  as  ducts  and  terminal  duct  lobular  units,
constitute radiopaque FGT [195 - 197].

Marked  breast  density  may  mask  cancers  on
mammography  [198  -  200]  being  responsible  for  decreased
mammographic  sensitivity  and  specificity  [201],  and
consequently  interfering  with  the  goals  of  screening
mammography  programs,  which  namely  are  early  detection
and cost-effectiveness.

Mammographic  breast  density  is  also  considered  an
independent risk factor for breast cancer. Since 1976, the year
in  which  the  first  researches  were  published  by  Wolf  et  al.
[202,  203],  several  further  studies  have  suggested  a  strong
positive  association  between dense  breasts  and the  increased
risk for breast cancer [199, 204, 205].

The benefit of supplemental imaging methods for a tailored
breast  cancer  screening  of  women  with  dense  breasts  is
nowadays widely debated. Over the last several years, multiple
imaging modalities have been proposed, including breast MRI.

A  systematic  review  evaluated  diagnostic  performance,
cancer  detection  and  recall  rates  of  DBT,  hand-held  and
automated  breast  ultrasound,  and  MRI  when  added  to
mammography of dense breasts. The authors found that, among
women  with  dense  breasts,  MRI  had  a  sensitivity  rate  of
75–100%,  specificity  of  78–94%,  and  a  PPV of  3–33%,  and
when added to mammography screening, it detected 3.5–28.6
additional cancers per 1,000 women, but has been found to be
associated  with  a  recall  rate  of  12–24% [31,  179,  206,  207].
Nevertheless, they noted that women in studies selected for the
systematic review likely had higher breast cancer risk than the
general population of women with dense breasts.

The  dense  trial  study  group  investigated  the  role  of
supplemental MRI screening for women with extremely dense
breast  tissue,  including  4783  women  with  normal  results  on
screening  mammography.  Supplemental  MRI  detected  an
additional  16.5  cancers/1,000  screens  in  the  first  round.  The
interval cancer rate was significantly lower in the MRI group
(0.8/1000  vs.  5/1000).  On  the  other  hand,  the  PPV  of  MRI
prompted biopsy was 26.3% and 0.1 women who underwent
MRI % had either an adverse event or a serious adverse event
during or immediately after the screening [5].

Nevertheless,  adding  biennial  MRI  to  biennial
mammography, as was performed in the DENSE trial, the cost-
effctiveness  goals  of  screening  programs  are  far  from  being
reached. Alternative strategies are thus needed [208, 209].

Further  evidences  were  provided  by  the  ECOG-ACRIN
EA1141 study, which included 1444 women with dense breasts
(BI-RADS  category  C  and  D)  that  underwent  for  screening
with  both  DBT  and  abbreviated  MRI.  According  to  their
results, additional contribution of X-ray-based breast imaging
was very limited and abbreviated MRI showed similar results
as  the  standard  MRI  protocol,  used  within  the  DENSE  trial
[52].

Consequently to the evidences of DENSE trial study and
ECOG-ACRIN EA1141 study, the European Society of Breast
Imaging  (EUSOBI)  group  has  recently  drawn  up  new
recommendations for screening women with extremely dense
breasts  [210].  According  to  these  recommendations,  MRI
should  be  offered  as  a  supplemental  imaging  method  in  this
group  of  patients,  from age  50  to  70,  at  least  every  4  years,
preferably  every  2  to  3  years.  The  EUSOBI  group  also
underscored that, even in the absence of national programs that
offer  MRI  screening  as  part  of  national  healthcare,  women
should be informed about this recommendation.

5.5.  Evaluation  of  Response  to  Neoadjuvant  Treatments
(NAT)

NAT represents the recommended method in patients with
locally  progressed  (stage  II  or  III)  and  triple  negative  breast
cancers.  To  evaluate  response  to  NAT  physical  exam,
mammography,  US,  and  MRI  have  all  been  used.  Among
these, MRI is the most accurate method in distinguishing post-
treatment fibrosis from residual tumor after NAT [211 - 213].

Early  assessment  of  response  to  NAT  is  crucial,
considering that a poor response may induce a change in the
chemotherapeutic  plan.  In  the  Sheikhbahaei’s  study,  DG-
PET/CT  imaging  performed  better  than  MRI  for  intra-NAC
assessment; however, MRI performed better overall after NAC
was  finished  but  before  surgery,  with  a  considerably  higher
sensitivity (0.88 vs. 0.57) [214].

MRI  evaluation  of  NAT  response  is  affected  by  several
factors, including breast cancer subtype (superior accuracy in
triple-negative and HER-2 positive tumors than luminal ones),
as well as presence of non-mass enhancement at pre-treatment
and  type  of  chemotherapy  used  (lower  accuracy  of  NAT
including  taxanes  has  been  reported)  [215  -  218].

Overestimation  of  residual  disease  occurs  in  6–19%  of
cases,  as  reported  by  Chen  et  al.,  and  most  causes  include
fibrosis/treatment  changes  and  necrotic  tumor  [219,  220].
Whereas, underestimation occurs in 7–28% of cases and most
causes  include  non-mass  enhancement,  late-enhancing  foci,
and  tumors  with  non0concentric  shrinkage  [219,  220].  This
evidence suggests  that  tailored interpretation strategy,  taking
tumor subtype and MRI phenotype into account, is needed.

Recently,  the  Response  Evaluation  Criteria  in  Solid
Tumors  (RECIST),  the  most  generally  adopted  set  of
standardized criteria for response assessment, has recognized
four  categories  of  response:  complete  response,  partial
response, stable disease, and progressive disease [221]. Besides
the  only  size  assessment  of  target  and  non-target  lesions,  an
early decrease in enhancement detected with pharmacokinetic
modeling or time–signal intensity curve analysis and an early
increase  in  ADC  are  also  considered  predictive  of  response
[222 - 225].

Furthermore, while absence of late enhancement post-NAT
is significantly associated with pathological complete response
[Area Under the Curve (AUC): 0.85], quantification of residual
enhancement  may  yield  a  higher  sensitivity  for  pathological
complete response with a loss of specificity [226, 227].
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5.6. Occult Primary Breast cancer

The term occult primary breast cancer (OBC) is used when
an axillary metastatic carcinoma without mammographic and
ultrasonographic  detection  of  a  primary  breast  lesion  occurs
[228]. This condition, with an incidence of 0.1-3%, is probably
secondary to micro-invasive breast cancer [229]. Compared to
mammography or ultrasound, level I evidence showed MRI as
much more sensitive in detecting a primary lesion, identifying
72% of cases of OBC [230]. If a breast MRI is negative, breast
surgical  treatment  could  be  avoided,  and  the  suggested
therapeutic management, planned by a multidisciplinary team,
is often axillary dissection and breast radiation therapy [231].

5.7. Problem-solving Tool

Although breast MRI has a high negative predictive value
(NPV), the EUSOMA recommendation stated that MRI should
not be used as an alternative for needle biopsy when it can be
conducted and that MRI should be taken into consideration in
situations  where  it  is  impossible  to  execute  or  specify  a
location  for  needle  biopsy  [2].

In  non-calcified  mammographically  equivocal  breast
findings, such as asymmetry or architectural distortion, a recent
meta-analysis  reported  a  sensitivity  of  99% with  an  NPV of
100% for breast MRI [178].  On the other hand, another sub-
metaanalysis revealed that in patients with microcalcifications,
the NPV of breast MRI was about 93%, which was insufficient
to rule out cancer [232, 233].

Distinguishing  local  recurrence  from  post-treatment
changes  can  be  difficult  in  mammography;  thus,  breast  MRI
has  gained  widespread  acceptance  as  a  valuable  problem-
solving  technique  [234].

The  frequency  of  recommendations  for  breast  MRI  to
analyze  ambiguous  findings  has  drastically  dropped  after
digital breast tomosynthesis (DBT) implementation; however,
when  such  findings  (mainly  asymmetries)  remain  equivocal,
breast MRI is a heplful supplementary tool [235 - 237].

5.8. Nipple Discharge

Despite  that  first  guidelines  and  recommendation
discouraged the routine usage of MRI in the clinical context of
suspicious  nipple  discharge  and  advised  ductography  [1,  2],
nowadays,  it  is  widely  recognized  that  MRI  outperforms
galactography,  with  a  sensitivity  for  causal  lesions  of  92%
versus 69% [237]. Nipple discharge cytology is constrained by
a false negative rate of more than 50%, and galactography is an
invasive procedure that may be painful and uncomfortable with
a  failure  rate  of  up  to  15%  and  a  challenge  differentiating
between malignant and benign lesions [237 - 239]. Considering
the  superiority  in  accuracy  of  breast  MRI  in  patients  with
suspicious nipple discharge, Pazironi et al. recently proposed a
state-of-the  art  flowchart  for  the  management  of  nipple
discharge, incorporating breast MRI as a superior option [239].

6. INSIGHTS ON FUTURE DIRECTION

Future  directions  in  breast  MRI  include  ultra-high  field
MR  scanners,  breast  low  field  MRI,  breast  PET/MRI,  and
radiomics  and  radiogenomics.

Efforts  to  obtain  approval  by  U.S.  Food  and  Drug
Administration for clinical breast cancer applications using 7T
MRI  are  actually  ongoing.  DWI,  MRS,  and  other
multiparametric modern techniques could gain from the growth
of  7T MRI scanners.  Besides  obvious benefits  in  spatial  and
temporal  resolution,  technical  advances  have  to  be
implemented with the aim to improve B1 homogeneity [240 -
242].

A  really  emerging  approach  is  the  low-field  magnetic
resonance  imaging  (typically  with  field  strength  well  under
0.1T) that aims to provide diagnostic image quality, but with
lower  costs  and  environmental  impact  than  high-field  MRI
[243]. A pilot study is currently being conducted to test, for the
first time, a new method to image breast cancer using ultra-low
field breast MRI with a 6.5 mT scanner. In detail, investigators
are examining a new potential breast cancer MRI biomarker,
the intrinsic T1rho dispersion signal [244]. T1rho dispersion is
a  tissue  property  which,  at  low  frequencies,  reflects  protein
content  and  composition  of  tissue  and  proton  exchange
between water and macromolecules. Researchers are expecting
differences in T1rho dispersion between fat or fibroglandular
tissues and breast cancer tissues [245].

The  higher  sensitivities  of  PET  for  axillary  and  internal
mammary  nodal  metastases  than  standard  breast  MRI  alone
may be a benefit for dedicated breast PET/MRI [246]. While
single-institution studies have revealed that PET/MRI enables
to  detect  more  metastases  with  a  50%  reduction  in  total
radiation  exposure  than  PET/CT  for  whole-body  imaging  of
breast  cancer  patients,  a  survival  benefit  has  not  yet  been
proven  [246,  247].

Radiomics and radiogenomics represent a current research
field  stirring  growing  interest  worldwide.  The  rapidly
advancing  field  of  artificial  intelligence  methods  and  their
application  to  breast  MRI  suggests  that  radiomics  is  an
emerging  and  promising  tool  for  quantitative  tumor
assessment,  which  may  enable  the  extraction  of  further
quantitative  data  from  radiological  images.  In  particular,
radiomic analysis may offer novel data by quantifying lesion
heterogeneity  that  may  be  useful  in  clinical  practice  for  the
characterization  of  breast  lesions,  prediction  of  lymph  node
metastases, prediction of tumor response to systemic therapies,
and evaluation of prognosis and recurrence risk in patients with
breast  cancer  [248,  249].  The  diagnostic  and  prognostic
efficacy of radiomics applied to breast MRI has been examined
in  various  published  studies  [250  -  259].  Despite  the
encouraging evidence, Codari et al.'s comprehensive analysis
found that clinical practice is still far away from adopting AI
applications  due  to  the  existing  performance  of  such
applications in breast MRI [260]. Further research is required
to comprehend how the integration of radiomic data with other
clinical  and  histopathological  parameters  could  provide
accurate models that could aid in clinical decision-making and
patient management.

CONCLUSION

Currently,  MRI  is  the  most  sensitive  available  breast
imaging tecnhique for the detection of breast cancer. Technical
development,  further  clinical  indications,  and  new  research
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fields  have  emerged  over  recent  years.  Breast  dedicated
radiologists  need  to  constantly  update  their  knowledge  and
expertise with the aim to always remain confident and improve
their diagnostic performance in this field of breast MRI.
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