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2 MARIO J. EDMUNDO AND G. TERZO

1. INTRODUCTION

In [21] Pillay introduced the following very interesting conjecture connecting de-
finably compact definable groups with Lie groups which in the last years has led to
important developments in the model theory and geometry of o-minimal structures:

Pillay’s Conjecture [21]: Let G be a definably compact, definably connected,
definable group in a sufficiently saturated o-minimal structure. Then:

(1) G has a minimal type-definable normal subgroup of bounded index, call it
G,

(2) G/G, equipped with the Logic topology, is isomorphic, as a topological
group, to compact real Lie group.

(3) dimG = dimG/G°.

Pillay’s conjecture has now been proved in three different situations: in o-

minimal expansions of fields by Hrushovski, Peterzil and Pillay [13], in linear o-
minimal expansions of ordered groups by Eleftheriou and Starchenko [12] and in
non-linear semi-bounded o-minimal expansions of groups by Peterzil [14]. So Pil-
lay’s conjecture holds in arbitrary o-minimal expansions of groups. In all of the
three cases above the conjecture is a consequence of the following two crucial in-
gredients (after the paper [1] by Berarducci, Otero, Peterzil and Pillay where the
existence of G with properties (1) and (2) is proved):
(i) the model theory of generic subsets of definably compact definable groups from
[17] together with the heavy model theory of definable ameanable groups from [13];
(ii) the computation of m-torsion subgroups of abelian definably compact definable
groups ([7], [12] and [14] respectively in each one of the three cases).

In this paper we generalize the theory of generic subsets of definably compact de-
finable groups, which is presented in [17] in an o-minimal expansion of a real closed
field, to an arbitrary o-minimal structure. The computation of m-torsion subgroups
of abelian definably compact definable groups in the field case uses the o-minimal
singular cohomology theory from [10] and [22], in the linear case this is obtained
by a structure theorem for such definable groups ([12]) and in the non-linear semi-
bounded case by reduction to the field case ([14]). With a good cohomology theory
in arbitrary o-minimal structures which generalizes the o-minimal singular coho-
mology in o-minimal expansion of real closed fields ([10] and [22]) one could obtain
a uniform proof of the computation of m-torsion subgroups of abelian definably
compact definable groups in arbitrary o-minimal structures which would include
the three cases above. The authors already have made significant advances in this
direction building on previous joint work with other authors ([6], [8] and [9]).

In the paper [17] the authors work in a saturated o-minimal structure expanding
a real closed field, and develop a theory of generic subsets based on the work by A.
Dolich [3]. This assumption is necessary there since the theory presented by them
requires the definable groups to be affine in order to apply [17, Theorem 2.1]. (See
the explanation in [17, Subsection 1.1]). In the case of an o-minimal expansion
of a real closed field every regular definable space is affine up to definable home-
omorphism. (See [2] for the definition). However, by a trick due to Peterzil and
Eleftheriou ([14, Section 8]), this theory of generic sets also works for arbitrary
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definably compact definable groups in saturated o-minimal expansions of ordered
groups, even though in this case, there are definable groups which are not affine
([11]). Here we point out that this trick can be generalized to definably compact
definable groups in arbitrary saturated o-minimal structures.

2. DEFINABLE NORMALITY IN DEFINABLE GROUPS

Let M = (M, <,...) be an o-minimal structure. By definable we will mean
definable in M possibly with parameters. A definable group is a group whose un-
derlying set is a definable set and the graphs of the group operations are definable
sets. By [20] a definable group has unique definable manifold structure making
it into a topological group. All topological notions in a definable group, unless
otherwise stated, will be with respect to the unique definable manifold structure.
A definable group is definably connected if it is a definably connected definable
manifold, equivalently if it has no proper definable subgroups of finite index ([20]).
A definable group G is definably compact if for every continuous definable map
a: (a,b) € M U{—00,+00} — G the limits lim;_,,+ «(t) and lim;_,;- a(t) exist
in G ([15]). For the basic theory of definable groups we refer the reader to [5], [16],
[18], [19] and [20].

Here we show that every definable group is definably locally compact and every
definably compact definable subset of a definable group is definably normal.

Notation: Let H C M* be a definable group of dimension n with definable charts
(Ui, ¢i) (i = 1,...,1) for its unique definable manifold structure. Let U = U; be such
that the identity element ey of H is in U; and set ¢ = ¢;. Let ¢(ey) = (e1,...,ey)
and for each j = 1,...,n, take J; = (dj_,dj) C M to be an open (definable)
interval such that e; € J; and II7_,J; € ¢(U). Let O = ¢~ '(IT}_, J;) which is an
open definable neighborhood of ey in H.
Foreach j =1,...,n,let J7 ={x € J; : z < ¢;} and Jj+ ={zreJ;:e <z}

For 6 = (67,67 ,...,0,,6,) € IJ_  (J5 x JF), let

O’ ={zec0:¢(x)=(z,...,2,) and 0; <z < 6;' for all j}
and

0’ = {r€0:¢(x)=(21,...,2n) and 6; < z; < 6}*‘ for all j}.
If D is a definable subset of H, we consider

O%(D) = U{dO° : d € D}

and

0’ (D) = U{dO" : d € D}.

We have that O%(D) is open definable neighborhood of D in H and O°(D) C 55(D).

Lemma 2.1. Let H be a definable group. If D is a definably compact definable
subset of H, then 56(D) is a definably compact definable neighborhood of D in H.
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Proof. Let o : (bc) C M — 55(D) be a continuous definable map. Since

G has definable choice ([5, Theorem 7.2]), so thus OS(D). Hence, there is a con-
tinuous definable map 8 : (b,¢) € M — D such that for all ¢ € (b,¢) we have

at) € 56(6(75)). Therefore we have a continuous definable map v : (b,¢) C M —
7, [6;, (5;] given by ¥(t) = ¢(871(t)a(t)). Since D is definably compact, there is
z € D such that lim;,. 3(t) = z. On the other hand, since II7_,[0;, (5]+] is defin-
ably compact, there is y € II7_,[0;, (5;] such that lim;—,. ¥ (t) = y. By continuity
we have

lim a(t) = 26~ (y) € O (z) C O (D),

t—c

showing that 0’ (D) is definably compact. a

We say that a definable group G is definably locally compact if for every definably
compact definable subset K of G and every open definable neighborhood U of K
in G, there exists a definably compact neighborhood of K in U.

Proposition 2.2. Let G be a definable group. Then for every definably compact
definable subset K of G and every open definable neighborhood U of K in G, there
exists a definably compact neighborhood of K in U of the form 0 (K). In particular,
G is definably locally compact.

Proof. We prove the result by induction on the dim K. Clearly the result is
true for dim K = 0 and suppose it is true for every definably compact subset L
with dim L < dim K. Let K be a definably compact definable subset of G and U
an open definable neighborhood of K in G. Since ¢(O) has definable choice, there
exist a definable map

g+ K — T, (J;7 x Jf) ram (g7 (a), g{ (@), 9, (a), g7 (a))

such that U, = a<Z)_1(H§L:1(g;(a),gj+(a))) is an open definable neighborhood of a
in G contained in U. The definable subset of K on which g is not continuous is
a definable set of dimension strictly less than dimK. Let L be the closure of this
set in K. Then dimL < dimK ([2, Chapter 4, (1.8)]) and L is a definably compact
subset of G contained in U. So, by the induction hypothesis, there exist a definably
compact neighborhood in U of L of the form O"(L).

Take L' = K N (G \ O"(L)). Then L' is definably compact and gz : L' —
7, (J; x Jj) is continuous. Fix j € {1,...,n}. Then for all « € L’ we have
g; (a) <e; < g;-L(a). We show that there exist d; < e; < dj such that g; (a) <
d; < dj' < g;r(a) for all a € L'. Suppose there is no such dj'. Then for all e; < s
there exists a € L’ such that e; < gj' (a) < s. Since G has definable choice ([5, The-
orem 7.2]), so thus L’. Hence, there is a definable map ozj : (e5,¢5) C J;“ — L/
such that for all e; <t < ¢; we have e; < g;’(ozj' (t)) < t. By o-minimality we may
assume that ozj+ is continuous. Since L’ is definably compact there is e € L’ such
that limy e, o (t) = e. So gf(e) = g (lim;e; o (1)) = limy e, g (o (1) = ¢;
which is a contradiction. Similarly, d; exists. By construction, for all a € L/,
aqﬁ’l(H?:l(d;, dj)) is an open definable neighborhood of a in G contained in U.

Hence O%(L') C U where d = (dy,df,...,d;,d}). Let § = (67,07,...,6,,0;})

Yo' 'n
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where for each j, d; < 0; < e; < 5;7 < dj'. Now take € = (€] ,€f,...,6,,6)
where for each j, e; = max{d; ,n; } and e;r = min{é}',n}'}. Then by Lemma 2.1,
O (K) = O (L) UO (L) is a definably compact definable neighborhood of K in
U. O

Corollary 2.3. Let G be a definable group. If K and C are disjoint closed definable
subsets of G with K definably compact, then there exist open, disjoint definable
neighborhoods O°(K) and G\ O (K) of K and C respectively in G for some e and
6. In particular, if Q0 is a closed definable subset of G, then:
(1) Q is definably regular;
(2) If Q a definably compact, then Q2 is definably normal. In fact, any two
disjoint closed definable subsets A and B of € can be separated by open,
disjoint, definable neighborhoods of the form O°(A) N Q and O"(B) N .

Proof. Recall that Q is definably reqular if for every closed definable subset C'
of 2 and a a point of 2 not in C, then there exist open, disjoint definable neigh-
borhoods U and V of a and C respectively in 2. We say that € is definably normal
if for every pair K and C of closed, disjoint definable subsets of 2 there exist open,
disjoint definable neighborhoods U and V of K and C respectively in . So, by
Proposition 2.2, there exists a definably compact neighborhood of K in G\ C of the
form O°(K). For the statement it is enough to choose § = (87,07, ..., 8., 6:) where

yYnr¥n

for each j, e; < d; <e; < (5;-r < e;r, and take U = O%(K) and V = G\ O°(K). O

Corollary 2.4 (Shrinking lemma). Let G be a definable group. If ) is a definably
compact definable subset of G and Uy, ...,U; are open definable subsets of G such
that Q = J,(U; NQY), then there are open definable subsets V; C U; withi=1,...,1
such that V; C U; and Q = |J,(V; N Q). Moreover, for each i = 1,...,l, we have
Vi = 0%(A;) for some 8; where the closed definable subsets A; of Q are given

inductively by A; = Q\ (U,,<; Vin U U;:H_l U;).

Proof. This follows from the fact that € is definably normal (Corollary 2.3 (2))
and the shrinking lemma whose affine version is [2, Chapter 6, Lemma 3.6]. In fact,
assume inductively that V; C U; has been defined for ¢ = 1,...,k (k <) such that
V; is a definable open subset of G, V; C U; and Vi,...,Vi,Ury1,...,U; cover €.
Then apply Corollary 2.3 (2) to the following two disjoint closed definable subsets

of
l

B=Q\Upand C=Q\ (| J VU |J U)).
m<k j=k+2

3. GENERIC SUBSETS OF DEFINABLE GROUPS

Here we prove the main results of the paper . We start with the generalization
of [14, Lemma 7.1] from semi-bounded o-minimal expansions of groups ([4]) to
arbitrary o-minimal structures.

Lemma 3.1. Let G be a definable group of dimension n with definable charts
(Ui, ¢i) with i = 1,...,1. If Q is a definably compact definable subset of G, then
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there are open definable subsets V; C U; of G, with i = 1,...,1, such that V; C U,
Q=U,;(V;NQ) and, for each i, ¢;(V; Q) a closed and bounded definable subset of
M™. Furthermore, for each i = 1,...,1, we have V; = O%(A;) for some §; where
the closed definable subsets A; of Q0 are given inductively by A; = Q\ (U Vi U

l
Uj=iv1 Us)-

m<1

Proof. Suppose that G C MF*. Consider the finitely many definable charts
(U;, ¢;)’s for G given by Pillay’s theorem on definable groups in [20]. Then by
construction, U; is a cell in G € M* of dimension n or U; is a translate in G of a
cell in G C M* of dimension n. In the first case, ¢; is the restriction of a projection
from MP* onto some n < k coordinates. In the second case ¢; is the composition of
a translation in G and the restriction of a projection as above. For the fact that the
restriction of a projection as above is a definable homeomorphism see [2, Chapter
3, (2.7)].

Consider the open definable subsets V; C U; (i = 1,...,1) given by Corollary
2.4 such that V; C U; and Q = [J;(V; N Q). It is enough to show that for every U;
which is a cell in G C MP*, any definably compact definable subset C' of G such
that C C U; € M* is bounded.

Fix i such that U; is a cell in G € M* and suppose that C is a definably compact
definable subset of G such that C C U; and C' is unbounded. Then there is a j such
that the projection of C' onto the j-coordinate is unbounded. Since G has definable
choice ([5, Theorem 7.2]) one of the following holds: (i) there is a definable map
a: (e,+00) € M — U; C G such that ima C C and for each t € (e, +00), we
have a;(t) > t where a;(t) is the j-coordinate of a(t); (ii) there is a definable map
a: (—o00,d) € M — U; C G such that ima C C and for each ¢t € (—o0,d), we
have a;(t) < t where a;(t) is the j-coordinate of a(t). We assume (i) holds. For
(ii) the proof is similar. By o-minimality we may assume that « is continuos with
respect to the topology of G. Since C' is definably compact, the limit lim;_, o0 (t),
with respect to the topology induced by G on C, exists in C. Let a be this limit.

By the observation in the first paragraph, the topology induced by G on U; is the
same as the topology induced by M* on U;. Let B be a bounded open box in M*
containing a. Then BNU; is an open definable neighborhood of a in U; C G in the
topology of G. Thus there is a to € (e, +00) such that im a4, +00) € BNU; € B.
But this is absurd since im )¢, 400) i unbounded. ([l

For the rest of the section assume that M is a saturated o-minimal structure.

Let G be a definable group defined over a small model My and let Z be a
definable subset of GG, say defined over some parameter a in M. Thus, there is a
uniformly Mo-definable family {Z(¢) : t € T} of My-definable subsets of G such
that a € T and Z = Z(a). Let {Z'(t) : t € T'} be another uniformly Mj-definable
family of Mo-definable subsets of G such that a € T’ and Z = Z’'(a). Then the sets
{teT:tEtpla/My)}and {t € T’ : ¢t = tp(a/Mp)} are equal (because a € TNT")
and the sub-families {Z(t) : t € T and ¢ = tp(a/My)} and {Z'(t) : t € T’ and
t = tp(a/My)} are equal (because Z(a) = Z = Z'(a)). Recall that:

o the set of My-conjugates of Z is the same thing as the sub-family {Z(¢) :
teT and t = tp(a/My)};
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e the set of My-conjugates of Z is finitely consistent if and only if the sub-
family {Z(t) : t € T and t |= tp(a/Mpy)} has the finite intersection property
(i.e., for any finite subset S of {t € T : ¢t |= tp(a/My)} the intersection
NscstZ(s) : s € S} is non empty).

As explained in [17] and [14, Section 8] the crucial fact behind the theory of
generic definable subsets of a definable group is the following result.

Theorem 3.2. Let G be a definable group defined over a small model Mg and
let Q be a definably compact definable subset of G defined over My. If X C G is
a definable compact definable subset of 2, then the set of Mg-conjugates of X is
finitely consistent if and only if X has a point in M.

Proof. Let (U;,¢;) (i =1,...,1) be the definable charts of G given by Pillay’s
theorem on definable groups in [20]. Then the definable charts (U;, ¢;) (i = 1,...,1)
are also defined over M. By Lemma 3.1, there are open definable subsets V; C U;
of G, with i = 1,...,1, such that V; C U;, @ = J,(Vin Q) = J,;(Vi N Q) and, for
each i, ¢;(V;NQ) is a closed and bounded definable subset of M™ where n = dim G.
Moreover, if for each i we set X; = V;NQNX C U;, then X = U; Xi € Q, ¢i(X5)
is a closed and bounded definable subset of ¢;(U;) and ¢;(U;) has definable choice
since the same is true for U; C G.

Let a be a parameter in M over which X is defined. Consider a uniformly
Mo-definable family {X (¢) : ¢t € T} of My-definable subsets of G such that a € T
and X = X(a). Since X C Q and {2 is defined over My, after replacing T by an
Mo-definable subset, we may assume that for all ¢ € T" we have X (t) C Q. Since
“closed” is a first-order property, we may also assume that X (¢) is a closed (hence
definably compact) definable subset of Q for all ¢ € T. If for each ¢ and t € T
we set X;(t) = V;N QN X(t) C U, then we get uniformly My-definable families
{Xi(t) : t € T} of My-definable subsets of G such that X (t) = |J, X;(t) € Q and
¢:(X;(t)) is a closed and bounded definable subset of ¢;(U;).

Recall that the set of Mgy-conjugates of X is the sub-family {X(¢) : ¢t € T and
t = tp(a/Mpy)}, and for each 4, the set of My-conjugates of X; (resp. ¢;(X;)) is
the sub-family {X;(t) : t € T and ¢ = tp(a/Mp)} (vesp. {¢:(X;(t)) : t € T and
= tp(a/Mo)}).

Note also that by the remarks before the proof of [17, Theorem 2.1] (in the
Appendix of that paper) together with its proof we can use this theorem to conclude
that: the set of Mg-conjugates of ¢;(X;) is finitely consistent if and only if ¢;(X;)
has a point in My. Since each ¢;x, : X; — ¢;(X;) is the restriction of a definable
bijection ¢; defined over My, we have that Mg-conjugation commutes with ¢; and
with ¢;1 and the image by ¢; and by q’);l of a point in My is a point in M.
Hence, the set of My-conjugates of X; is finitely consistent if and only if X; has a
point in M.

It is obvious that if X has a point in My, then the set of My-conjugates of X
is finitely consistent. Conversely suppose that the set of My-conjugates of X is
finitely consistent. By the observation in the previous paragraph it is enough to
show that for some ¢, the set of My-conjugates of X is finitely consistent. By our
assumption, the collection {X (¢) : ¢t € T and t |= tp(a/Mp)} of definable subsets of
G is a partial type which extends to a complete type p over M. Let b = p in some
| M| *-saturated elementary extension M’ of M. Then b € {X (¢)(M’) : ¢t € T and
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t = tp(a/My)} € Q(M'). So there is some i such that b € V;(M’) N Q(M') (since
Q = ,;(ViNQ)) and consequently, b € N{X;(t)(M') : t € T and ¢ = tp(a/My)}
(since X;(t) = V; N QN X(t) by definition). Thus, as required, we found an i such
that the set of My-conjugates of X; is finitely consistent. O

We can now state the main result on generic definable subsets of a definably
compact definable group G which can be proved from Theorem 3.2 just like [17,
Theorem 3.6]. Recall that a definable subset X of G is left (resp. right) generic if
finitely many left (resp. right) translates of X by elements of G cover G.

Theorem 3.3. Assume that G is a definably compact definable group and X C G
is a definable subset. If X is not left generic, then G\ X is right generic.

Proof. We may assume that both G and X are defined over a small model
Mo. By [17, Lemma 3.4 (ii)], we may assume that X is a closed definable subset
of G. Since X is not left generic, for every hy,...,h; € G there is g € G such that
h; & Xg, fori=1,..., k. By first-order logic compactness, there is ¢ € G such that
X g has no point in My. So by Theorem 3.2, the set of Mg-conjugates of the de-
finably compact definable subset X g of G (which is definably compact and defined
over the small model M) is not finitely consistent. This means that the family
{X¢' : ¢ = tp(g/My)} does not have the finite intersection property. Therefore,
there are ¢1,...,g; € G all realizing tp(g/Mp) such that Xg; N---N Xg = 0. In
particular, G \ X is right generic as required. O

From Theorem 3.3 we obtain just like in [17, Section 3]:

Theorem 3.4. If G is a definably compact, abelian, definable group, then:

e the union of two non generic definable subsets of G is also non generic;

e there is a complete generic type of G (whose formulas define generic defin-
able subsets);

o for every definable subset X of G its stabilizer Stab(X) = {g € G :
XA(gX) is non generic} is a type definable subgroup of G.

Also from Theorem 3.3 we obtain just like in [17, Section 4]:

Theorem 3.5. Let G be a definably compact definable group and S C G a definable
semi-group in G (i.e., a definable set closed under the group operation of G). If the
closure of S in G is definably compact, then S is a subgroup of G. In particular, if
G is definably compact, then every definable semi-group in G is a subgroup of G.

4. UNIFORM DEFINABILITY OF DEFINABLE COMPACTNESS

Here we show that the notion of “definably compact group” is a first-order no-
tion in arbitrary o-minimal structures, i.e., if {G5 : s € S} is a uniformly definable
family of definable groups, then the set of s for which G4 is definably compact is
definable. In the special case of o-minimal expansions of ordered groups this is [14,
Lemma 7.4].

Lemma 4.1. Let {G : s € S} be a uniformly definable family of definable groups
in M. If {Cy : s € S} is uniformly definable sub-family of definable subsets, then
there exists a definable map f: S — |J,c4 Gs such that f(s) € Cs for each s € S.
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Proof. Suppose that the families {Gs : s € S} and {C; : s € s} are defined over
A. Since each G4 has definable choice ([5, Theorem 7.2]), for each s € S, there exists
a definable element ¢, € Cy defined over {s} U A. Let ¢4(z,y,as) be a first-order
formula over A such that ¢ (x, s, as) defines ¢;. For each s € S, let B; be the subset
of S of all t € S such that 9,(x,t,as) defines an element of C;. Then S = (J, g Bs
and each By is a definable set defined over A. Since S is also defined over A, by
first-order logic compactness, there are sg,...,s € S such that S = B,, U---UB,.
Take a cell decomposition C of S compatible with the definable subsets B, ..., B,
and for each C' € C choose s¢ € {s; : C C B,, and i = 0,...,l}. Consider the de-
finable map f : S — (J,cg Gs defined over A such that for C € C, fi¢ is defined
by the formula ¢, (z,y, as. ). Then f(s) € Cs for each s € S as required. O

Notation: Let {G; : s € S} be a uniformly definable family of definable groups
in M* with dimGy = n for all s € S. By Pillay’s theorem on definable groups
in [20] there exists, uniformly in s, a definable family of finitely many definable
charts {(U;s,is) : s € S, i = 1,...,1} for the G4’s. For each s € S, let eg,
be the identity element of G,. Since, for each s € S we can definably choose
is € {1,...,1} such that eq, € U;, s, we may assume that for all s € S, we have
eq, € Us = U, s for some fixed i. Set ¢5 = ¢is. Let ds(eq,) = (e1,6,.--,€n,s)-
Since for each j = 1,...,n, there exists J; ; = (d;s,d;fs) C M an open (definable)
interval such that e; s € J; 5 and I17_, J; s € ¢5(Us), by Lemma 4.1, we can assume
that {J;  : s € S} is uniformly definable. Let O, = ¢ ' (II}_, J; ;) which is an open
definable neighborhood of e, in Gs. Then {O; : s € S} is a uniformly definable
sub-family of {G, : s € S}.

Foreach s € Sand j =1,...,n,let Jo, ={z € J; :x <e;}and JI ={ze
Jis i €js <z} For 8g = (67,01 ..., 0,01 .) € 7 (J5 5 % J;;), let

0% ={x €0, : ¢s(x) = (21,...,2,) and 06 <2z < 5; for all j}
and
0—865 ={2r € O0s: ¢s(x) = (21,...,2n) and §; , < z; < 5;‘; for all j}.
If {D; : s € S} is a uniformly definable sub-family of {G; : s € S}, we consider
0% (Dy) = U{dOY* : d € Dy}

and
65

0.7 (Dy) = U{dO,” : d € D,).
We have that, for each s € S, O2(D,) is an open definable neighborhood of D in

G, and 0%(D,) C 0, (D,).

Proposition 4.2. Let {G, : s € S} be a uniformly definable family of definable
groups in M* and {K, : s € S} a uniformly definable sub-family of definable
subsets. Then the set of s for which K, is a definably compact definable subset of
G is definable.

Proof. By definability of dimension ([20]) we may assume without loss of gen-
erality that each G, has dimension n. Let {(U;s,¢is) : s € S, i = 1,...,1} be a
uniformly definable family of finitely many definable charts for the Gy’s.
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Consider the subset S’ of S of all s € S such that the following condition holds:
Vo1e . VoL [(ANLy 8is € Ty (J5, % JH)) = [V, (61,5 (02° (Ass) N Ks) is unbounded
or Ky ¢ UL, 0% (Ais) or V'_ (03 (Ais) € Uis)], where the A;.’s are given

inductively by =
1
Ai,s =K, \ ( U Ogm’s (Am,s) U U U',s)'
m<i j=it1
By definability of “bounded” in M¥, S’ is a definable subset of S. So by Lemma
3.1, after replacing S by S\ S’, we may assume that for all s € S the following
first-order condition holds:
3015+ 3616[(AlLy 6is € T2y (7, X JF)) ATALL (60,5057 (Ais) N Ks) is bounded and
K, C UL, 02" (Ais) and AL, (02" (Ais) C Uss)].
By Lemma 4.1, there exist definable maps 61,...,0 : S — II7_; (J; ;% J;s) such
that for all s € S, AL_, (¢:,:(03) (4; .)NK,) is bounded and K, C |J!_, 03" (4, ;) and
A (03 (4; ) CU,). Foreachi=1,...,land s € S, set W , = 0% () (4; )NK,

=1

and if €5 € H?:I(J;s X J]T*"S), let
Wiy = Wi\ Oy (Wi \ Wis).

Claim 4.3. For each s € S, the definable set K is definably compact in G if and
only if there exists es € II7_;(J; , x J;fs) such that

l
€s
K, = Jw.
i=1

Proof. Fix s, and assume that K is definably compact in G;. For each
i =1,...,1, let V; s be open definable subsets of G such that K C W, and
K, =U._,(Vi.sNK,) (Corollary 2.4). Then V; ,N(W; .\ W;.) = 0 and so K.\ Vi,
is an open definable neighborhood of W; s\ W, 5 in K. Since W; s\ W,  is definably
compact, it follows from Proposition 2.2, that there exists €5 € H};l(]]fs X J;s)
such that Ky = Ui:l Wfé For the converse, if there is an €5 as above, then any
(continuous) definable curve a in K, will be eventually contained in one of the
Wi, Since ¢;,s(W;3) is bounded the (continuous) definable curve ¢; s o a has a

limit @ € M™, which must be in ¢; (U s). Thus (;5;51 (a) € Ky is the limit of . O

We end the section with an observation about another uniform definability result
from [14]. In [14, Lemma 7.4 (ii)] it is proved that in an o-minimal expansion of an
ordered group, if {Gy : s € S} is a uniformly definable family of abelian definable
groups, then the set of s for which G, is definably connected is definable. We
point out that the proof there is very general and the above assumptions are not
necessary. Hence:

Remark 4.4. If {G; : s € S} is a uniformly definable family of definable groups,
then the set of s for which G is definably connected is definable.

REFERENCES

[1] A. Berarducci, M. Otero, Y. Peterzil and A. Pillay A descending chain condition
for groups definable in o-minimal structures Ann. Pure Appl. Logic 134 (2005) 303
- 313.



A NOTE ON GENERIC SUBSETS OF DEFINABLE GROUPS 11

[2] L. van den Dries Tame topology and o-minimal structures Cambridge University
Press 1998.
[3] A.Dolich Forking and independence in o-minimal theories J. Symb. Logic 69 (2004)
215 — 240.
[4] M. Edmundo Structure theorems for o-minimal expansions of groups Ann. Pure
Appl. Logic 102 (1-2) (2000) 159 — 181.
[5] M. Edmundo Solvable groups definable in o-minimal structures J. Pure Appl. Al-
gebra 185 (1-3) (2003) 103 — 145.
[6] M. Edmundo, G. Jones and N. Peatfield Sheaf cohomology in o-minimal structures
J. Math. Logic 6 (2) (2006) 163 — 179.
[7] M. Edmundo and M. Otero Definably compact abelian groups J. Math. Logic 4 (2)
(2004) 163 — 180.
[8] M. Edmundo and N. Peatfield O-minimal Cech cohomology Quart. J. Math. 59 (2)
(2008) 213 — 220.
[9] M. Edmundo and L. Prelli Poincaré - Verdier duality in o-minimal structures Ann.
Inst. Fourier Grenoble 60 (4) (2010) 1259 — 1288.
[10] M. Edmundo and A. Woerheide Comparation theorems for o-minimal singular
(co)homology Trans. Amer. Math. Soc. 360 (9) (2008) 4889 — 4912.
[11] P. Eleftheriou A semi-linear group which is not affine Ann. Pure Appl. Logic 156
(2008) 287 — 289.
(12] P. Eleftheriou and S. Starchenko Groups definable in ordered vector spaces over
ordered division rings J. Symb. Logic 72 (2007) 1108 — 1140.
(13] E. Hrushovski, Y. Peterzil and A. Pillay Groups, measures and the NIP J. Amer.
Math. Soc. 21 (2) (2008) 563 — 596.
[14] Y. Peterzil Returning to semi-bounded sets J. Symb. Logic 74 (2) (2009) 597 — 617.
[15] Y. Peterzil and C. Steinhorn Definable compacteness and definable subgroups of
o-minimal groups J. London Math. Soc. 59 (2) (1999) 769 — 786.
[16] Y. Peterzil and S. Starchenko Definable homomorphisms of abelian groups definable
in o-minimal structures Ann. Pure Appl. Logic 101 (1) (1999) 1 — 27.
[17] Y. Peterzil and A. Pillay Generic sets in definably compact groups Fund. Math.
193 (2) (2007) 153-170.
[18] Y. Peterzil, A. Pillay and S. Starchenko Definably simple groups in o-minimal
structures Trans. Amer. Math. Soc. 352 (10) (2000) 4397 — 4419.
[19] Y. Peterzil, A. Pillay and S. Starchenko Linear groups definable in o-minimal struc-
tures J. Algebra 247 (2002) 1 — 23.
[20] A. Pillay On groups and fields definable in o-minimal structures J. Pure Appl.
Algebra 53 (1988) 239 — 255.
[21] A. Pillay Type-definability, compact Lie groups and o-minimality J. Math. Logic 4
(2) (2004) 147 — 162.
[22] A. Woerheide O-minimal homology PhD. Thesis (1996), University of Illinois at
Urbana-Champaign.

UNIVERSIDADE ABERTA AND CMAF UNIVERSIDADE DE LISBOA, Av. PROF. GAMA PINTO 2,
1649-003 LisBOA, PORTUGAL
E-mail address: edmundo@cii.fc.ul.pt

DEPARTMENT OF MATHEMATICS, SECONDA UNIVERSITA DI NAPOLI, VIA VIVALDI 43, 81100
CASERTA, ITALY
E-mail address: giuseppina.terzo@unina2.it



