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1. Introduction

We fix an arbitrary o-minimal structure M = (M,<, . . .) and work in the cate-
gory of definable spaces, X, in M with the o-minimal site on X, with morphisms
being definable continuous maps. The o-minimal site on X is the site whose un-
derlying category is the set of all relatively open definable subsets of X (open
in the strong, o-minimal topology) with morphisms the inclusions and admissible
coverings being covers by open definable sets with finite subcoverings.

The o-minimal setting generalizes the semi-algebraic and globally sub-analytic
contexts ([11]), and so our first main theorem (on Subsection 2.2) generalizes the
existence of sheaf cohomology with supports in semi-algebraic geometry, as de-
scribed in the book [8]. This o-minimal sheaf cohomology with supports satisfies
the Eilenberg-Steenrod axioms adapted to the o-minimal site - for the homotopy
axiom we need to assume thatM has definable Skolem functions and the definable
space X involved is definably normal such that for every closed interval [a, b] ⊆M
the projection X × [a, b] −→ X maps closed definable subsets into closed definable
subsets. Other cohomology theories have been constructed for o-minimal structures
of special types in the past. Simplicial and singular cohomologies were constructed
in o-minimal expansions of fields by A.Woerheide in his doctoral thesis, a report of
which can be found in [15]. A sheaf cohomology without supports has been con-
structed in [13] for o-minimal structures (with the extra technical assumptions for
the homotopy axiom given above), which generalized the sheaf cohomology without
supports for real algebraic geometry of Delfs, for which he proved the homotopy
axiom in [7]. The theory presented here generalizes all of these and is an extension
of the corresponding theory in topological spaces ([4], [17], [18] and [19]).

Following the classical proof of the Poincaré - Verdier duality for topological
spaces we prove here a version Verdier duality theorem for the o-minimal sheaf
cohomology with definably compact supports of definably normal, definably locally
compact spaces in an arbitrary o-minimal structure (Theorem 4.5). This result is
new even in the semi-algebraic context. We do not develop yet the full theory of
proper direct image and its dual in the o-minimal context but nevertheless we prove
our version of Verdier duality by considering inclusions of definably locally closed
definable subsets. The theory of proper direct image is partially developed in the
semi-algebraic case in the book by Delf’s ([8]). In the sub-analytic context there
are several approaches to this theory by Kashiwara and Schapira ([20]) and also L.
Prelli ([23]).

From Verdier duality we derive the Poincaré and Alexander duality theorems
(Theorems 4.11 and 4.14). The later results are based on a general and new orien-
tation theory for definable manifolds which we show to be the same as the orienta-
tion theory in o-minimal expansions of fields defined in [1] and [2] using o-minimal
singular homology. (See subsection 4.4).

Our Poincaré - Verdier duality theory relays heavily on the theory of normal and
constructible supports and o-minimal cohomological Φ-dimension. This rather tech-
nical theory in presented in Section 3 and is the o-minimal version of the topological
theory of paracompactifying families of supports and cohomological Φ-dimension
and generalizes the corresponding theory in the semi-algebraic context ([8]).

The motivation for developing this general o-minimal Poincaré - Verdier duality
is to be able to apply it to compute the o-minimal cohomology of definably compact
definable groups defined in arbitrary o-minimal structures generalizing in this way
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the computation of the o-minimal singular cohomology of definable groups in o-
minimal expansions of fields already presented in [14]. We hope do this in a different
paper.

Acknowledgement: The contents of Subsection 2.2 and most of Subsection
3.1 were previously worked out jointly with Gareth O. Jones and Nicholas J. Peat-
field. The first author would like to thank them for allowing him to include this
material here.

2. Notations and review

In this section we recall some preliminaries notions about sheaves on topological
spaces and the previous results about sheaves on the o-minimal spectrum of a
definable space. For further details about classical sheaf theory, see for example
[4], [17], [18], [19] and [21]. Good references on o-minimality are, for example, the
book [11] by van den Dries and the notes [5] by Michel Coste. For semi-algebraic
geometry relevant to this paper the reader should consult the work by Delfs ([7]
and [8]), Delfs and Knebusch ([9]) and the book [3] by Bochnak, Coste and M-F.
Roy.

2.1. Sheaves on topological spaces. Let X be a topological space and let k be
a field. As usual, we will set Mod(kX) the category of sheaves of k-modules on X.
This is a Grothendieck category, hence it admits enough injectives and a family of
generators (the sheaves kU defined below). Moreover filtrant inductive limits are
exact.

Let f : X → Y be a morphism of topological spaces. As usual we denote by f∗
and f−1 the functors of direct and inverse image. In particular, when Y is a subset
of X we will denote by iY : Y ↪→ X the inclusion.

When S is closed and F ∈ Mod(kX) one sets FS = iS∗i
−1
S F , and when U is open

FU = ker(F → FX\U ) (or equivalently FU is the sheaf associated to the presheaf
V 7→ Γ(V ;FU ) which is Γ(V ;F) if V ⊆ U and 0 otherwise). When Z = U ∩ S set
FZ = (FU )S . The functor (•)Z is exact and FZ is characterized by FZ|Z = F|Z
and FZ|X\Z = 0. If Z ′ is another locally closed subset of X, then (FZ)Z′ = FZ∩Z′ .
When F = kX is the constant sheaf on X we just set kZ instead of (kX)Z . If Z1, Z2

are locally closed and Z1 is closed in Z2 we have an exact sequence

0→ FZ2\Z1 → FZ2 → FZ2∩Z1 → 0.

When U is open one sets ΓUF = iU∗i
−1
U F . Then we have Γ(V ; ΓUF) = Γ(U ∩

V ;F). When S is closed ΓSF = ker(F → ΓX\SF) (sections with support in S).
When Z = U ∩ S we set ΓZ = ΓU ◦ ΓS . The functor ΓZ(•) is left exact and if
Z ′ is another locally closed subset, then ΓZ′(ΓZF) = ΓZ∩Z′F . If Z1, Z2 are locally
closed and Z1 is closed in Z2 we have an exact sequence

0→ ΓZ2∩Z1F → ΓZ2F → ΓZ2\Z1F .
Let Z be a locally closed subset of X. We are going to define the functor iZ!

such that for F ∈ Mod(kZ), iZ!F is the unique k-sheaf in Mod(kX) inducing F on
Z and zero on X \ Z. First let U be an open subset of X and let F ∈ Mod(kU ).
Then iU !F is the sheaf associated to the presheaf V 7→ Γ(V ; iU !F) which is Γ(V ;F)
if V ⊆ U and 0 otherwise. If S is a closed subset of X and F ∈ Mod(kS), then
iS!F = iS∗F . Now let Z = U ∩ S be a locally closed subset of X, then one defines
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iZ! = iU ! ◦ iS! ' iS! ◦ iU !. The functor iZ! is exact and has a right adjoint, denoted
by i!Z , when Z is open we have i!Z ' i

−1
Z , when Z is closed i!Z ' i

−1
Z ΓZ . With these

definitions one has

FZ ' F ⊗ kZ ' iZ!i
−1
Z F and ΓZF ' Hom(kZ ,F) ' iZ∗i!ZF .

Let X be a topological space and Φ a family of supports on X (i.e. a collection
of closed subsets of X such that: (i) Φ is closed under finite unions and (ii) every
closed subset of a member of Φ is in Φ). Recall that for G ∈ Mod(kX), an element
s ∈ Γ(X;G) is in ΓΦ(X;G) if and only if its support,

supp s = X \ ∪{U ⊆ X : U is open in X and s|U = 0},
is in Φ, i.e.

ΓΦ(X;G) = lim−→
S∈Φ

ΓS(X;G).

The following fact (see [4], Chaper I, Proposition 6.6) will also be useful later:

Proposition 2.1. Let X be a topological spaces, Φ a family of supports on X, Z
a locally closed subset of X and let iZ : Z → X be the inclusion. Let F be a sheaf
in Mod(kZ). Then

ΓΦ(X; iZ!F) ' ΓΦ|Z(Z;F).

2.2. Sheaves on o-minimal spectral spaces. LetM = (M,<, . . .) be our fixed
arbitrary o-minimal structure. First observe that in M we have the order topology
generated by open definable intervals and in Mk we have the product topology
generated by the open boxes. Thus every definable set X ⊆ Mk has the induced
topology and we say that a definable subset Z ⊆ X is open (resp. closed) if it
is open (resp. closed) with the induced topology. Similarly, we can talk about
continuous definable maps f : X −→ Y between definable sets. This topology
has however a problem: in non-standard o-minimal structures definable sets are
usually totally disconnected and never connected or locally compact or compact.
So we have to introduce definable analogues of these and other topological notions.

Since we do not want to restrict our work to the affine definable setting, we
introduce the notion of definable spaces. A definable space is a triple (X, (Xi, φi)ki=1)
where:

(i) X = ∪{Xi : i = 1, . . . , k};
(ii) each φi : Xi −→M li is a bijection such that φi(Xi) is a definable subset of

M li ;
(iii) for all j, φi(Xi∩Xj) is open in φi(Xi) and the transition maps φij : φi(Xi∩

Xj) −→ φj(Xi ∩Xj) : x 7→ φj(φ−1
i (x)) are definable homeomorphisms.

The dimension of a definable space X is defined as

dimX = max{dimφi(Xi) : i = 1, . . . , k}.
A definable space has a topology such that each Xi is open and the φi’s are home-
omorphisms: a subset U of X is an open in the basis for this topology if and only
if for each i, φi(U ∩Xi) is an open definable subset of φi(Xi). We also say that a
subset A of X is definable if and only if for each i, φi(A∩Xi) is a definable subset of
φi(Xi). A map between definable spaces is definable if when it is read through the
charts it is definable. Thus we have the category of definable spaces with definable
continuous maps.

We say that a definable space X is:
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• definably connected if it is not the disjoint union of two open and closed
definable subsets;
• definably compact if for every continuous definable map σ : (a, b) ⊆ M ∪
{−∞,+∞} −→ X, the limits limt→a+ σ(t) and limt→b− σ(t) exist and be-
long to X.
• definably locally compact if for every definably compact subset Z with open

definable neighborhood U in X, there is a definably compact neighborhood
of Z in U .
• definably normal if for every disjoint closed definable subsets Z1 and Z2

of X there are disjoint open definable subsets U1 and U2 of X such that
Zi ⊆ Ui for i = 1, 2.
• definable manifold of dimension n if φi(Xi) is an open definable subset of
Mn for every i = 1, . . . , k.

The o-minimal site on a definable space X is the category whose objects are
open definable subsets of X, the morphisms are the inclusions and the admissible
covers are covers by open definable subsets with finite subcoverings.

The following results are an easy adaptation of Propositions 6.4.1 and 6.3.3 of
[20], replacing Tc with open definable (indeed we just need the site generated by a
family of open subsets closed under finite intersections and whose coverings admit a
finite subcover). The first result gives an easy way to construct o-minimal k-sheaves:

Proposition 2.2. Suppose that X be a definable space. Let F be a k-presheaf on
X relative to the o-minimal site on X and assume that:

(1) F(∅) = 0;
(2) for any U and V open definable subsets of X the canonical sequence

0 −→ F(U ∪ V ) −→ F(U)⊕F(V ) −→ F(U ∩ V )

is exact.
Then F is a k-sheaf on X relative to the o-minimal site on X.

The second result shows that in this setting the global sections functor commutes
with filtrant inductive limits:

Proposition 2.3. Let U be a open definable subset of X and let (F i)i∈I be a filtrant
inductive family of sheaves on the o-minimal site associated to X. Then

Γ(U ; lim−→
i

F i) ' lim−→
i

Γ(U ;F i).

We define the o-minimal spectrum X̃ of a definable space X as in [5], [6] and [22]:
it is the set of ultrafilters of definable subsets of X. The o-minimal spectrum X̃
of a definable space X is T0, quasi-compact and a spectral topological space when
equipped with the topology generated by the open subsets of the form Ũ , where U
is an open definable subset of X. That is: (i) it has a basis of quasi-compact open
subsets, closed under taking finite intersections; and (ii) each irreducible closed
subset is the closure of a unique point.

The dimension of the o-minimal spectrum X̃ of a definable space X is defined
as

dim X̃ = dimX.

By a constructible subset of X̃ we mean a subset of the form Ã where A is a
definable subset of X.
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We also have the o-minimal spectrum f̃ : X̃ −→ Ỹ of a continuous definable
map f : X −→ Y between definable spaces: given an ultrafilter α ∈ X̃, f̃(α) is the
ultrafilter in Ỹ determined by the collection {A : f−1(A) ∈ α}.

We now recall some results from [13] about this tilde functor. Note that these
results were stated in [13] in the category of definable sets but are true in the
category of definable spaces with exactly the same proofs.

As we saw in [13] we have:

Remark 2.4. The tilde functor is an isomorphism between the boolean algebra of
definable subsets of a definable space X and the boolean algebra of constructible
subsets of its o-minimal spectrum X̃ and it commutes with image and inverse image
under definable maps.

Another useful property is the following result:

Theorem 2.5 ([13]). Let X be a definable space. Then the following hold:

(i) X is definably connected if and only if its o-minimal spectrum X̃ is con-
nected.

(ii) X is definably normal if and only if its o-minimal spectrum X̃ is normal.

Also we have the following shrinking lemma:

Proposition 2.6 ([13], The shrinking lemma). Suppose that X is a definably nor-
mal definable space (resp. a normal o-minimal spectrum of a definable space). If
{Ui : i = 1, . . . , n} is a covering of X by open definable subsets (resp. open subsets)
of X, then there are definable (resp. constructible) open subsets Vi and definable
(resp. constructible) closed subsets Ki of X (1 ≤ i ≤ n) with Vi ⊆ Ki ⊆ Ui and
X = ∪{Vi : i = 1, . . . , n}.

Since the o-minimal spectrum of a definable space is quasi-compact, as in the
proof of Propositions 2.2 and 2.3, we have:

Remark 2.7. Suppose that X is an object in the category of o-minimal spectra of
definable spaces. Let F be a k-presheaf on X and assume that:

(1) F(∅) = 0;
(2) for any U and V open constructible subsets of X the canonical sequence

0 −→ F(U ∪ V ) −→ F(U)⊕F(V ) −→ F(U ∩ V )

is exact.
Then F is a k-sheaf onX. Moreover sections on open constructible subsets commute
with filtrant lim−→.

We have a morphism of sites naturally induced by the above tilde functor from
the category of definable spaces with continuous definable maps into the category
of o-minimal spectral spaces with the o-minimal spectra of continuous definable
maps. This morphism of sites induces the following isomorphism:

Theorem 2.8 ([13]). Let X be a definable space. Then there is an isomorphism
between the category of k-sheaves on X relative to o-minimal site on X and the
category of k-sheaves on the o-minimal spectrum X̃ of X relative to the spectral
topology on X̃.
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The isomorphism of Theorem 2.8 allowed the development of o-minimal sheaf
cohomology without supports in [13] by defining concepts and also sometimes prov-
ing results via this tilde isomorphism. In this paper we will continue to use this
technique but allowing now the presence of supports.

We will now define the notion of family of supports on a definable set. Our
treatment of this will follow the corresponding theory in semi-algebraic geometry
in [8] (Chapter II, Sections 1 - 5) and in topological spaces in [4] (Chapter I, Section
6 and Chapter II, Sections 9 - 13). Note also that since, as we saw in [13], the role
of paracompactness in sheaf theory on topological spaces has to be replaced by
normality in sheaf theory on o-minimal spectral spaces, we will continue to do this
here.

Definition 2.9. Let X be a definable space. A family of definable supports is a
family of closed definable subsets of X such that:

(1) every closed definable subset of a member of Φ is in Φ;
(2) Φ is closed under finite unions.

Φ is said to be a family of definably normal supports if in addition:
(3) each element of Φ is definably normal;
(4) for each element S of Φ, if U is an open definable neighborhood of S in X,

then there exists a (closed) definable neighborhood of S in U which is in Φ.

Example 2.10. Let X be a definable space and let c be the collection of all
definably compact definable subsets of X. Then c is a family of definable supports
on X. Moreover, if X is definably normal and definably locally compact, then c will
be a family of definably normal supports on X.

If Y is a definable subset of the definable space X and Φ a family of definable
supports on X, then we have families of definable supports

Φ ∩ Y = {A ∩ Y : A ∈ Φ}

and
Φ|Y = {A ∈ Φ : A ⊆ Y }

on Y .
If f : X −→ Z is a continuous definable map between definable spaces and Φ is

a family of definable supports on Z, then we have a family of definable supports

f−1Φ = {A ⊆ X : A is closed, definable and ∃B ∈ Φ (A ⊆ f−1(B)}

on X.

Remark 2.11. Note that a family of definable supports Φ on a definable space X
determines a family of supports

Φ̃ = {A ⊆ X̃ : A is closed and ∃B ∈ Φ (A ⊆ B̃)}

on the topological space X̃. By Remark 2.4 it follows that

Φ̃ ∩ Y = Φ̃ ∩ Ỹ , Φ̃|Y = Φ̃|eY and f̃−1Φ = f̃−1Φ̃.

We will say that the family of supports on X̃ is constructible if it is obtained by
applying tilde to some family of definable supports on X.
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By theorem 2.5 it follows that Φ is definably normal if and only if Φ̃ is normal.
Here, we say that Ψ is a family of normal supports on the spectral topological space
X̃ if is a family of supports and:

(1) each element of Ψ is normal;
(2) for each element S of Φ, if U is an open neighborhood of S in X̃, then there

exists a (closed) constructible neighborhood of S in U which is in Φ.

Definition 2.12. Let X be a definable space, Φ a family of definable supports in X
and F a k-sheaf on X relative to the o-minimal site on X. We define the o-minimal
sheaf cohomology groups with definable supports in Φ via the tilde isomorphism of
Theorem 2.8 by

H∗Φ(X;F) = H∗eΦ(X̃; F̃),

where F̃ is the image of F via the isomorphism between the category of k-sheaves
on X relative to o-minimal site on X and the category of k-sheaves on the o-minimal
spectrum X̃ of X.

If f : X −→ Y is a continuous definable map, we define the induced homomor-
phism

f∗ : H∗Φ(Y ;F) −→ H∗f−1Φ(X; f−1F)
in cohomology to be the same as the induced homomorphism

f̃∗ : H∗eΦ(Ỹ ; F̃) −→ H∗ef−1 eΦ(X̃; f̃−1F̃)

in cohomology of the continuous map f̃ : X̃ −→ Ỹ of topological spaces.

The proof of the o-minimal Vietoris-Begle theorem with supports below is similar
to its analogue without supports ([13] Theorem 4.3) using classical arguments:

Theorem 2.13 (Vietoris-Begle theorem). Let f : X −→ Y be a surjective mor-
phism in the category of o-minimal spectra of definable spaces that maps con-
structible closed subsets of X onto closed subsets of Y . Let F ∈ Mod(kY ), Φ a
constructible family of supports on Y and suppose that Y is a subspace of a normal
space in the category of o-minimal spectra of definable spaces. Assume that f−1(β)
is connected and Hq(f−1(β); f−1F|f−1(β)) = 0 for q > 0 and all β ∈ Y . Then the
induced map

f∗ : H∗Φ(Y ;F) −→ H∗f−1Φ(X; f−1F)
is an isomorphism.

We have in this context the Eilenberg-Steenrod axioms with definable supports
adapted to the o-minimal site. Indeed, once we pass to the category of o-minimal
spectra of definable spaces the proofs of the exactness and excision axioms are
purely algebraic. See [4]. The dimension axiom is also immeadiate. On the other
hand, from the Vietoris-Begle theorem (Theorem 2.13) we obtain:

Theorem 2.14 (Homotopy axiom). Suppose that X is a definable space and F
is a k-sheaf on X relative to the o-minimal site on X. Let [a, b] ⊆ M be a closed
interval. Assume that M has definable Skolem functions, X is definably normal
and the projection π : X × [a, b] −→ X maps closed definable subsets of X × [a, b]
onto closed definable subsets of X. If for d ∈ [a, b],

id : X −→ X × [a, b]
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is the continuous definable map given by id(x) = (x, d) for all x ∈ X, then

i∗a = i∗b : Hn
Φ×[a,b](X × [a, b];π−1F) −→ Hn

Φ(X;F)

for all n ∈ N.

Proof. The homotopy axiom will follow once we show that the projection map
π : X × [a, b] −→ X induces an isomorphism

π∗ : Hn
Φ(X;F) −→ Hn

Φ×[a,b](X × [a, b];π−1F)

since by functoriality we obtain

i∗a = i∗b = (π∗)−1 : Hn
Φ×[a,b](X × [a, b];π−1F) −→ Hn

Φ(X;F)

for all n ∈ N. Equivalently we need to show that

π̃∗ : HneΦ(X̃; F̃) −→ Hn

Φ̃×[a,b]
( ˜X × [a, b]; π̃−1F̃)

is an isomorphism. For this we need to verify the hypothesis of the Vietoris-Begle
theorem (Theorem 2.13), but this was done in the proof of the homotopy axiom for
o-minimal sheaf cohomology without supports ([13] Theorem 4.4). �

Remark 2.15. In this context we also have the exactness for triples of closed
definable subsets and the Mayer-Vietoris theorem for Φ-excisive pairs of definable
sets. See [4].

3. Φ-soft sheaves

The results we present below are in the category of o-minimal spectra of de-
finable spaces but by the isomorphism of Theorem 2.8 they have a suitable, but
more restrictive, analogue in the category of definable spaces. In fact these results
are the analogue of classical results on paracompactifying families of supports on
topological spaces ([4]) adapted to normal and constructible families of supports
on spectral spaces.

3.1. Normal and constructible supports. We start the subsection with the
following useful result:

Proposition 3.1. Assume that X is an object in the category of o-minimal spec-
tra of definable spaces and let (Fi)i∈I be a filtrant inductive family of sheaves in
Mod(kX) and Φ a constructible family of supports on X. Then

ΓΦ(X; lim−→
i∈I
Fi) = lim−→

i∈I
ΓΦ(X;Fi).

Proof. First observe that by definition for any G ∈ Mod(kX) we have

ΓΦ(X;G) = lim−→
S∈Φ

ΓS(X;G).

Thus it is enough to show that for each S ∈ Φ constructible we have

ΓS(X; lim−→
i∈I
Fi) = lim−→

i∈I
ΓS(X;Fi).
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For this consider the following commutative diagram where the vertical arrows are
the canonical maps

0 // lim−→
i∈I

ΓS(X;Fi)

��

// lim−→
i∈I

Γ(X;Fi)

��

// lim−→
i∈I

Γ(X \ S;Fi)

��
0 // ΓS(X; lim−→

i∈I
Fi) // Γ(X; lim−→

i∈I
Fi) // Γ(X \ S; lim−→

i∈I
Fi).

The rows are exact by definition of ΓS (i.e. ΓS(X;G) = ker(Γ(X;G)→ Γ(X \S;G)
for any G ∈ Mod(kX)) and by the exactness of filtrant lim−→. Since X and X \ S
are open constructible subsets of X and sections on open constructible subsets
commute with filtrant lim−→ (Remark 2.7), it follows that the two vertical arrows on
the right are isomorphisms. Hence the first vertical arrow is also an isomorphism
as required. �

The following lemma is fundamental in this Subsection:

Lemma 3.2. Assume that Z is a subspace of a normal space X in the category of
o-minimal spectra of definable spaces, G is a sheaf in Mod(kZ) and Y is a quasi-
compact subset of Z. Then the canonical morphism

lim−→
Y⊆U

Γ(U ∩ Z;G) −→ Γ(Y ;G|Y )

where U ranges through the family of open constructible subsets of X, is an iso-
morphism.

Proof. Since Y is quasi-compact, the family of open neighborhoods of Y in Z
of the form V ∩ Z where V is an open constructible subset of X is a fundamental
system of neighborhoods of Y in Z. Hence, the morphism of the lemma is certainly
injective.

To prove that it is surjective, consider a section s ∈ Γ(Y ;G|Y ). There is a
covering {Uj : j ∈ J} of Y by open constructible subsets of X and sections sj ∈
Γ(Uj ∩ Z;G|Uj∩Y ), j ∈ J , such that sj|Uj∩Y = s|Uj∩Y . Since Y is quasi-compact,
we can assume that J is finite, and so ∪{Uj : j ∈ J} is an open constructible subset
of X. Since X is normal, by the shrinking lemma (Proposition 2.6), there are open
constructible subsets {Vj : j ∈ J} of this union such that V j ⊆ Uj for every j ∈ J
and Y ⊆ ∪{Vj : j ∈ J}. For x ∈ Z set J(x) = {j ∈ J : x ∈ V j}. Each x has a
constructible neighborhood Wx with J(y) ⊆ J(x) for each y ∈ Wx. This is defined
by

Wx = (
⋂
x∈Vl

Vl ∩
⋂

j∈J(x)

Uj) \
⋃

k/∈J(x)

V k.

Observe that for all i, j ∈ J(x) we have that Wx is an open subset of both Ui and
Uj . Hence, for every i, j ∈ J(x) we have si|Wx∩Y = s|Wx∩Y = sj|Wx∩Y . So, for
y ∈Wx ∩ Y , we have (si)y = (sj)y for any i, j ∈ J(x). This implies that the set

W = {x ∈ (
⋃
j∈J

Vj) ∩ Z : (si)x = (sj)x for any i, j ∈ J(x)}

contains Y (clearly Y ⊆
⋃
x∈ZWx ∩ Y ⊆ (

⋃
j∈J Vj) ∩ Z). On the other hand, the

condition (si)z = (sj)z for any i, j ∈ J(x) and the fact that J(x) is finite implies
that z has an open neighborhood in Z on which si = sj for any i, j ∈ J(x). Thus
W is an open neighborhood of Y in Z. Since Y is quasi-compact we may assume



POINCARÉ - VERDIER DUALITY IN O-MINIMAL STRUCTURES 11

that W is of the form U ∩ Z for some open constructible subset U of X. Since
si|W∩Vi∩Vj = sj|W∩Vi∩Vj there exists t ∈ Γ(W ;G) such that t|W∩Vj = sj|W∩Vj . This
proves that the morphism is surjective. �

A general form of Lemma 3.2 is:

Lemma 3.3. Assume that X is an object in the category of o-minimal spectra of
definable spaces, Z is a subspace of X, G is a sheaf in Mod(kZ), Φ is a normal and
constructible family of supports on X and Y is a subset of Z such that D ∩ Y is a
quasi-compact subset for every D ∈ Φ. Then the canonical morphism

lim−→
Y⊆U

ΓΦ∩U∩Z(U ∩ Z;G) −→ ΓΦ∩Y (Y ;G|Y )

where U ranges through the family of open constructible subsets of X, is an iso-
morphism.

Proof. Let us prove injectivity. Let s ∈ ΓD∩U∩Z(U ∩ Z;G), with D ∈ Φ and
U ⊃ Y open constructible subset of X and such that s|D∩Y = 0. Since Φ is a
normal and constructible family of supports on X, there is a constructible and
normal E ∈ Φ which is a closed neighborhood of D in X. Thus D∩Z is a subspace
of a normal space E in the category of o-minimal spectra of definable spaces and
D ∩ Y is a quasi-compact subset of D ∩ Z. By Lemma 3.2 applied to E, D ∩ Z
and D ∩ Y , there exists an open (in E) constructible neighborhood V ′ of D ∩ Y
such that s|V ′∩D∩Z = 0. Of course we may assume that V ′ = V ∩ E for some
open constructible subset V of X. So there exists an open (in X) constructible
neighborhood V of D ∩ Y such that s|V ∩D∩Z = 0. Also, by replacing V with its
intersection with U if necessary we may assume that V ⊆ U. Set W = V ∪ (U \D).
Then W is open constructible in X, Y ⊆W ⊆ U and s|W∩Z = 0.

Let us prove that the morphism is surjective. Let s ∈ ΓΦ∩Y (Y ;G|Y ) and consider
normal constructible sets C, D and E in Φ such that D is a closed neighborhood of
C in X, E is a closed neighborhood of D in X and the support of s is contained in
C∩Y . We shall find t̃ ∈ ΓD(U ∩Z;G) such that t̃|Y = s. After applying Lemma 3.2
above to E, D∩Z and D∩Y we see that there exists an open in E \∂E (and hence
in X) constructible neighborhood V of D ∩ Y and a section t ∈ Γ(V ∩ D ∩ Z;G)
such that t|D∩Y = s|D∩Y . Since t|∂D∩Y = 0, then each point x of ∂D ∩ Y has an
open constructible neighborhood Wx ⊂ V such that t|Wx∩D∩Z = 0. Using quasi-
compactness of ∂D ∩ Y (it is closed on the quasi-compact set D ∩ Y ), there exists
a finite number of points x1, . . . , xn such that ∂D ∩ Y ⊂

⋃n
i=1Wxi := W . We

have t|W∩D∩Z = 0 and W is open constructible. Let U1 = (V ∩ (D \ ∂D)) ∪W .
Then U1 is open constructible and D ∩ Y ⊆ U1 ⊆ V . Define t′ ∈ Γ(U1 ∩ Z;G)
by: t′|V ∩(D\∂D)∩Z = t|V ∩(D\∂D)∩Z and t′|W∩Z = 0. This is well defined since
t|W∩D∩Z = 0 and (V ∩ (D \ ∂D) ∩ Z) ∩ (W ∩ Z) ⊆ W ∩ D ∩ Z. Observe also
that t′|U1∩D∩Z = t. Let U2 = X \ D. Then U = U1 ∪ U2 is open constructible,
Y ⊆ U , U1 ∩ U2 ⊆ W and we can define t̃ ∈ Γ(U ∩ Z;G) in the following way:
t̃|U1∩Z = t′|U1∩Z , t̃|U2∩Z = 0. It is well defined since t′|W∩Z = 0 and U1 ∩ U2 ⊂ W .
Moreover supp t̃ ⊆ D and t̃|Y = s as required. �
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Recall that a sheaf F on a topological space X with a family of supports Φ is
Φ-soft if and only if the restriction Γ(X;F) −→ Γ(S;F|S) is surjective for every
S ∈ Φ. If Φ consists of all closed subsets of X, then F is simply called soft.

Proposition 3.4. Let X be a topological space and F is a sheaf in Mod(kX). If
Φ is a family of supports on X such that every C ∈ Φ has a neighborhood D in X
with D ∈ Φ. Then the following are equivalent:

(1) F is Φ-soft;
(2) F|S is soft for every S ∈ Φ;
(3) ΓΦ(X;F) −→ ΓΦ|S (S;F|S) is surjective for every closed subset S of X;

If in addition X is an object in the category of o-minimal spectra of definable
spaces and Φ is a constructible family of supports on X, then the above are
also equivalent to:

(4) F|Z is soft for every constructible subset Z of X which is in Φ;

If moreover Φ is a normal and constructible family of supports on X, then
the above are also equivalent to:

(5) Γ(X;F) −→ Γ(Z;F|Z) is surjective for every constructible subset Z of X
which is in Φ;

Proof. The equivalence of (1), (2) and (3) is shown in [4] Chapter II, 9.3. (Our
hypothesis is sufficient in the proof given there). The equivalence of (2) and (4) is
obvious since every S ∈ Φ is contained in some constructible subset of X which is
in Φ.

Clearly (1) implies (5). Assume (5) and let S ∈ Φ and s ∈ Γ(S;F|S). Since Φ is
normal and constructible, there is a normal closed and constructible neighborhood
D of S which is in Φ. By Lemma 3.2, s can be extended to a section t ∈ Γ(W ;F)
of F over a neighborhood W of S in D. Applying the shrinking lemma we find
a closed constructible neighborhood Z of S in W . Since D ∈ Φ we have Z ∈ Φ.
So t|Z ∈ Γ(Z;F|Z), (t|Z)|S = s and t|Z can be extended to X by (5). Hence, (5)
implies (1).

�

Corollary 3.5. Assume that X is an object in the category of o-minimal spectra
of definable spaces and Φ is a normal and constructible family of supports on X.
Then filtrant inductive limits of Φ-soft sheaves in Mod(kX) are Φ-soft.

Proof. It follows combining Propositions 3.1 and 3.4 (5) and the exactness of
filtrant inductive limits. �

The following topological result will also be useful below:

Proposition 3.6. Let X be a topological space and Φ is a family of supports on X
such that every C ∈ Φ has a neighborhood D in X with D ∈ Φ. Let W be a locally
closed subset of X. The following hold:

(i) if F ∈ Mod(kX) is Φ-soft, then F |W is Φ|W -soft.
(ii) G in Mod(kW ) is Φ|W -soft if and only if iW !G is Φ-soft.
(iii) if F ∈ Mod(kX) is Φ-soft, then FW is Φ-soft.

Proof. (i) If W is open it is obvious. If W is closed it follows from Proposition
3.4 (3). Combining these two cases (i) follows.
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(ii) The “if ” part follows from Proposition 3.4 (2). For the “only if” part
note that by Proposition 2.1 (applied to X and S respectively and using the fact
that (Φ|S)|W = Φ|W∩S) we have ΓΦ(X; iW !G) ' ΓΦ|W (W ;G) and ΓΦ|S(S; iW !G) =
ΓΦ|W∩S(S ∩W ;G) for any closed subset S of W . Then apply Proposition 3.4 (3).

(iii) The result follows from (i) and (ii), since FW = iW !F|W . �
A special and useful case of Proposition 3.6 is when X is an object in the category

of o-minimal spectra of definable spaces and Φ is a normal and constructible family
of supports on X.

Proposition 3.7. Assume that X is an object in the category of o-minimal spectra
of definable spaces, Φ is a normal and constructible family of supports on X and
Y is a subspace of X such that D ∩ Y is a quasi-compact subset for every D ∈ Φ.
Then the full additive subcategory of Mod(kY ) of Φ∩Y -soft k-sheaves is ΓΦ∩Y (Y ; •)-
injective, i.e.:

(1) For every F ∈ Mod(kY ) there exists a Φ ∩ Y -soft F ′ ∈ Mod(kY ) and an
exact sequence 0→ F → F ′.

(2) If 0→ F ′ → F → F ′′ → 0 is an exact sequence in Mod(kY ) and F ′ is Φ∩Y -
soft, then 0 −→ ΓΦ∩Y (Y ;F ′) −→ ΓΦ∩Y (Y ;F) −→ ΓΦ∩Y (Y ;F ′′) −→ 0 is
an exact sequence.

(3) If 0→ F ′ → F → F ′′ → 0 is an exact sequence in Mod(kY ) and F ′ and F
are Φ ∩ Y -soft, then F ′′ is Φ ∩ Y -soft.

Proof. The result for the full additive subcategory of Mod(kY ) of injective (and
flabby) k-sheaves is classical for topological spaces (see for example [19], Proposition
2.4.3). Thus (1) holds for the Φ∩Y -soft case since injective k-sheaves are Φ∩Y -soft.

We now prove (2). Let s′′ ∈ ΓΦ∩Y (Y,F ′′). Then since Φ is normal and con-
structible, supp s′′ ⊂ V , with V open constructible in X and V ∈ Φ. Now, let us
consider the exact sequence

0→ F ′V ∩Y → FV ∩Y → F
′′
V ∩Y → 0.

By Proposition 3.6 (iii) we have that F ′Y ∩V is still Φ∩Y -soft. Replacing F ′,F ,F ′′
with F ′V ∩Y ,FV ∩Y ,F

′′
V ∩Y we are reduced to prove that the sequence

0→ Γ(Y ;F ′)→ Γ(Y ;F)→ Γ(Y ;F ′′)→ 0

is exact when Y = Y ∩ V . Let s′′ ∈ Γ(Y ;F ′′), and let {Di}ni=1, Di ∈ Φ ∩ Y be
a finite covering of Y such that there exists si ∈ Γ(Di;F) whose image is s′′|Di .
There exists such a covering since Φ is normal and Y ∩ V is quasi-compact. For
n ≥ 2 on D1 ∩ D2 s1 − s2 defines a section of Γ(D1 ∩ D2;F ′) which extends to
s′ ∈ Γ(Y ;F ′) since F ′ is Φ ∩ Y -soft. Replace s1 with s1 − s′. We may suppose
that s1 = s2 on D1 ∩D2. Then there exists s̃ ∈ Γ(D1 ∪D2;F) such that s̃|Di = si,
i = 1, 2. Thus the induction proceeds.

Finally, (3) follows at once from (2) by a simple diagram chase using Proposition
3.4 (3): let Z be a set in Φ ∩ Y and consider the following commutative diagram

ΓΦ∩Y (Y ;F)

α

��

δ // ΓΦ∩Y (Y ;F ′′)

γ

��
ΓΦ∩Y ∩Z(Z;F|Z)

β // ΓΦ∩Y ∩Z(Z;F ′′|Z).
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By hypothesis on F , α is surjective. By (2) β is surjective. Therefore, γ is surjective
as required. �

Hence, if X is an object in the category of o-minimal spectra of definable spaces,
Φ is a normal and constructible family of supports on X and Y is a subspace of X
such that D ∩ Y is a quasi-compact subset for every D ∈ Φ. Then one can take a
Φ ∩ Y -soft resolution of F to compute H∗Φ∩Y (Y ;F).

Example 3.8. Some particular cases of Proposition 3.7 are:

• if Y = U is open constructible such that U ∈ Φ, then the family of Φ∩U -soft
sheaves in Mod(kU ) is Γ(U ; •)-injective.
• If Y = D ∈ Φ, then the family of Φ|D-soft sheaves in Mod(kD) is Γ(D; •)-

injective.

Corollary 3.9. Assume that X is an object in the category of o-minimal spectra
of definable spaces. Suppose either that Φ is a normal and constructible family of
supports on X and W is a (constructible) locally closed subset of X or that Φ is
any family of supports on X and W is a closed subset of X. If F ∈ Mod(kW ), then

H∗Φ(X; iW !F) = H∗Φ|W (W ;F).

Proof. The second case is covered by [4] Chapter II, 10.1. If W is closed in an
open subset U of X, then Φ|U is a normal and constructible family of supports on
U and Φ|W = Φ|U ∩W. And the result follows from Propositions 3.7, 3.6 (ii) and
2.1. �

The following will be useful in the next subsection:

Proposition 3.10. Assume that X is an object in the category of o-minimal spectra
of definable spaces, F is a sheaf in Mod(kX) and Φ is a normal and constructible
family of supports on X. The following are equivalent:

(1) F is Φ-soft;
(2) FU is ΓΦ-acyclic for all open and constructible U ⊆ X;
(3) H1

Φ(X;FU ) = 0 for all open and constructible U ⊆ X;

Proof. (1) ⇒ (2) follows from Propositions 3.7 and 3.6 (iii). (2) ⇒ (3) is
trivial. To show that (3) implies (1), consider a constructible closed set C in Φ and
the exact sequence 0 −→ FX\C −→ F −→ FC −→ 0. The associated long exact
cohomology sequence

· · · → ΓΦ(X;F)→ ΓΦ(X;FC)→ H1
Φ(X;FX\C)→ . . .

shows that ΓΦ(X;F) −→ ΓΦ(X;FC) is surjective. Hence F is Φ-soft by Proposition
3.4 (5). �

3.2. Cohomological Φ-dimension. Recall that for a topological space X and Φ
a family of supports on X, the cohomological Φ-dimension of X is the smallest n
such that Hq

Φ(X;F) = 0 for all q > n and all sheaves F in Mod(kX).
The following holds:

Proposition 3.11. Assume that X is an object in the category of o-minimal spectra
of definable spaces and Φ is a normal and constructible family of supports on X.
Let F be a sheaf in Mod(kX). Then the following are equivalent:
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(1) If 0 −→ F −→ I0 −→ I1 −→ · · · −→ In −→ 0 is an exact sequence of
sheaves in Mod(kX) such that Ik is Φ-soft for 0 ≤ k ≤ n− 1. Then In is
Φ-soft.

(2) F has a Φ-soft resolution of length n;
(3) Hk

Φ(X;FU ) = Hk
Φ|U (U ;F|U ) = 0 for all open and constructible U ⊆ X and

all k > n.

Proof. The result follows from Proposition 3.10 (2) and is a particular case
of a general result of homological algebra ([19], Exercise I.19): let F be a left
exact functor and let J be the family of F -acyclic objects. Suppose that J is
cogenerating. Then (1) ⇔ (2) ⇔ (3) with J instead of Φ-soft and F instead of
ΓΦ(X; (•)U ). �

Theorem 3.12. Let X be an object in the category of o-minimal spectra of definable
spaces and let Φ be a normal and constructible family of supports on X. Then the
cohomological Φ-dimension of X is bounded by dimX.

Proof. To prove our theorem we will use (1) of Proposition 3.11. Let n = dimX.
Then, in this situation it suffices to prove that In|Z is soft for every constructible
subset Z of X which is in Φ (Proposition 3.4 (4)). Since Φ is normal, there is a
constructible neighborhood Y of Z in X which is in Φ. If we show that In|Y is soft,
then it will follow that In|Z is soft (Proposition 3.4 (2)).

Let U be an open and constructible subset of Y . By hypothesis and Proposition
3.10 each (Ik|Y )U is acyclic for 0 ≤ k ≤ n− 1. Let Zk = ker((Ik|Y )U −→ (Ik+1

|Y )U ).
Then the long exact cohomology sequences of the short exact sequences 0 −→
Zk −→ (Ik|Y )U −→ Zk+1 −→ 0 show that

H
q
(Y ; (In|Y )U ) = H

q
(Y ;Zn) = H

q+1
(Y ;Zn−1

) = · · · = H
q+n

(Y ;Z0
) = H

q+n
(Y ; (F|Y )U ).

Since Y is normal, constructible and dimY = n we have Hq(Y ;G) = 0 for q > n
and every sheaf G on Y ([13] Proposition 4.2). Thus H1(Y ; (In|Y )U ) = 0. Since U
was an arbitrary open and constructible subset of Y , it follows from Proposition
3.10 that In|Y is soft as required. �

Proposition 3.13. Assume that X is an object in the category of o-minimal spectra
of definable spaces and Φ is a normal and constructible family of supports on X. If
G ∈ Mod(kX) is Φ-soft, then for every F ∈ Mod(kX) we have that G⊗F ∈ Mod(kX)
is Φ-soft.

Proof. By Theorem 3.12, X has finite cohomological Φ-dimension. Suppose
that the cohomological Φ-dimension of X is n. Since the family of the constant
sheaves {kU}, U constructible open subset of X is generating, there is a resolution
of F

Pn−1
∂n−1→ Pn−2 · · · P1

∂1→ P0 → F → 0
where the Pi’s are direct sums of sheaves of the form kU , U constructible (see [19],
Proposition 2.4.12). From Proposition 3.6 (iii) it follows that GU ' G⊗kU is Φ-soft.
Since the direct sum of Φ-soft sheaves in Mod(kX) is Φ-soft (Corollary 3.5) each
G ⊗ Pi is Φ-soft.

From the resolution above we obtain an exact sequence of sheaves

G ⊗ Pn−1
∂n−1→ G ⊗ Pn−2 · · · → G ⊗ P1

∂1→ G ⊗ P0 → G ⊗ F → 0.
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By Proposition 3.11, since G ⊗ Pi is Φ-soft for i = 0, . . . , n − 2, we conclude that
G ⊗ F is Φ-soft. �

4. Duality with coefficient in a field

In this section we will work in the category of definable spaces with continuous
definable maps and k-sheaves on such spaces will be considered always relative
to the o-minimal site. In our results we will have a definably normal, definably
locally compact definable space X and the family of definable supports c on X of
definably compact definable subsets of X. By Example 2.10 and Remark 2.11 the
corresponding constructible family of supports on the o-minimal spectra of X will
be a normal and constructible family of supports. Hence, by the tilde isomorphism
in the category of k-sheaves given by Theorem 2.8 and our Definition 2.12, in our
proofs we will apply the results of Section 3 since they transfer to this definable
setting.

Remark 4.1. We observe that since all the results of this section depend only on
Section 3, they hold on an arbitrary definable space X replacing c by a definably
normal family of definable supports Φ on X. In particular, these results hold on
any definable space X on which c is a definably normal family of definable supports.

4.1. Sheaves of linear forms. Here we shall work with a fixed field k. For a k-
vector space N we let N ∨ denote the dual k-vector space, i.e. N ∨ = Homk(N, k).

Let X be a definably normal, definably locally compact definable space and F
a k-sheaf on X. From now on, given a locally closed subset Z of X, we will write
Γc(Z;F) instead of Γc|Z(Z;F) for short. The inclusion V −→ U of two open
definable subsets of X will induce a map

Γc(X;FV ) //

o
��

Γc(X;FU )

o
��

Γc(V ;F) // Γc(U ;F)

“extension by zero”. (Where the vertical isomorphisms are a consequence of Propo-
sition 2.1 with Φ = c). The k-linear dual of this

Γc(U ;F)∨ −→ Γc(V ;F)∨

gives rise to restriction maps in a presheaf F ∨ defined by

Γ(U ;F ∨) = Γc(U ;F)∨.

Proposition 4.2. Let X be a definably normal, definably locally compact definable
space. For every c-soft k-sheaf F on X, the presheaf F ∨ is a sheaf.

Proof. By Proposition 2.2, it is enough to show that for any two open definable
subsets W and V of X the sequence

0 −→ Γ(V ∪W ;F ∨) −→ Γ(V ;F ∨)⊕ Γ(W ;F ∨) −→ Γ(V ∩W ;F ∨)

formed by the sum and difference between two restriction maps is exact.
Consider the Mayer-Vietoris sequence

0 −→ Γc(V ∩W ;F) −→ Γc(V ;F)⊕ Γc(W ;F) −→ Γc(V ∪W ;F) −→ H
1
c (V ∩W ;F)
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and notice that H1
c (V ∩W ;F) = 0 since the restriction of F to V ∩W is c-soft

by Proposition 3.6 (i). The result now follows by taking the k-linear dual of the
Mayer-Vietoris sequence. �

Proposition 4.3. Let X be a definably normal, definably locally compact definable
space. Let G be a c-soft k-sheaf on X. There is a natural isomorphism

Γc(X;F ⊗ G)∨ ' Hom(F ,G ∨)

as F varies through the category of k-sheaves on X.

Proof. Let U be an open definable subset. Consider the natural maps

Γ(U ;F)⊗ Γc(U ;G) −→ Γc(U ;F ⊗ G)→ Γc(X;F ⊗ G)

The dual of the composite can be written

Γc(X;F ⊗ G)∨ −→ Hom(Γ(U ;F),Γc(U ;G)∨)

By variation of U this defines a map

(1) Γc(X;F ⊗ G)∨ −→ Hom(F ,G ∨)

which we must show that it is an isomorphism.
(i) First we consider the case where F = kU where U is an open definable subset.

We have

Γc(X;GU )∨ = Γc(U ;G)∨ = Γ(U ;G ∨) = Hom(kU ,G ∨).

These identifications transform the map (1) into the identity.
(ii) For the general case, consider a presentation of F of the form

P −→ Q −→ F −→ 0

where P and Q are direct sums of sheaves of the form kU as above (see [19],
Proposition 2.4.12). Let us consider the following diagram with exact rows

0 // Γc(X;F ⊗ G)∨

��

// Γc(X;Q⊗ G)∨

��

// Γc(X;P ⊗ G)∨

��
0 // Hom(F,G ∨) // Hom(Q,G ∨) // Hom(P,G ∨).

The two functors of (1) transform direct sums into direct products. It follows that
the two vertical maps to the right are isomorphisms. Then it follows from the five
lemma that the first vertical arrow is an isomorphism. �

Corollary 4.4. Let X be a definably normal, definably locally compact definable
space. Let G be a c-soft k-sheaf on X. Then the sheaf G ∨ is injective in the category
of k-sheaves on X.

Proof. By Proposition 4.3, we must show that

F 7→ Γc(X;F ⊗ G)∨

is an exact functor. But this follows from Propositions 3.13 and 3.7 and the exact-
ness of ∨ in Mod(k). �
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4.2. Verdier duality. If X is a definably normal, definably locally compact de-
finable space we will let D+(kX) denote the derived category of bounded below
complexes of k-sheaves on X. We are now ready to prove our main result:

Theorem 4.5 (Verdier duality). Let X denote a definably normal, definably locally
compact definable space. Then there exists an object D∗ in D+(kX) and a natural
isomorphism

RHom(F∗,D∗) ' RHom(RΓc(X;F∗), k)
as F∗ varies through D+(kX).

Proof. For a complex L∗ of k-vector spaces we put L∗∨ = Hom∗(L∗, k) with
the notation of [18] I.4.3. Notice also that L∗∨ is a complex of k-vector spaces
whose p’th differential is given by

(−1)p+1(∂−p−1)∨ : (L−p)∨ −→ (L−p−1)∨.

This formula will also be used to extend the functor G 7→ G ∨ on the category of
k-sheaves on X given by Proposition 4.2 to complexes of k-sheaves.

By Theorem 3.12 X has finite cohomological c-dimension, hence by Proposition
3.11 (1) the constant sheaf kX admits a bounded c-soft resolution G∗. By Corollary
4.4, G∗∨ is a bounded complex of injective k-sheaves. For an injective complex
I∗ quasi-isomorphic to F∗ in the derived category of bounded below complexes
of k-sheaves on X and integers p and q we have, by Proposition 4.3, a canonical
isomorphism

Γc(X; Ip ⊗ Gq)∨ = Hom(Ip,Gq∨).
giving an isomorphism of complexes

(2) Γc(X; I∗ ⊗ G∗)∨ = Hom∗(I∗,G∗∨).

From the quasi-isomorphism kX −→ G∗ we deduce a quasi-isomorpism

Γc(X; I∗ ⊗ G∗)∨ −→ Γc(X; I∗)∨

which yields a final quasi-isomorphism

(3) Hom∗(I∗,G∗∨) −→ Γc(X; I∗)∨.
Finally put D∗ = G∗∨. �

The complex D∗ above is called the dualizing complex. It is a bounded below
complex of injective k-sheaves uniquely determined up to homotopy and so the
cohomology k-sheaves HpD∗, p ∈ Z, are uniquely determined up to isomorphism.

The proof above shows the following:

Remark 4.6. The dualizing complex for a definably normal, definably locally
compact definable space of cohomological c-dimension n can be represented by a
complex D∗ of injective k-sheaves where

Di = 0 for i /∈ [−n, 0].

Recall that the inclusion V −→ U of open definable subsets of X give rise to the
extension by zero map

Hp
c (V ; kX) −→ Hp

c (U ; kX)
whose k-linear dual

Hp
c (U ; kX)∨ −→ Hp

c (V ; kX)∨

gives rise to a presheaf U 7→ Hp
c (U ; kX)∨.
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Proposition 4.7. Let D∗ denote the dualizing complex for the definably normal,
definably locally compact definable space X. For any integer p, the cohomology
k-sheaf H−pD∗ is the sheaf associated to the k-presheaf

U 7→ Hp
c (U ; kX)∨.

Proof. Recall the isomorphism Hp
c (U ; kX) ' Hp

c (X; kU ). Passing to the dual
and using Theorem 4.5 we have the chain of isomorphisms

Hp
c (U ; kX)∨ ' Hp

c (X; kU )∨ ' H−pHom(kU ,D∗) ' H−p(U ;D∗)

and the result follows since H−pD∗ is the k-sheaf associated to the k-presheaf
U 7→ H−p(U ;D∗). �

Corollary 4.8. On a definably normal, definably locally compact definable space
X of cohomological c-dimension n, the k-presheaf

U 7→ Hn
c (U ; kX)∨

is a k-sheaf.

Proof. By Remark 4.6 we have an exact sequence

0 −→ Γ(U ;H−nD∗) −→ Γ(U ;D−n) −→ Γ(U ;D−n+1).

On the other hand H−n(U ;D∗) = ker(Γ(U ;D−n) → Γ(U ;D−n+1). Moreover, as
we saw above

H−n(U ;D∗) ' Hn
c (U ; kX)∨.

Then Γ(U ;H−nD∗) ' Hn
c (U ; kX)∨ and the result follows. �

4.3. Poincaré and Alexander duality. Here we derive Poincaré and Alexander
duality from the Verdier duality.

Definition 4.9. Let X be a definably normal, definably locally compact definable
manifold of dimension n. We say that X has an orientation k-sheaf if for every
open definable subset U of X there exists a finite cover of U by open definable
subsets U1, . . . , U` of U such that for each i we have

Hp
c (Ui; kX) =


k if p = n

0 if p 6= n.

If X has an orientation sheaf, we call the k-sheaf OrX on X with sections

Γ(U ;OrX) = Hn
c (U ; kX)∨

the orientation k-sheaf on X. By Theorem 3.12, the cohomological c-dimension
of X is n and Hn

c (Ui; kX) = Hn
c (X; kUi) 6= 0 for i = 1, . . . , `, hence X must have

cohomological c-dimension n. So OrX is indeed a k-sheaf on X by Corollary 4.8).
Note also that, since the o-minimal spectra X̃ of X is a quasi-compact (spectral)

topological space, X has an orientation k-sheaf if and only if for every β ∈ X̃ and
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every open definable subset V of X such that β ∈ Ṽ , there is an open definable
subset U of V such that β ∈ Ũ and

Hp
c (U ; kX) =


k if p = n

0 if p 6= n.

Example 4.10. Suppose that M is an o-minimal expansion of an ordered field.
Let X be a Hausdorff definable manifold of dimension n. Since then X is affine
and every definable set is definably normal, X is definably normal ([11] Chapter 6,
Lemma 3.5). Since also X and any open definable subset of X can be covered by
finitely many definable sub-balls ([12] Theorem 1.2), X is definably locally compact
and, computing the o-minimal cohomology with definably compact supports of
definable sub-balls, it follows that X has an orientation k-sheaf. Observe that the
result on coverings by definable sub-balls is related to [1] Theorem 4.3 (and can be
read off from the proofs of Lemmas 4.1 and 4.2 there) and also to Wilkie’s result
([25] Theorem 1.3) which says that every bounded open definable set can be covered
by finitely open cells.

Let X be a definably normal, definably locally compact definable manifold of
dimension n with an orientation k-sheaf OrX . Then the k-sheaf OrX is locally
isomorphic to kX .

Theorem 4.11 (Poincaré duality). Let X be a definably normal, definably locally
compact definable manifold of dimension n with an orientation k-sheaf OrX . There
exists an isomorphism

Hp(X;OrX) −→ Hn−p
c (X; kX)∨.

Proof. Proposition 4.7 and the fact that X has an orientation k-sheaf, imply
that

H−pD∗ = 0 ; p 6= n.

On the other hand, by Corollary 4.8 we have H−nD∗ = OrX . Thus we have a
quasi-isomorphism

(4) OrX [n] ' D∗

Therefore we have

Hp(X;OrX) ' Hp−n(X;D∗) ' Hp−nHom(kX ,D∗).

By Verdier duality (Theorem 4.5) with F∗ = kX the later is also isomorphic to
Hn−p
c (X; kX)∨.

�

Definition 4.12. Let X be a definably normal, definably locally compact definable
manifold of dimension n with an orientation k-sheaf OrX . By a k-orientation we
understand an isomorphism

kX ' OrX
of k-sheaves. We shall say that X is k-orientable if a k-orientation exists and
k-unorientable in the opposite case.
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Proposition 4.13. Let X be a definably connected, definably normal, definably
locally compact definable manifold of dimension n with an orientation k-sheaf OrX .
Then

(1) Hn
c (X; kX) ' k if X is k-orientable.

(2) Hn
c (X; kX) ' 0 if X is k-unorientable.

Proof. Since X is definably normal and definably connected, Proposition 4.1
in [13] implies that H0(X; kX) = k and so (1) follows at once from the Poincaré
duality (Theorem 4.11).

For (2), suppose that Hn
c (X; kX) 6= 0. Then by Theorem 4.11 there is a non

trivial section s of OrX over X. By our Definition 2.12, the support of s is a closed
subset of the o-minimal spectrum of X. Since OrX is locally isomorphic to kX it
follows that the support of s is also an open subset of the o-minimal spectrum of
X. But since the o-minimal spectrum of X is connected (Theorem 2.5) it follows
that the support of s is the o-minimal spectrum of X. Thus OrX ' kX . �

Theorem 4.14 (Alexander duality). Let X be a definably normal, definably locally
compact, k-orientable definable manifold of dimension n. For Z a closed definable
subset of X there exists an isomorphism

Hp
Z(X; kX) −→ Hn−p

c (Z; kX)∨.

Proof. By (4) we have Hp
Z(X; kX) ' Hp−n

Z (X;D∗) ' Hp−nHom(kZ ,D∗).
By Verdier duality (Theorem 4.5) with F∗ = kZ the later is also isomorphic to
Hn−p
c (X; kZ)∨ ' Hn−p

c (Z; kX)∨. �

4.4. Duality in o-minimal expansions of fields. In this subsection we assume
that the o-minimal structure M is an expansion of an ordered field.

Let X be a Hausdorff definable manifold of dimension n. Then has we saw in
Example 4.10 X is affine, definably normal with an orientation k-sheaf.

In o-minimal expansions of fields we have o-minimal singular homology and
cohomology theories satisfying the Eilenberg-Steenrod axioms adapted to the o-
minimal site ([15], [24]). By [15] the o-minimal singular cohomology theory with
coefficients in a field k is isomorphic to the o-minimal sheaf cohomology theory with
coefficients in the constant sheaf kX . Because of this isomorphism, below we will
use the standard notation from o-minimal singular cohomology and write k for kA
and

H∗(A,B; k) for H∗A\B(A; k)

where B ⊆ A ⊆ X are definable subsets of X.
O-minimal singular homology theory can be used to obtain an orientation theory

for definable manifolds ([1], [2]). (In the papers [1] and [2], orientation is defined
by taking homology with coefficients in Z but replacing Z by k and considering
homology groups as k-vector spaces one gets the theory of k-orientations.) Our
goal here is to show an Alexander duality for homology and to conclude that the
two orientation theories agree.

First observe that if B ⊆ A are definably locally closed definable subsets of X,
then

(5) H∗c (A \B; k) = lim−→
B⊆C⊆A, C closed, A\C∈c

H∗(A,C; k).
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Let Λ be the directed system of definably locally closed subsets D of A such that
B ⊆ D ⊆ A and A \D ∈ c, directed by reverse inclusion. Since the map that sends
D ∈ Λ into D is cofinal (even surjective) in the directed system of definable closed
subsets C of A such that B ⊆ C ⊆ A and A \ C ∈ c, directed by reverse inclusion,
it follows that to prove (5) it is enough to show that

H∗c (A \B; k) = lim−→
D∈Λ

H∗(A,D; k),

i.e., we have to show that the natural homomorphism

lim−→
B⊆U⊆A, A\U∈c

H∗(A,U ; k) −→ lim−→
D∈Λ

H∗(A,D; k)

is an isomorphism. But this is a consequence of the following. If D ∈ Λ, then
there exists an open definable subset O of A such that D is closed in O. So, by
[11] Chapter VIII, 3.3 and 3.4, there is an open definable neighborhood U of D in
O such that D is a definable deformation retract of U . Therefore, the inclusion
D −→ U induces an isomorphism H∗(A,U ; k) −→ H∗(A,D; k).

We are now ready to show the Alexander duality for o-minimal homology. This
is the o-minimal version of [10] Chapter VIII, Theorem 7.14 and the generalization
of Theorem 3.5 in [16].

Theorem 4.15. Let X be a definable manifold of dimension n which is k-orientable
with respect to homology. Let L ⊆ K ⊆ X be closed definable sets with K−L closed
in X − L. Then there is an isomorphism

Hq
c (K \ L; k) −→ Hn−q(X \ L,X \K; k)

for all q ∈ Z which is natural with respect to inclusions.

Proof. Let K ′ = K \L, X ′ = X \L, A a definable closed subset of K ′ such that
K ′ \A ∈ c and C = K ′ \A. Then we have the following commutative diagram

Hq(K′, A; k)

��

// Hn−q(X′ \ A, X′ \K′; k)

��
Hq(K′ ∩ C, A ∩ C; k)

∩ζ′
K′∩C // Hn−q(X′ \ A ∩ C, X′ \K′ ∩ C; k).

where the vertical arrows are the inclusion homomorphisms which, by the excision
axiom, are isomorphisms. The bottom arrow is the isomorphism of Theorem 3.5 in
[16]. This diagram goes to the limit to give the isomorphism of the theorem by (5)
and

H∗(X ′, X ′ −K ′; k) = lim−→
A⊆K′, A closed, K′\A∈c

H∗(X ′ −A,X ′ −K ′; k)

(as X ′ = ∪{X ′ −A : A ⊆ K ′, A closed, K ′ \A ∈ c}). �
Combining Alexander duality for homology (Theorem 4.15) and for cohomology

(Theorem 4.14) we show:

Corollary 4.16. Let X be a Hausdorff definable manifold. Then X is k-orientable
with respect to homology if and only if X is k-orientable with respect to cohomology.

Proof. Indeed, let X be a Hausdorff definable manifold of dimension n. If
X is k-orientable with respect to homology, then Theorem 4.15 implies that for
every definably connected, definably compact definable subset K of X we have an
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isomorphismHn(X,X\K; k) ' k which is compatible with inclusions. Applying the
dual universal coefficients theorem and going to the limit we obtain Hn

c (X; k) '
k showing that X is k-orientable (Proposition 4.13). If X is k-orientable with
respect to cohomology, then Theorem 4.14 applied to K and X implies that for
every definably connected, definably compact definable subset K of X we have an
isomorphism Hn(X,X \K; k) ' k which is compatible with inclusions. Applying
the dual universal coefficients theorem we get an isomorphism Hn(X,X \K; k) ' k
compatible with inclusions which allows us to define a k-orientation for X relative
to homology. �
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