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Abstract

In this paper we prove, without assuming Schanuel’s conjecture, that the
E-subring generated by a real number not definable without parameters in
the real exponential field is freely generated. We also obtain a similar result
for the complex exponential field.

1 Introduction

The second author proved in [10] that the E-subring generated by π, modulo

Schanuel’s Conjecture, is isomorphic to the free exponential ring on π. Recall that:

Schanuel’s Conjecture (SC) Let λ1, . . . , λn ∈ C be linearly independent over

Q. Then Q(λ1, . . . , λn, e
λ1 , . . . , eλn) has transcendence degree (t.d.) at least n over

Q.

This is the major open problem in transcendence theory and played an important

role also in decidability issues. The most important one is the decidability of the

real exponential field proved by Macintyre and Wilkie in [8] modulo Schanuel’s

Conjecture.
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In this paper we generalize the result from [10] to any real number not definable

without parameters in the real exponential field, without using Schanuel’s Conjec-

ture:

Theorem 1.1. Let τ be a real number not definable without parameters in the real

exponential field, then the E-subring of R generated by τ is isomorphic to the free

E-ring on τ.

In order to prove this result we prove a version of Schanuel’s Conjecture for

elements not definable without parameters in o-minimal expansions of the real ex-

ponential field following Wilkie’s ideas. We wish to thank here Alex Wilkie for his

help on this.

For other results on the connection between undefinability in o-minimal expan-

sions of the real exponential field and Schanuel’s Conjecture see also [3]. In particular

if Schanuel’s Conjecture is true, then π is not definable without parameters in the

real exponential field, so Theorem 1.1 implies the result for π in [10] (although the

technique is the similar).

2 Free E-ring

Here we recall some basic facts about E-rings:

Definition 2.1. An exponential ring, or E-ring, is a pair (R,E) with R a commu-

tative ring with 1 and E : R → U(R) a morphism of the additive group of R into

the multiplicative group of units of R satisfying:

E(x+ y) = E(x) · E(y) for all x, y ∈ R, and E(0) = 1.

To set up notation and recall some basic properties needed later, it is useful

to review the construction of the free E-ring on a set of generators X1, . . . , Xm,

denoted by [X1, . . . , Xm]E. The notion of freeness is a well known, abstract math-

ematical concept, which applies to a wide variety of situations and in particular to

the category of E-rings. See for example [4].

We construct by recursion three sequences:

1. (Rk,+, ·)k≥−1 are rings;

2. (Bk,+)k≥0 are torsion free abelian groups,

3. (Ek)k≥−1 are partial E-morphisms.
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Step 0: We define

R−1 = {0},
R0 = Z[X1, . . . , Xm] as ring,

B0 = Z[X1, . . . , Xm] as additive group and

E−1(0) = 1.

Inductive step:

Suppose k ≥ 0 and Rk−1, Rk, Bk and Ek−1 have been defined in such a way that:

Rk = Rk−1 ⊕Bk, Ek−1 : (Rk−1,+)→ (U(Rk), ·),

where U(Rk) denotes the set of units in Rk.

Let

t : (Bk,+)→ (tBk , ·)

be a formal isomorphism. Define

Rk+1 = Rk[t
Bk ] (as group ring over Rk).

Therefore

Rk is a subring of Rk+1

and as additive group

Rk+1 = Rk ⊕Bk+1,

where Bk+1 is the Rk-submodule of Rk+1 freely generated by tb, with b ∈ Bk and

b 6= 0.

We define

Ek : (Rk,+)→ (U(Rk+1), ·) as follows

Ek(x) = Ek−1(r) · tb, for x = r + b, r ∈ Rk−1 and b ∈ Bk.

In this way we construct a chain of partial E-ring

R0 ⊂ R1 ⊂ R2 · · · ⊂ Rk ⊂ · · ·

Then the free E- ring is:

[X1, . . . , Xm]E = lim
k
Rk =

∞⋃
k=0

Rk

and the E-ring morphism defined on [X1, . . . , Xm]E is the following:

E(x) = Ek(x) if x ∈ Rk, k ∈ N.
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Notice that at each step Rk+1 as additive group is the direct sum B0 ⊕ B1 ⊕
. . . ⊕ Bk+1. Moreover, as an additive group [X1, . . . , Xm]E can be considered as

B0 ⊕B1 ⊕ . . .⊕Bk+1 ⊕ . . ..
Recall that for all k the group ring Rk+1 can be viewed in the following different

ways

Rk+1
∼= R0[tB0⊕B1⊕...⊕Bk ];

Rk+1
∼= R1[tB1⊕...⊕Bk ];

...

...

Rk+1
∼= Rk[t

Bk ].

Moreover, [X1, . . . , Xm]E = R0[tB0⊕B1⊕...⊕Bk...].

For other interesting constructions in the category of E-rings we refer the reader

to [5].

3 Schanuel’s Conjecture and o-minimality

We start by recalling the definition of definability and o-minimality and we review

some properties of o-minimal structures which will be useful later.

Definition 3.1. Let M = (M, · · · ) be a structure and let LM be the first-order

language of M. If C ⊆M , then LM(C) is LM expanded with a constant symbol for

each element of C. We say that a subset A of Mn is LM(C)-definable if there is an

LM(C)-formula ϕ(x) such that

A = {a ∈Mn :M |= ϕ(a)}.

In this situation, we also say that A is definable (in M with parameters in C or in

M over C); and if C = ∅, we say that A is definable without parameters.

Definition 3.2. An o-minimal structure M = (M,<, · · · ) is an expansion of a

totally ordered set such that every subset of M which is definable in M (possibly

with parameters) is a finite union of intervals with end points in M ∪ {−∞,+∞}.

This class of ordered structures is very well behaved both from a model theo-

retic and geometric point of view (it has interesting connections to semi-algebraic

and sub-analytic geometry). Two important examples of o-minimal structures over

(R, <) that will appear below are the real exponential field Rexp and the real expo-

nential field with restricted analytic functions Ran, exp. For the o-minimality of these

structures see [11] and [6] respectively.
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Below we will require a model theoretic (and also geometric) property of o-

minimal structures that we now describe.

Definition 3.3. Let M = (M,<, · · · ) be an o-minimal structure and let LM be the

first-order language of M. Consider a ∈M and C ⊆M .

1. We say that a is model theoretically algebraic over C, denoted a ∈ acl(C), if

there is an LM-formula φ(x, y) (without parameters) such that for some tuple

c of elements of C we have that φ(a, c) is true in M and the set of solutions

of φ(x, c) in M is finite.

2. We say that a is in the definable closure of C, denoted a ∈ dcl(C), if there

is an LM-formula ψ(x, y) (without parameters) such that for some tuple c of

elements of C we have that a is the only solution of ψ(a, c) in M.

Observe that on ordered structures we clearly have acl(−) = dcl(−). In o-minimal

structures, by [9] Theorem 4.1 and remarks after the statement of Theorem 4.2, the

model theoretic algebraic closure operation satisfies all the usual axioms for closure

operations, including Steinitz exchange, and so has an associated well-defined theory

of bases, independence and dimension.

Note also, that inM, since acl is the same as dcl, then a ∈ acl(C) if and only if

there is an LM-definable function f inM (without parameters) such that for some

tuple c of elements of C, we have f(c) = a.

There are many cases where Schanuel’s Conjecture has been proved true: James

Ax in [1] proved the power series and the differential fields version of the conjecture,

and Ricardo Bianconi in [2] proved a version of the conjecture for the infinitesimal

elements in any ultrapower of C. Also Wilkie, in his unpublished notes ([12] and [13]),

proved versions of the conjecture for elements not definable without parameters in

o-minimal expansions of the real exponential field Rexp. The idea of the proof is to

use o-minimality of the exponential field (and o-minimal expansions of it) to reduce

the problem to Ax’s differential field version of Schanuel’s Conjecture proved in [1],

which we recall

Theorem 3.4 (SD). Let K be a field and D a derivation of K with constants C ⊇ Q.
Let y1, . . . , yn, z1, . . . , zn ∈ K∗ such that:

• Dyj =
Dzj
zj

for j = 1, . . . , n;

• Dy1, . . . , Dyn are linearly independent over Q.
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Then

t.d.CC(y1, . . . , yn, z1, . . . , zn) ≥ n+ 1.

By Wilkie’s suggestion, we will follow the same ideas and prove yet other ver-

sions of the conjecture for elements not definable without parameters in o-minimal

expansions of the real exponential field.

In order to prove this we introduce some notations and we recall some proper-

ties of o-minimal structure Rexp = (R, 0, 1,+, ·, exp, <) and its first-order language

Lexp = {0, 1,+, ·, exp, <}.
Let τ be a real number not definable in Rexp without parameters. Consider the

operation cl : P(R)→ P(R) of “closure under Lexp-definable (without parameters)

functions” i.e., acl or dcl as defined above. As we pointed out, this is an algebraic

closure operation satisfying all the usual axioms, including Steinitz exchange, and

so has an associated well-defined theory of bases, independence and dimension. In

particular, dimτ = 1 (by hypothesis) and there exists a set B ⊆ R such that {τ}∪B
is a basis (for this closure operation). Let C be the domain of the elementary

submodel of Rexp generated by B. Then τ /∈ C, but for any a ∈ R there exists

an Lexp(C)-definable function θ : R → R such that θ(τ) = a. Now notice that by

o-minimality and non definability of τ we have:

• θ is differentiable on an open interval containing τ ;

• if ψ : R→ R is an Lexp(C)-definable function such that ψ(τ) = a, then θ and

ψ agree (and hence so do their derivatives) on an open interval containing τ .

It follows that there is a well defined function δτ : R → R : a 7→ dθ
dx

(τ) where

θ : R→ R is an Lexp(C)-definable function such that θ(τ) = a. It is now routine to

check that δτ is a derivation on the field R, with field of constants C. Further, we

also clearly have that

• δτ (log(a)) = δτ (a)
a

for every positive a ∈ R;

(and also δτ (exp (a)) = δτ (a)exp (a) for any a ∈ R and δτ (τ) = 1).

Now we have all the ingredients to prove the following result

Theorem 3.5. Let τ and C be as above. Let α1, . . . , αn be real numbers such that

δτ (α1), . . . , δτ (αn) are linearly independent over Q. Then

t.d.CC(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n+ 1.
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Proof: In order to apply Ax’s differential field version of Schanuel’s Conjecture

(SD), we let yi = αi and zi = eαi for each i = 1, . . . , n. Then

• δτ (yi) = δτ (zi)
zi

for all i = 1, . . . , n;

• the δτ (yi) are Q-linearly independent.

Thus the conditions of (SD) hold and so the conclusion follows.

There is a complex version of Theorem 3.5. For this let τ be a real number

not definable in the o-minimal structureM = 〈R,+, ·, exp, sin�[−2,2], <, 0, 1〉 without

parameters (this structure is o-minimal since it is a reduct of the o-minimal structure

Ran, exp).

Working in this structure, let C and δτ : R → R be constructed as above. Now

define

∂τ : C→ C

z 7→ δτ (Rez) + iδτ (Imz).

It is now routine to check that ∂τ is a derivation on the field C, with field of constants

K := C(i), the algebraic closure of the real closed field C. Further, we also clearly

have that

• ∂τ (log|U(z)) = ∂τ (z)
z

for every z ∈ C where U is a bounded open ball in C

(and also ∂τ (exp|U(z)) = ∂τ (z)exp|U(z) for any z ∈ C where U is a bounded open

ball in C and ∂τ (τ) = 1).

Theorem 3.6. Let τ and K be as above. Let α1, . . . , αn be complex numbers such

that ∂τ (α1), . . . , ∂τ (αn) are linearly independent over Q. Then

t.d.KK(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n+ 1.

Proof: In order to apply Ax’s differential field version of Schanuel’s Conjecture

(SD), we let yi = αi and zi = eαi for each i = 1, . . . , n. Then

• ∂τ (yi) = ∂τ (zi)
zi

for all i = 1, . . . , n;

• the ∂τ (yi) are Q-linearly independent.

Thus the conditions of (SD) hold and so the conclusion follows.

7



4 The main result

Here we prove our main result using the ideas and the techniques from [10] together

with the versions of Schanuel’s Conjecture for real and complex numbers not defin-

able without parameters in o-minimal expansions of the real exponential field proved

in the last section.

4.1 E-subring of R generated by τ

Below we use the notation introduced in the previous sections.

Theorem 4.1. Let [x]E be the free E-ring generated by {x} and let R be the E-

subring of R generated by τ, where τ is a real number not definable in Rexp without

parameters. Then the E-morphism ϕ,

ϕ : [x]E → R

x 7→ τ.

is an E-isomorphism.

Proof: We will prove that at each step the kernel of the restriction of the E-

morphism ϕ is trivial. We use the construction of the E-free ring [x]E as
⋃
Rk where

Rk are the partial E-rings.

k = 0: Recall that R0 = Z[x]. We have ϕ(Z[x]) = Z[τ ]. We are considering τ not

definable in Rexp without parameters, so it is transcendental over Q, hence it follows

immediately that kerϕ is trivial.

k = 1: Recall that R1 = Z[x][t(x)] where (x) is the ideal generated by x. We want

to define the kernel at step one. From the construction of free E-ring, we have to

identify the polynomials

P (x) ∈ Z[x][t(x)],

such that P (τ) = 0, where τ is the real not definable in Rexp without parameters.

Let N be the highest power of τ which appears in P. We consider all powers of τ,

so we have

τ, τ 2, . . . , τN .

The elements δτ (τ) = 1, δτ (τ
2) = 2τ, . . . , δτ (τ

N) = NτN−1 are linearly independent

over Q. Otherwise τ would be a zero of a polynomial over Q which would be a

contradiction. So, from Theorem 3.5 we have that

t.d.CC(τ, . . . , τN , eτ , . . . , eτ
N

) ≥ N + 1.
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From undefinability of τ , we have that it is transcendental over C, and on the other

hand the elements τ, τ 2, . . . , τN , are algebraic over C(τ). So,

t.d.CC(τ, . . . , τN , eτ , . . . , eτ
N

) = N + 1.

This implies (since Q ⊆ C) that

t.d.Q(τ, . . . , τN , eτ , . . . , eτ
N

) = N + 1.

Hence we have P (τ) = 0 if and only if the polynomial P (x) is identically zero.

Inductive step. We suppose that the statement is true for k− 1 and we prove the

result for k, that is we suppose that for any polynomial

P (x) ∈ Rk−1 = Rk−2[tBk−2 ],

P (τ) = 0 if and only if P is the polynomial identically zero. Now we have to

characterize the polynomials

P (x) ∈ Rk = Rk−1[tBk−1 ],

such that

P (τ) = 0.

We define

∆0 = {τ, . . . , τN},

∆1 = {eτ , . . . , eτN}, i.e. ∆1 = e∆0 .

We have to distinguish two cases:

Case k even: In this case we define more generally

∆2j = ∆0∆2j−1 = {µδ : µ ∈ ∆0, δ ∈ ∆2j−1}, with j = 1, . . . ,
k

2
,

and

∆2j+1 = e∆2j , with j = 1, . . . ,
k

2
− 1.

Also, for a given ∆i, we define

δτ∆i = {δτ (α) : α ∈ ∆i}.

By inductive hypothesis, the collection of elements δτ∆0, δτ∆1, . . . , δτ∆k is lin-

early independent over Q. Otherwise τ would be a zero of a polynomial in Rk−1. So

applying Theorem 3.5 we have that:

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) ≥

k∑
i=0

|∆i|+ 1.

Now observe the following:
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• ∆0 is algebraically dependent over C(τ);

• ∆2j+1 = e∆2j , for j = 0, . . . , k
2
− 1, so we have some repetitions among the

elements added to C;

• ∆2j’s, for j = 1, . . . , k
2
, are algebraically dependent over C(∆0,∆1,∆3, . . . ,∆2j−1).

So we have

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) = 1 + (

∑
j=0

|∆2j+1|) + (
∑
j=0

|e∆2j+1|),

and this implies that

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) =

k∑
i=0

|∆i|+ 1,

since |∆2j| = |e∆2j+1 | = |∆2j+1|, and we have

t.d.Q(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) =

k∑
i=0

|∆i|+ 1.

Thus, the identity P (τ) = 0 is true if and only if the polynomial P is identically zero.

Case k odd: The proof for k odd follows the lines of the previous case for k

even, but we have to pay attention to the indices.

In this case we define

∆2j = ∆0∆2j−1 and ∆2j+1 = e∆2j , with j = 1, . . . ,
k − 1

2
.

Also, for a given ∆i, we define

δτ∆i = {δτ (α) : α ∈ ∆i}.

By the inductive hypothesis, the collection of elements δτ∆0, δτ∆1, . . . , δτ∆k is

linearly independent over Q. Otherwise τ would be a zero of a polynomial in Rk−1.

So applying Theorem 3.5 we have that:

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) ≥

k∑
i=0

|∆i|+ 1.

Now observe the following:
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• ∆0 is algebraically dependent over C(τ);

• ∆2j+1 = e∆2j , for 1, . . . , k−1
2
, so we have some repetitions among the elements

added to C;

• ∆2j’s, for 1, . . . , k−1
2
, are algebraically dependent over C(∆0,∆1,∆3, . . . ,∆2j−1).

So we have

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) = 1 + (

∑
j=0

|∆2j+1|) + (
∑
j=0

|e∆2j+1|),

and this implies that

t.d.CC(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) =

k∑
i=0

|∆i|+ 1

since |∆2j| = |e∆2j+1 | = |∆2j+1|. In particular, since Q ⊆ C we have

t.d.Q(∆0,∆1, . . . ,∆k, e
∆0 , e∆1 , . . . , e∆k) =

k∑
i=0

|∆i|+ 1.

So we have that the identity P (τ) = 0 is true if and only if the polynomial P is

identically zero. Now the proof is completed.

4.2 E-subring of C generated by τ, iτ

Consider the o-minimal structureM = 〈R,+, ·, exp, sin�[−2,2], <, 0, 1〉. Then we have

the following result, in whose proof we use the notation introduced in the proof of

Theorem 3.6.

Theorem 4.2. Let [x, y]E be the free E-ring generated by {x, y}. Let τ be a real

number not definable in M without parameters. Then the E-morphism:

ψ : [x, y]E → (C,+, ·, exp)

x 7→ τ

y 7→ iτ,

is a monomorphism.
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Proof: The proof is very similar to the proof of Theorem 4.1, so we will give

only the initial step.

k = 0: Recall that R0 = Z[x, y]. We have ϕ(Z[x, y]) = Z[τ, iτ ]. We are considering

τ a real number not definable inM without parameters so it is transcendental over

Q and hence kerϕ is trivial.

k = 1: We want to define the kernel at step one. So we recall the construction of

free E-ring, we have to identify the polynomials

P (x, y) ∈ Z[x, y][t(x,y)],

such that P (τ, iτ) = 0, where (x, y) is the ideal generated by x, and y, and τ is the

real not definable inM without parameters. Let N be the highest power of τ which

appears in P, and we consider all possible monomials, both real and complex, which

can be constructed from i, τn, with n ≤ N. So we have

τ, . . . , τN , iτ, . . . , iτN .

The elements ∂τ (τ) = 1, . . . , ∂τ (τ
N) = NτN−1, ∂τ (iτ) = i, . . . , ∂τ (iτ

N) = NiτN−1

are linearly independent over Q. Otherwise τ would be a zero of a polynomial over

Q which would be a contradiction. So from Theorem 3.6 we have that

t.d.KK(τ, . . . , τN , iτ, . . . , iτN , eτ , . . . , eτ
N

, eiτ , . . . , eiτ
N

) ≥ 2N + 1.

From undefinability of τ we have that it is transcendental over K, and on the other

hand the elements τ, . . . , τN , iτ, . . . , iτN are algebraic over K(τ). So we have

t.d.KK(τ, . . . , τN , iτ, . . . , iτN , eτ , . . . , eτ
N

, eiτ , . . . , eiτ
N

) = 2N + 1,

and this implies (since Q ⊆ K) that

t.d.Q(τ, . . . , τN , iτ, . . . , iτN , eτ , . . . , eτ
N

, eiτ , . . . , eiτ
N

) = 2N + 1.

So we have P (τ, iτ) = 0 if and only if the polynomial P (x, y) is identically zero.

For the inductive step we continue as in Theorem 4.1 using Theorem 3.6 instead

of Theorem 3.5.

Remark 4.3. More generally if we consider

ψ : [x, y]E → (C,+, ·, exp)

x 7→ ατ
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y 7→ iβτ,

where α, β are real algebraic numbers which are linearly independent over Q and τ,

as before, then kerψ is trivial. To see this it is enough to observe at step one that

the elements ατ, . . . , αNτN , βτ, . . . , βNτN , iβτ, . . . , iβNτN are linearly independent

over Q and also their derivations are linearly independent over Q. Thus we can apply

the Theorem 3.6 and we obtain at step one that the kernel is trivial. The inductive

step is the same of the previous proof.
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