
1.  Introduction
The southern sector of the Lusitanian basin, SW Portugal (Figure 1a), has been the locus of relevant seismicity in 
historical time (Moreira, 1989; Stucchi et al., 2013). The list of known destructive earthquakes affecting the re-
gion and the adjacent continental shelf ranges in time from 1344 to 1909, with catastrophic occurrences in 1356, 
1531, and 1755 (https://www.emidius.eu/SHEEC). The existence of important seismogenic structures offshore 
SW Portugal was recognized at an early stage, but the 1909 earthquake, with epicenter ∼40 km to the NE of 
Lisbon and estimated magnitude in the range M6.0–M6.5, had a clear intraplate nature, and it is widely accepted 
that the M7 1531 earthquake also nucleated onshore, in the active structures of the Lower Tagus Valley (Canora 
et al., 2021; Justo & Salwa, 1998). All these features point toward a diffuse zone of deformation involving both 
onshore and offshore active structures, which accommodate the Nubia-Eurasia plate convergence through a rele-
vant seismicity release, as recently proposed by Palano et al. (2015). The relative importance of the contributions 
of onshore versus offshore sources to seismic hazard in Portugal is largely debated. On one hand, in view of the 
modest NW Africa–SW Iberia convergence rate (∼4 mm/yr in a NW–SE direction; Fernandes et al., 2003), it has 
been argued that most of the cumulated crustal deformation is fully released by 1969-type offshore earthquakes 
of the Gulf of Cadiz, implying that intraplate faults account for very small slip-rates. It follows that destructive 
intraplate earthquakes are deemed very rare events with limited contribution to the probabilistic hazard (e.g., 
Ramalho et al., 2020). This view is supported by very low intraplate slip-rate estimates derived from geological 
studies (0.005–0.3–0.5 mm/yr; Cabral, 2012). On the other hand, seismic hazard disaggregation studies have led 

Abstract  The Lisbon Metropolitan Area, Portugal, has been affected by several destructive earthquakes 
nucleating both along the offshore Africa-Eurasia plate boundary and on onshore inherited intraplate faults. 
Using a dense GNSS dataset coupled with PSInSAR analysis, we provide new evidence of sinistral simple shear 
driven by a NNE-SSW first-order tectonic lineament. PSInSAR vertical velocities corroborate qualitatively the 
GNSS strain-rate field, showing uplift/subsidence where the GNSS data indicate contraction/extension. We 
propose the presence of a small block to the W of Lisbon moving independently toward the SW with a relative 
velocity of 0.96 ± 0.20 mm/yr, whose boundaries are part of a complex and as yet poorly constrained strike-
slip fault system, possibly rooting at depth into a simpler basement fault. Comparison between geodetic and 
seismic moment-rates indicates a high seismic coupling. We show that the contribution of intraplate faults to 
the seismic hazard in the LMA is more important than currently assumed.

Plain Language Summary  Satellite data allow for the detection and characterization of surface 
deformation when points at the Earth's surface move with velocities of the order of 1 mm per year or higher. 
Using 15-year long series of GNSS observations and 6-year long series of RADAR images from ESA's 
Sentinel-1 satellites, we characterize the deformation of the Lisbon Metropolitan Area. We conclude that the 
crust is being stretched in a NE-SW direction, and on top of this pattern we detect a local patch of contraction, 
near the Tagus river bar. We propose that two blocks of crust are sliding horizontally past each other along 
the Lower Tagus Valley, inducing a style of deformation in the sediment cover called simple shear, while a 
smaller block between Lisbon and Cascais moves independently. Our results indicate that the faults near Lisbon 
contribute more to the seismic hazard of the region then assumed in previous studies, with implications for the 
building regulations.
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to opposite conclusions, whereby the rupture of a nearby intraplate fault is the dominant scenario (Vilanova & 
Fonseca, 2007; Woessner et al., 2015).

Space geodesy may hold the key to arbitrate this issue, since it allows the direct observation and quantification of 
interseismic strain buildup (Bennett et al., 1998; Murray et al., 2014; Lange et al., 2019). The southern Lusitanian 
basin hosts a significant number of GNSS stations at an average spacing of ∼30 km, continuously operating in 
the last 15 years. To constrain both intraplate deformation style and rates of the southern sector of the Lusitanian 
basin, we used the available GNSS data. In addition, PSInSAR (Persistent Scatterer Interferometry of Synthetic 
Aperture RADAR) analysis, which has complementary characteristics to GNSS (Farolfi et al., 2019), was used to 
characterize further the vertical and East-West components of motion, with increased spatial resolution.

2.  Regional Tectonics
The Lisbon Metropolitan Area (LMA; Figure 1a) is located on the southern sector of the Lusitanian Basin (LB) 
in the western coast of Iberia, a rift margin that formed ∼200 million years ago when the North Atlantic rift 
system incised the Paleozoic crust of the Hesperic Massif (Wilson et al., 1989; Rasmussen et al., 1988). The LB 

Figure 1.  (a) Simplified geology of the Lusitanian Basin and adjacent Cenozoic basins, after the 1:1,000,000 Geological Map of Portugal (LNEG, 2010). Faults 
(black lines) after Walker (1982), Dickson (1992), and Curtis (1999). Holocene ruptures (red lines) after Canora et al. (2021). The dashed white rectangle delimits the 
study area. Numbers in legend are: (1) Cenozoic sediments, (2) Lisbon Volcanic Complex, (3) Sintra batholith, (4) Mesozoic sediments, (5) Paleozoic basement, (6) 
generic fault, (7) fault with Holocene activity, (8) inferred basement fault (Lower Tagus Valley Fault), (9) limits of the Lisbon Metropolitan Area. Abbreviations are: 
AvF, Aveiro fault; NF, Nazaré fault; LTVF, Lower Tagus Valley fault; MAF, Messejana-Ávila fault; AF, Alcochete fault; AiR, Aire Range; NC, Nazaré Canyon; CR, 
Candeerios Range; MR, Montejunto Range; SB, Sintra batholith; TL, Tagus lagoon; TB, Tagus bar; SP, Setúbal Peninsula, ArR, Arrábida Range; ArF, Arrábida fault. 
(b) Seismicity of the study area and surrounding region. Instrumental seismicity (1964–2020) from the International Seismological Center (http://www.isc.ac.uk). 
Historical seismicity after the SHEEC catalog (Stucchi et al., 2013). The yellow polygon represents the area used for moment rate comparisons.
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early formation was controlled by a set of crustal-scale strike-slip faults (Aveiro fault, Nazaré fault, Lower Tagus 
Valley fault, Messejana-Ávila fault) inherited from the Hercynian Orogeny (Arthaud & Matte, 1977; Pereira & 
Alves, 2013; Pinheiro et al., 1996). The study area straddles one of these Hercynian crustal fractures, the Lower 
Tagus Valley fault (LTVF). Triassic and Early Jurassic deposits comprise important amounts of evaporites, which 
accumulated in grabens and half-grabens at depths ranging from 2 to 4.5 km and thicknesses from 200 to 1500 m 
(Rasmussen et al., 1998; Reis et al., 2017). With the onset of seafloor spreading, the LB became an aborted rift 
(Hubbard, 1988), and halokinesis played an important role in its evolution, with different sectors developing 
independently as fault-bounded or salt-wall bounded sub-basins (Alves et al., 2003; Montenat et al., 1988. The 
main faults through the sediment fill of the LB revealed by commercial seismic reflection data (Walker, 1982) are 
depicted in Figure 1a. During the Alpine Orogeny the LB underwent structural inversion (Curtis, 1999), which 
stops abruptly at the ENE-WSW Arrabida range, the southern limit of the LB (A. F. Fonseca et al., 2020). Pal-
aeoseismological and geomorphological investigations have unveiled Holocene ruptures on two parallel strands 
of faults along the Tagus River (Figure 1a) in response to the current stress field, characterized by a NW-SE 
maximum compressive stress (Ribeiro et al., 1996), with geomorphic indicators of sinistral strike-slip (Canora 
et al., 2015, 2021; Ostman et al., 2012). The southern sector of the LB hosts significant historical seismicity 
(Moreira, 1989; Stucchi et al., 2013), but during the last decades, the region has experienced quiescence (Custo-
dio et al., 2015), with only M < 3 earthquakes that form a diffuse pattern (Figure 1b).

3.  Data and Methods
A total of 22 continuous GNSS stations covering the study area were processed using the GAMIT/GLOBK 
10.71 software (Herring, 2003; http://www-gpsg.mit.edu), adopting the strategy described in the Supplementary 
Information. To improve the overall configuration of the network and tie the regional measurements to an ex-
ternal global reference frame, data coming from additional 117 continuously operating global tracking stations 
were also introduced in the processing (Figure S1 in Supporting Information S1). To adequately show the crustal 
deformation pattern over the investigated area, the GNSS velocity field was aligned to a fixed Eurasian reference 
frame (Altamimi et al., 2016). The resulting horizontal and vertical velocities are shown in Figure 2a).

Vertical and East–West velocities relative to a pair of reference points were also computed using 311 ascend-
ing-orbit and 306 descending-orbit Sentinel-1 Synthetic Aperture Radar images (Burgmann et al., 2000) acquired 
between 2014 and 2020, with the PSInSAR technique (Ferretti et al., 2000), using the GAMMA software (We-
gmuller et al., 2019; Werner et al., 2000). These results are independent from the GNSS velocity estimates and 
have a much higher spatial resolution. Colocated (within 50m) GNSS and PSInSAR observations were used to 
remove the effect of the motion of reference points. Figure 3 displays the estimated velocities after conversion to 
the GNSS reference frame. See the Supporting Information for additional details.

4.  Results
Velocities with respect to stable Eurasia for 22 GNSS stations on the LB and on the adjacent LTSB are reported 
in Figure 2a. In general, the stations move toward the NW quadrant with an average velocity of ∼1.5 mm/yr. We 
selected for further analysis a subset of 12 stations located on the LMA (see the red dashed rectangle in Fig-
ure 2a). In order to filter out localized deformations of possible geotechnical origin, we compared each horizontal 
velocity with the average of the four nearest sites. We excluded the IGEO station (Figure 2b) from the analysis 
because its motion deviates significantly from the neighbor stations. To the West of the Tagus estuary, a few other 
sites show significant deviations but in a coherent pattern. The average velocity of the three stations with green 
arrows with respect to the average velocity of the remaining eight sites of the study area (red-dashed rectangle) 
is 0.96 ± 0.20 mm/yr, with an azimuth of ∼217° (red arrow in Figure 2a). Station CASC moves differently from 
those immediately to its East but according to the average velocity of the region. Because station CASC has a 
robust monument and a long history of observation (1997 to present), we accept its velocity as a reliable result. 
The significance of these anomalous velocities will be discussed below.

The GNSS-based vertical velocities (Figure 2a) depict a general subsidence pattern with rates up to ∼1.5 mm/
yr, mainly located along the Lower Tagus valley. However, vertical velocities are not as coherent at the submil-
limeter/yr level as the horizontal components (Figure 2a), due to local processes that may affect motions and 
uncertainties; therefore, we focus on the vertical velocities coming from PSInSAR analysis.

http://www-gpsg.mit.edu/
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Figure  3a shows the vertical velocities inferred from the PSInSAR analysis using ascending and descending 
orbits, ranging from 𝐴𝐴 3 ± 1 mm/yr of subsidence to 1 𝐴𝐴 ± 1  mm/yr of uplift (after correction to the same reference 
frame adopted for the GNSS-derived velocities, see Supporting Information for details and PSInSAR-GNSS 
velocity correlation plots). We are assigning an uncertainty of 𝐴𝐴 ± 1 mm/yr to all PRInSAR-derived components of 
velocity. Subsidence is dominant near the margins of the Tagus river, on the eastern Setubal peninsula and in the 
vicinity of the Arrabida range, displaying a close association with the faults that cut through the post-Oligocene 
sediments of the LTSB (black lines in Figure 3). A zone of uplift (or absence of subsidence) can be observed to 
the SW of the city of Lisbon. The East–West velocity field depicted in Figure 3b shows good agreement with the 
same velocity component inferred from GNSS. It lends some support to the southeastward motion of GNSS site 

Figure 2.  (a) GNSS-derived velocities with respect to stable Eurasia. Arrows represent horizontal velocities, and ellipses show the 95% confidence interval. Vertical 
velocities are reported as colored points. Stations located in the red-dashed rectangle were analyzed to remove local deformations (see the main text for details). The 
red arrow is the average velocity of the sites colored in green relative to the average velocity at the remaining stations. (b) Deviation of the azimuth of velocity of each 
site with respect to the average velocity of the four nearest sites. (c) Deviation of the scalar velocity of each site with respect to the average of the four nearest sites. 
(d) Baseline rotation as a function of azimuth. Positive angular velocities correspond to counterclockwise rotation. (e) Baseline shortening/extension as a function of 
azimuth. Positive values correspond to shortening. Azimuths are clockwise from North.
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IGEO, which may afterall have a tectonic rather than geotechnical origin. However, this interpretation must be 
taken with caution given the uncertainty of the velocity estimates.

Finally, Figure  4 depicts the horizontal strain-rates (and associated uncertainties) estimated on a regular 
0.1° × 0.1° grid over the investigated area by adopting the method reported in Shen et al. (2015). The results are 
unreliable in both the northenmost and the southernmost sectors of the study region (uncertainties larger than 
the strain-rate values). Regarding the Lower Tagus Valley and the surrounding area the strain-rate estimates are 
reliable, especially on the extensional components. Here, the strain-rate is characterized by a sharp extension of 
∼15 nstrain/yr with NE–SW axis coupled with a small contraction (3–4 nstrain/yr) in the NW–SE direction. A 
local patch of reliable contraction (∼15 nstrain/yr) can be observed close to the Lisbon-Tagus bar region, with the 
shortening axis oriented NNE–SSW.

5.  Discussion
5.1.  Active Tectonics of the LMA

A first-order observation, according to the horizontal strain-rate field (Figure 4a), is that the crust of the LMA is 
experiencing NE–SW extension, except in the zone around the Tagus bar and in the western Setubal Peninsula, 
which display significant NNE-SSW shortening. This is consistent with the PSInSAR estimates of vertical ve-
locity (Figure 3a), showing uplift near the Tagus bar but mostly subsidence elsewhere. This extensional regime is 
also consistent with the long-term evolution of the Tagus lagoon, the only zone of Portugal to display subsidence 
during the Quaternary (Cabral, 2012).

Figures 2d and 2e provide further insight into the horizontal deformation pattern. Baselines having the azimuth 
in the range N30E to N110E undergo predominantly extension (Figure 2e), in agreement with the strain-rate map 
(Figure 4a). Baselines with azimuth in the range N70 W to N20 W display shortening instead, also consistent 
with the strain-rate field. Moreover, Figure 2d shows that most baselines rotate counterclockwise, with a few 
exceptions in the range N30W–N50 E. Taken together, these results are strongly indicative of simple sinistral 
shear above a strike-slip fault with NNE–SSW orientation, as depicted schematically in Figure 4b. Segments con-
necting stations with green arrows in Figure 2a tend to have an anomalous behavior, visible near azimuth N85E, 

Figure 3.  (a) InSAR vertical velocities in the study area (89,988 points), derived from Sentinel-1 images. Positive velocities (cold colors) correspond to uplift, negative 
velocities (warm colors) correspond to subsidence. The velocities were computed in relation to two reference points (one per margin; black stars), and then converted to 
the GNSS reference frame (see the Supporting Information for details). Black lines depict faults through the sediments. Abbreviations are as in Figure 1. (b) The same 
for East-West velocities. Cold (warm) colors for eastward (westward) movement.
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showing contraction and rotating clockwise against the dominant tendency. Together with the observation that 
this group of sites moves with an average velocity of 0.97 ± 0.20 mm/yr toward the SW quadrant with respect to 
the average velocity of the remaining sites, this behavior indicates the presence of a small crustal block to the W 
of Lisbon, moving independently, possibly related to a local lateral extrusion process. The contrasting motion of 
GNSS site IGEO may be related to the eastern boundary of this block. On the western side, it can be speculated 
that CASC is “pinned” by the Sintra batholith that lays to its north. Paleoseismological and geomorphological 
investigations are probably the only path to improve our understanding of the active deformation of the region, 
despite the challenges put by the urban development of the LMA.

A likely explanation for the complex pattern of deformation near Lisbon concerns the connection of the LTVF 
with the offshore fault system (Figure 1a). As it approaches the broad lagoon of the Tagus estuary, the fault sys-
tem swings to a N-S direction along the Alcochete fault, in a releasing bend (e.g., Sylvester, 1988) that causes 
NE–SW extension and subsidence. Figure 3 shows that this subsidence is linked to the activity of the fault sys-
tem, confirming that the Tagus lagoon is an active pull-apart basin as proposed by Vilanova and Fonseca (2004). 
When it reaches the S of the Arrabida range, the fault system changes direction again, adopting a ENE–WSW 
strike and dip-slip motion (Figure 4b), changes of direction and style that configure a single restraining bend 
(Cunningham & Mann, 2007), explaining the compression and uplift detected in the Setúbal peninsula. Gradients 
of PSInSAR-derived velocities–both vertical and East–West–in the city of Lisbon, together with the anomalous 
behavior of GNSS site IGEO, may indicate that the NNE-SSW LTVF extends further to the SW through the city.

Our results do not clarify to what extent this complexity is also present at basement level, given the effective 
detachment at the base of the sediment fill (Rasmussen et al., 1998; Reis et al., 2017). The uplift/subsidence 
boundary observed south of the Tagus bar (Figure 3a) is aligned with the trend of the LTVF further to the NE, 
and this may indicate that at depth the crustal fault continues as a linear feature toward the offshore. Although 
the tectonic relevance of the canyons has been a topic of speculation for many decades (Pinheiro et al., 1996; 
Pereira & Alves, 2013), it is a fact that they are aligned with major crustal faults (see inset in Figure 1a) further 

Figure 4.  (a) Strain-rates inferred from the GNSS horizontal velocities (see text for details). Blue corresponds to areas under compression, pink to areas under 
extension. (b) Schematic tectonic interpretation of the study area, after Vilanova and Fonseca (2004). Abbreviations are: AF, Alcochete fault; ArR, Arrábida Range; TL, 
Tagus lagoon; TB, Tagus bar. Inset: schematic representation of the simple-shear deformation of ductile sediment cover on top of a sinistral strike slip fault. Red line: 
underlying basement fault; R, synthetic Riedel shear; R’, antithetic Riedel shear; N, normal fault, T, thrust and reverse fault; P, secondary synthetic shear; σ1 and σ3, 
principal stress axes. Modified from Sylvester (1988).
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north (Nazaré fault) as well as further South (Messejana-Ávila fault). A continuation of the linear trend described 
above through the continental shelf is therefore supported by its alignment with the Lisbon Canyon (Lastras 
et al., 2009).

5.2.  Moment Rate Estimates

Geodetically derived strain cannot be equated directly to seismic moment release, since a significant percent-
age of the deformation may be aseismic (e.g., Masson et  al., 2005; Palano et  al., 2018). Taking as reference 
the source area used by Woessner et al. (2015) to account for the seismicity of the Lower Tagus Valley (Fig-
ure  1b), and using 15  km for seismogenic thickness and 30  GPa for crustal rigidity we estimate a value of 

𝐴𝐴 𝑀̇𝑀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
0 = 1.35 × 1017Nm/yr for the scalar geodetic moment-rate (see the Supporting Information). Ramalho 

et al. (2020) reviewed the probabilistic seismic hazard assessment of Woessner et al. (2015) and estimated 𝐴𝐴 𝑀̇𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0  

from the Gutenberg-Richter parameters for the same source area, so a direct comparison between the two results 
can be performed. For the three values of maximum magnitude (7.1, 7.4, and 7.6) considered by Woessner 
et al. (2015), Ramalho et al. (2020) obtained 𝐴𝐴 𝑀̇𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0  of 8.69 × 1016, 1.33 × 1017, and 1.77 × 1017 Nm/yr, respec-
tively. These values compare well with our geodetic estimate of the moment-rate, especially the central value, 
suggesting a strong seismic coupling of the area.

5.3.  Hazard Implications

It is important to confront assumptions regarding seismic hazard with the new results put forward here. Because 
fault slip-rate 𝐴𝐴 𝒅̇𝒅 is directly linked to seismic moment-rate 𝐴𝐴 𝑴̇𝑴0 through the fundamental relation 𝐴𝐴 𝑴̇𝑴0 = 𝝁𝝁𝝁𝝁𝒅̇𝒅 where 

𝐴𝐴 𝝁𝝁 is rigidity and 𝐴𝐴 𝑨𝑨 is rupture area, its value imposes a strong constraint on seismic recurrence models, hence on 
seismic hazard estimates (Anderson & Luco, 1983; Youngs & Coppersmith, 1985). Cabral (2012) state that the 
intraplate faults of Western Iberia have very slow slip-rates, in the range 0.005 to 0.3–0.5 mm/yr, with return 
periods larger than 5000 years for M > 6 earthquakes, having therefore a small contribution to the hazard at the 
regulatory return period of 475 years when compared to more distant offshore faults. Our results suggest that 
those values are exceeded in the vicinity of Lisbon. Although the velocities and rates reported here cannot be 
directly extrapolated to the basement given the likely detachment at the bottom of the basin fill, our reported 
block velocity of 0.97 ± 0.20 mm/yr is incompatible with the low intraplate slip-rates that have been assumed in 
several hazard studies, among which the one at the basis of the EUROCODE 8 National Document for Portugal 
(Costa et al., 2008). Also, the reported strain-rates, of the order of 15 nstrain/yr or ∼5 × 10−16 s−1, are higher than 
those typically associated with intraplate areas (10−17 to 10−20 s−1 according to Molnar, 2020) and are comparable 
to those observed in the Basin and Range (∼3 × 10−16 s−1 according to Payne et al., 2008) or in Southern Tibet 
(∼4 × 10−16 s−1 according to Wang et al., 2019). Further investigation of the faults of the LMA with the tech-
niques of Active Tectonics and Paleoseismology should therefore be a priority for the improvement of regional 
seismic hazard assessment.

6.  Concluding Remarks
The analysis of GNSS data in the LMA revealed a pattern of interseismic deformation consistent with simple 
shear on top of a locked strike slip basement fault oriented NNE-SSW, with strain-rates of the order of 15 nstrain/
yr, both extensional and contractional. Velocities independently derived from radar images with the PSInSAR 
technique broadly corroborate these results, showing uplift (subsidence) where the GNSS data detect contraction 
(extension). A block to the West of Lisbon, sampled by three GNSS sites, moves with respect to the surrounding 
region on both sides with a relative velocity of 0.96 ± 0.20 mm/yr, possibly as the result of small-scale lateral 
extrusion. These results support the hypothesis that the Lower Tagus Valley is the locus of an active first-order 
crustal fault which drives the observed simple shear surface deformation, while contradicting the widespread 
view (e.g., Ramalho et al., 2020) that the LTV faults are too slow to contribute with a major parcel to the seismic 
hazard of the region. The impact of intraplate faults in the seismic hazard of the LMA may therefore be more 
important than currently assumed.
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Data Availability Statement
Crustal velocity data and seismicity data used to produce the figures in the study are available at Zenodo via 
https://doi.org/10.5281/zenodo.5646484 with free access. The raw RINEX data of the SERVIR CORS and Re-
NEP networks used in this paper were kindly yielded by the Instituto Geográfico do Exército, Lisbon, and Di-
recção Geral do Território, Lisbon, respectively. The European Space Agency (ESA) provided Sentinel-1 IW 
SAR data, and NASA offered the SRTM DEM. Instrumental seismicity data were downloaded from the Interna-
tional Seismological Center (Storchak et al., 2020). Access to the raw RINEX data used to derive GNSS veloci-
ties can be requested from snig@dgterritorio.pt and igeoe@igeoe.pt free of charge (registration is required). The 
SAR images (2014–2020) used to derive the PSInSAR velocities can be downloaded free of charge from https://
scihub.copernicus.eu/dhus/#/home (insert “Portugal” as search criteria; after this step registration is required). 
All figures were prepared with the GMT software (Wessel & Smith, 1991). The raw GNSS data used to derive 
the velocities used in this paper belong partly to the Portuguese Army (IGEOE-Instituto Geografico do Exercito) 
and are treated as sensitive under Portuguese law. Any researcher can gain access to the data but, according to the 
IGEOE guidelines, (s)he needs to register. Note that this restriction applies to the raw RINEX data only, and all 
the velocities derived from those data were uploaded to the Zenodo repository.
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