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1 Introduction

Let R be an o-minimal expansion of an ordered group (R, 0, +, <). The
structure R will be fixed throughout and will be assumed to be ℵ1-saturated.
By definable we will mean definable in R with parameters.

In the paper [3] the first author introduced a notion of o-minimal funda-
mental group and o-minimal universal covering homomorphism for definable
groups (or more generally for locally definable groups) in arbitrary o-minimal
structures which we now recall.

First recall that a group (G, ·) is a locally definable group over A, with
A ⊆ R and |A| < ℵ1, if there is a countable collection {Zi : i ∈ I} of definable
subsets of Rn, all definable over A, such that: (i) G = ∪{Zi : i ∈ I}; (ii) for
every i, j ∈ I there is k ∈ I such that Zi ∪ Zj ⊆ Zk and (iii) the restriction
of the group multiplication to Zi × Zj is a definable map over A into Rn.

Given two locally definable groups H and G over A, we say that H is a
locally definable subgroup of G over A if H is a subgroup of G.

A homomorphism α : G −→ H between locally definable groups over A is
called a locally definable homomorphism over A if for every definable subset
Z ⊆ G defined over A, the restriction α|Z is a definable map over A.

In the terminology of [9], locally definable groups (respectively homomor-
phisms) are

∨
-definable groups (respectively homomorphisms). Therefore,

every locally definable group G ⊆ Rn over A is equipped with a unique
topology τ , called the τ -topology, such that: (i) (G, τ) is a topological group;
(ii) every generic element of G has an open definable neighborhood U ⊆ Rn

such that U ∩ G is τ -open and the topology which U ∩ G inherits from τ
agrees with the topology it inherits from Rn; (iii) locally definable homomor-
phisms between locally definable groups are continuous with respect to the τ
topologies. Note also that when G is a definable group, then its τ -topology
coincides with the its t-topology from [10].

Definition 1.1 A locally definable homomorphism p : H −→ G over A
between locally definable groups over A is called a locally definable covering
homomorphism if p is surjective and there is a family {Ul : l ∈ L} of τ -open
definable subsets of G over A such that G = ∪{Ul : l ∈ L} and, for each
l ∈ L, p−1(Ul) is a disjoint union of τ -open definable subsets of H over A,
each of which is mapped homeomorphically by p onto Ul.

We call {Ul : l ∈ L} a p-admissible family of definable τ -neighborhoods
over A.

We denote by Cov(G) the category whose objects are locally definable
covering homomorphisms p : H −→ G (over some A with |A| < ℵ1) and
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whose morphisms are surjective locally definable homomorphisms r : H −→
K (over some A with |A| < ℵ1) such that q ◦ r = p, where q : K −→ G is a
locally definable covering homomorphism (over some A with |A| < ℵ1). Let
p : H −→ G and q : K −→ G be locally definable covering homomorphisms.
If r : H −→ K is a morphism in Cov(G), then by [3] Theorem 3.6, r : H −→
K is a locally definable covering homomorphism.

Definition 1.2 The category Cov(G) and its full subcategory Cov0(G) with
objects h : H −→ G such that H is a definably connected locally definable
group, form inverse systems ([3] Corollary 3.7 and Lemma 3.8). The inverse

limit p̃ : G̃ −→ G of the inverse system Cov0(G) is called the (o-minimal)
universal covering homomorphism of G.

The kernel of the universal covering homomorphism p̃ : G̃ −→ G of G is
called the (o-minimal) fundamental group of G and is denoted by π(G).

Inverse limits of inverse systems of groups always exist in the category
of groups ([11] Proposition 1.1.1), but in general we do not know if the o-

minimal universal covering homomorphism p̃ : G̃ −→ G is locally definable.
The main result of this paper is that this is the case in o-minimal expansions
of groups.

On the other hand, in the paper [5], the second author and S. Starchenko
use definable t-continuous paths to define the o-minimal fundamental group
π1(G) of a definably t-connected, definable group G following the classical
case in [7] and the case in o-minimal expansions of fields treated by Berarducci
and Otero in [1]. We will adapt that definition to the category of locally
definable groups. As in [5] we will run the definition in parallel with respect
to the τ -topology of a definably connected locally definable group G and the
usual topology on an arbitrary definable subset X of Rn.

A (τ -)path α : [0, p] −→ X (α : [0, p] −→ G) is a (τ -)continuous definable
map. A (τ -)path α : [0, p] −→ X (α : [0, p] −→ G) is a (τ -)loop if α(0) =
α(p). A concatenation of two (τ -)paths γ : [0, p] −→ X (γ : [0, p] −→ G)
and δ : [0, q] −→ X (δ : [0, q] −→ G) with γ(p) = δ(0) is a (τ -)path
γ · δ : [0, p + q] −→ X (γ · δ : [0, p + q] −→ G) with:

(γ · δ)(t) =


γ(t) if t ∈ [0, p]

δ(t− p) if t ∈ [p, p + q].

Given two definable (τ -)continuous maps f, g : Y ⊆ Rm −→ X (f, g : Y ⊆
Rm −→ G), we say that a definable (τ -)continuous map F (t, s) : Y ×[0, q] −→
X (F (t, s) : Y × [0, q] −→ G), is a (τ -)homotopy between f and g if f = F0

and g = Fq, where ∀s ∈ [0, q], Fs := F (·, s). In this situation we say that f
and g are (τ -)homotopic, denoted f ∼ g (f ∼τ g).
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Definition 1.3 Two (τ -)paths γ : [0, p] −→ X (γ : [0, p] −→ G), δ :
[0, q] −→ X (δ : [0, q] −→ G), with γ(0) = δ(0) and γ(p) = δ(q), are
called (τ -)homotopic if there is some t0 ∈ [0, min{p, q}], and a (τ -)homotopy
F (t, s) : [0, max{p, q}]× [0, r] −→ X (F (t, s) : [0, max{p, q}]× [0, r] −→ G),
for some r > 0 in R, between

γ|[0,t0] · c · γ|[t0,p] and δ (if p ≤ q), or

δ|[0,t0] · d · δ|[t0,q] and γ (if q ≤ p).

where c(t) = γ(t0) and d(t) = δ(t0) are the constant (τ -)paths with domain
[0, |p− q|].

If L(G) denotes the set of all τ -loops that start and end at the identity
element eG of G, the restriction of ∼τ to L(G) × L(G) is an equivalence
relation on L(G). We define

π1(G) := L(G)/ ∼τ

and [γ] := the class of γ ∈ L(G). Note that π1(G) is indeed a group with
group operation given by [γ][δ] = [γ · δ].

In a similar way we define the o-minimal fundamental group π1(X) of a
definable set X ⊆ Rn.

Given the above two possible definitions of o-minimal fundamental groups
it is natural to try to find out if they coincide. Our main result shows that
this is the case:

Theorem 1.4 Let R be an o-minimal expansion of a group and G a de-
finably t-connected definable group. Then the o-minimal universal covering
homomorphism p̃ : G̃ −→ G is a locally definable covering homomorphism
and π1(G) is isomorphic to π(G).

Theorem 1.4 will actually be proved for definably τ -connected locally
definable groups. See Theorem 3.11 below. As a consequence of our work we
obtain the following corollary which is proved at the end of the paper.

Corollary 1.5 Let R be an o-minimal expansion of a group and G a defin-
ably t-connected definable group. Then π1(G) is a finitely generated abelian
group. Moreover, if G is abelian, then there is l ∈ N such that π1(G) ' Zl

and, for each k ∈ N, the subgroup G[k] of k-torsion points of G is given by
G[k] ' (Z/kZ)l.

When G is a definably compact, abelian definable group, we conjecture
that l above is the dimension of G. This is known to be the case when R is
linear ([5]) or R is an o-minimal expansion of a real closed field ([4]). So the
conjecture is open for R eventually linear but not linear.
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2 Preliminary results

This section contains all the lemmas that come from other references and are
used later in the paper. Thus we generalize the theory of [3] and [4] Section 2
to the category of locally definable covering maps of locally definable groups
in R. Since the arguments are similar we will omit the details.

Definition 2.1 A set Z is a locally definable set over A, where A ⊆ R and
|A| < ℵ1, if there is a countable collection {Zi : i ∈ I} of definable subsets
of Rn, all definable over A, such that: (i) Z = ∪{Zi : i ∈ I}; (ii) for every
i, j ∈ I there is k ∈ I such that Zi ∪ Zj ⊆ Zk.

Given two locally definable sets X and Z over A, we say that X is a
locally definable subset of Z over A if X is a subset of Z.

A map α : Z −→ X between locally definable sets over A is called a
locally definable map over A if for every definable subset V ⊆ Z defined over
A, the restriction α|V is a definable map over A.

By saturation, the set Z does not depend on the choice of the collection
{Zi : i ∈ I}. Furthermore, if α : Z −→ X is a locally definable map over A
between locally definable sets over A and Y is a locally definable subset of
X over A, then the following hold:

(1) α(Z) is a locally definable subset of X over A and α−1(Y ) is a locally
definable subset of Z over A.

(2) If Y is such that V ∩ Y is definable for every definable subset V of
X, then W ∩ α−1(Y ) is definable for every definable subset W of Z. (Since
W ∩ α−1(Y ) = α−1

|W (α(W ) ∩ Y ))).

Definition 2.2 Let G be a locally definable group over A and W a locally
definable set over A. A locally definable map w : W −→ G over A is called a
locally definable covering map if w is surjective and there is a family {Ul : l ∈
L} of τ -open definable subsets of G over A such that G = ∪{Ul : l ∈ L} and,
for each l ∈ L, the locally definable subset w−1(Ul) of W over A is a disjoint
union of definable subsets of W over A, each of which is mapped bijectively
by w onto Ul.

We call {Ul : l ∈ L} a w-admissible family of definable τ -neighborhoods
over A.

Given a locally definable covering map w : W −→ G over A there is a
topology on W , which we call the w-topology, generated by the definable sets
of the form w−1(U)∩ V , where U is a τ -open definable subset of G and V is
one of the definable subsets of the disjoint union w−1(Ul) for some Ul in the
w-admissible family of definable τ -neighborhoods.
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Clearly, with respect to the w-topology on W (and the τ -topology on
G), w : W −→ G is continuous. Furthermore, w : W −→ G is an open
surjection. In fact, let V be a w-open definable subset of W over A and, for
each l ∈ L, let {U l

s : s ∈ Sl} be the collection of w-open disjoint definable
subsets of W over A such that w−1(Ul) = ∪{U l

s : s ∈ Sl} and w|U l
s

: U l
s −→ Ul

is a definable homeomorphism over A for every s ∈ Sl. Since |A| < ℵ1,
by saturation, there is {W1, . . . ,Wm} ⊆ {U l

s : l ∈ L, s ∈ Sl} such that
V ⊆ ∪{Wi : i = 1, . . . ,m}. But then V = ∪{V ∩ Wi : i = 1, . . . ,m} and
w(V ) = ∪{w(V ∩Wi) : i = 1, . . . ,m} is τ -open.

Lemma 2.3 Let w : W −→ G be a locally definable covering map and sup-
pose that W is also a locally definable group. Then on W the w-topology
coincides with the τ -topology.

Proof. Let a ∈ W be a generic point and U a definable w-open neigh-
borhood of a in W . We may assume that w|U : U −→ w(U) is a definable
homeomorphism. Since w(a) is also generic, there exists a definable subset
V ⊆ w(U) containing w(a) such that V is both τ -open in G and open in G
with the induced topology on G from Rn. Thus w−1(V ) is also both a w-
neighborhood of a in W and in W with the induced topology on W from Rn.
Hence, w−1(V ) is a τ -neighborhood of a in W . By uniqueness of τ -topology,
this implies that the w-topology and the τ -topology on W agree. �

Let w : W −→ G be a locally definable covering map (over some A with
|A| < ℵ1). Let X be a definable subset of W equipped with the induced
w-topology from W . We will now introduce certain notions in parallel for X
and W .

A w-path α : [0, p] −→ X (α : [0, p] −→ W ) is a w-continuous definable
map. A w-path α : [0, p] −→ X (α : [0, p] −→ W ) is a w-loop if α(0) = α(p).
A concatenation of two w-paths γ : [0, p] −→ X (γ : [0, p] −→ W ) and
δ : [0, q] −→ X (δ : [0, q] −→ W ) with γ(p) = δ(0) is a w-path γ · δ :
[0, p + q] −→ X (γ · δ : [0, p + q] −→ W ) with:

(γ · δ)(t) =


γ(t) if t ∈ [0, p]

δ(t− p) if t ∈ [p, p + q].

Given two definable w-continuous maps f, g : Y ⊆ Rm −→ X (f, g : Y ⊆
Rm −→ W ), we say that a definable w-continuous map F (t, s) : Y ×[0, q] −→
X (F (t, s) : Y × [0, q] −→ W ) is a w-homotopy between f and g if f = F0

and g = Fq, where ∀s ∈ [0, q], Fs := F (·, s). In this situation we say that f
and g are w-homotopic, denoted f ∼w g.

6



Definition 2.4 Two w-paths γ : [0, p] −→ X (γ : [0, p] −→ W ), δ : [0, q] −→
X (δ : [0, q] −→ W ), with γ(0) = δ(0) and γ(p) = δ(q), are called w-
homotopic if there is some t0 ∈ [0, min{p, q}], and a w-homotopy F (t, s) :
[0, max{p, q}]× [0, r] −→ X (F (t, s) : [0, max{p, q}]× [0, r] −→ W ), for some
r > 0 in R, between

γ|[0,t0] · c · γ|[t0,p] and δ (if p ≤ q), or

δ|[0,t0] · d · δ|[t0,q] and γ (if q ≤ p).

where c(t) = γ(t0) and d(t) = δ(t0) are the constant w-paths with domain
[0, |p− q|].

If L(W ) denotes the set of all w-loops that start and end at a fixed element
eW of W such that w(eW ) = eG, the restriction of ∼w to L(W )×L(W ) is an
equivalence relation on L(W ). We define

π1(W ) := L(W )/ ∼w

and [γ] := the class of γ ∈ L(W ). Note that π1(W ) is indeed a group with
group operation given by [γ][δ] = [γ · δ]. Also this group depends on the
w-topology on W .

In a similar way we define the o-minimal fundamental group π1(X) of a
definable subset X ⊆ W with respect to the induced w-topology.

Clearly, any two constant w-loops at the same point c ∈ W are w-
homotopic. We will thus write εc for the constant w-loop at c without spec-
ifying its domain.

In view of Lemma 2.3, we obtain the above notions with w replaced by τ
for definable subsets of a locally definable group equipped with the induced
τ -topology.

Lemma 2.5 Let w : W −→ G and v : V −→ H be locally definable covering
maps. Then (w, v) : W × V −→ G × H is a locally definable covering map
and θ : π1(W ) × π1(V ) −→ π1(W × V ) : ([γ], [δ]) 7→ [(γ, δ)] is a group
isomorphism.

Proof. The inverse of θ is π1(W × V ) −→ π1(W ) × π1(V ) : [ρ] 7→
([q1 ◦ρ], [q2 ◦ρ]) where q1 and q2 are the projections from W ×V onto W and
V , respectively. �

Let w : W −→ G be a locally definable covering map (over some A with
|A| < ℵ1). Let Z be a definable set and let f : Z −→ G be a definable
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continuous map (with respect to the τ -topology on G). A lifting of f is a

continuous definable map f̃ : Z −→ W (with respect to the w-topology on

W ) such that p ◦ f̃ = f .

Lemma 2.6 Let w : W −→ G be a locally definable covering map, Z a
definably connected definable set and f : Z −→ G a definable continuous
map. If f̃1, f̃2 : Z −→ W are two liftings of f , then f̃1 = f̃2 provided there is
a z ∈ Z such that f̃1(z) = f̃2(z).

Proof. As in the proof of [3] Lemma 3.2, both sets {w ∈ Z : f̃1(w) =

f̃2(w)} and {w ∈ Z : f̃1(w) 6= f̃2(w)} are definable and open, the first one is
nonempty. �

Lemma 2.7 Suppose that w : W −→ G is a locally definable covering map.
Then the following hold.

(1) Let γ be a τ -path in G and y ∈ W . If w(y) = γ(0), then there is a
unique w-path γ̃ in W , lifting γ, such that γ̃(0) = y.

(2) Suppose that F is a τ -homotopy between the τ -paths γ and σ in G. Let

γ̃ be a w-path in W lifting γ. Then there is a unique definable lifting F̃ of F ,
which is a w-homotopy between γ̃ and σ̃, where σ̃ is a w-path in W lifting σ.

Proof. In our category, the path and the homotopy liftings can be proved
as in [4] by observing that, by saturation, a definable subset of G is covered
by finitely many open definable subsets of G. �

Notation: Referring to Lemma 2.7, if γ : [0, q] −→ G is a τ -path in G
and y ∈ W , we denote by y ∗ γ the final point γ̃(q) of the lifting γ̃ of γ with
initial point γ̃(0) = y.

The following consequence of Lemma 2.7 is proved in exactly the same
way as its definable analogue in [4] Corollary 2.9. Below, for w : W −→ G
a locally definable covering map, we say that W is definably w-connected if
there is no proper locally definable subset of W which is both w-open and w-
closed and whose intersection with any definable subset of W is definable. In
view of Lemma 2.3, this notion generalizes the notion of definably connected
in locally definable groups studied in [3].

Remark 2.8 Suppose that w : W −→ G is a locally definable covering
map and let y ∈ W be such that w(y) = eG. Suppose that W and G
are definably w-connected and τ -connected respectively. Then we have a
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well defined homomorphism w∗ : π1(W ) −→ π1(G) : [γ] 7→ [w ◦ γ] and the
following hold.

(1) If σ is a τ -path in G from eG to eG, then y = y ∗ σ if and only if
[σ] ∈ w∗(π1(W )).

(2) If σ and σ′ are two τ -paths in G from eG to x, then y ∗ σ = y ∗ σ′ if and
only if [σ · σ′−1] ∈ w∗(π1(W )).

Let w : W −→ G be a locally definable covering map. We say that W
is w-path connected if for every u, v ∈ W there is a w-path α : [0, q] −→ W
such that α(0) = u and α(q) = v.

Lemma 2.9 Let w : W −→ G be a locally definable covering map. Then
W is definably w-connected if and only if W is w-path connected. In fact,
for any definably w-connected definable subset X of W there is a uniformly
definable family of w-paths in X connecting a given fixed point in X to any
other point in X.

Proof. Since w : W −→ G is a locally definable covering map, it is
enough to prove the result for locally definable groups. By the first part of
the proof of [9] Lemma 2.13, there is a locally definable subset U of G such
that dim(G \ U) < dimG, the intersection of any definable subset of G with
U is a definable subset and the induced τ -topology on U coincides with the
induced topology from Rn. So a definable subset B of U is τ -connected if
and only if B is definably connected (in Rn). Thus the result follows from
by [6] Chapter VI, Proposition 3.2 and its proof, saturation and [3] Lemma
3.5 (i.e., countably many translates of U cover G). �

The next proposition is also a consequence of Lemma 2.7 and is proved
in exactly the same way as its definable analogue in [4] Corollary 2.8 and
Proposition 2.10.

Proposition 2.10 Let w : W −→ G be a locally definable covering map.
Suppose that W and G are definably w-connected and τ -connected respec-
tively. Then the following hold:

(1) w∗ : π1(W ) −→ π1(G) is an injective homomorphism;

(2) π1(G)/w∗(π1(W )) ' Aut(W/G) (the group of all locally definable w-
homeomorphisms φ : W −→ W such that w = w ◦ φ).

Below we will also require the following generalization of Lemma 2.6:
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Lemma 2.11 Let w : W −→ G and v : V −→ H be locally definable
covering maps and let f, g : V −→ W be two continuous locally definable
maps (with respect to the v and w topologies) such that w ◦ f = w ◦ g. If V
is definably v-connected and f(x) = g(x) for some x ∈ V , then f = g.

Proof. This is as in [3] Lemma 3.2 once we show that {x ∈ V : f(x) =
g(x)}, which is open and closed, is a locally definable subset whose intersec-
tion with any definable subset of V is a definable subset of V . If C, D ⊆ V
are definable, then (V ×W V )∩ (C×D) = {(x, y) ∈ C×D : f|C(x) = g|D(y)}
is definable, and so (V ×W V ) ∩ E is definable for every definable subset
E of V × V . Similarly, ∆V ∩ E is definable for every definable subset E
of V × V . Hence, (V ×W V ) ∩ ∆V ∩ E is definable for every definable
subset E of V × V . From this and the observation (2) on page 5 we get
our result since {x ∈ V : f(x) = g(x)} = i−1((V ×W V ) ∩ ∆V ), where
i : V −→ ∆V : x 7→ (x, x) is a locally definable map. �

Finally we include the following result ([3] Proposition 3.4) which will
also be useful later:

Proposition 2.12 Let h : H −→ G be a locally definable covering homo-
morphism and suppose that H is definably τ -connected. Then

Kerh ' Aut(H/G)

and Aut(H/G) is abelian.

3 The universal covering homomorphism

Here we will present the proof of our main result. We start however with a
special case.

3.1 A special case of the main result

The main result of the paper [5], in the language of the theory of locally de-
finable covering homomorphisms, is the following (compare with [5] Remark
6.14). For a related result see also [8].

Theorem 3.1 ([5]) Suppose that R is an ordered vector space over an or-
dered division ring and G is a definably t-connected, definably compact, de-
finable group of dimension n. Then there is a locally definable group V
which is a subgroup of (Rn, +) and a locally definable covering homomor-
phism v : V −→ G such that π1(G) ' Kerv ' Zn.
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In [5] Remark 6.14 it is suggested that v : V −→ G is in some sense the
universal cover of G since we have π1(V ) = 1 ([5] Corollary 6.7). This claim
can now be made more precise:

Theorem 3.2 Suppose that R is an ordered vector space over an ordered
division ring and G is a definably t-connected, definably compact, definable
group of dimension n. Then the locally definable covering homomorphism
v : V −→ G is isomorphic to p̃ : G̃ −→ G and π1(G) ' π(G) ' Zn.

Proof. Suppose that q : K −→ V is a locally definable covering ho-
momorphism. Then from Propositions 2.10 and 2.12 we obtain Kerq '
Aut(K/V ) ' π1(V )/q∗(π1(K)) = 1 since π1(V ) = 1, by [5] Corollary 6.7.
So q : K −→ V is a locally definable isomorphism (since it is surjective).
Consequently, by [3] Lemma 3.8, the set of all h : H −→ G in Cov0(G)
which are locally definably isomorphic to v : V −→ G is cofinal in Cov0(G)

and hence the inverse limit p̃ : G̃ −→ G is isomorphic to v : V −→ G. By
Propositions 2.10 and 2.12 we obtain π(G) ' Kerv ' Aut(V/G) ' π1(G)
since π1(V ) = 1. Thus the result holds as required. �

3.2 The main result

Here we prove the main result of the paper. Before we proceed we need the
following propositions.

Proposition 3.3 Let G be a definably τ -connected locally definable group of
dimension k. Then there is a countable collection {Os : s ∈ S} of τ -open
definably τ -connected definable subsets of G with G = ∪{Os : s ∈ S} and,
for each s ∈ S, Os is definably homeomorphic to an open cell in Rk. In
particular, for each s ∈ S, the o-minimal fundamental group π1(Os) with
respect to the induced τ -topology on Os is trivial

Proof. By the first part of the proof of [9] Lemma 2.13, there is a locally
definable subset U of G such that dim(G\U) < dimG, the intersection of any
definable subset of G with U is a definable subset and the induced τ -topology
on U coincides with the induced topology from Rn. Without loss of generality
we can assume that U is a countable union of cells of dimension k = dimG.
Note that on each of these k-cells in U , the induced τ -topology coincides
with the induced topology from Rn. By [3] Lemma 3.5 countably many
translates of U cover G, so countably many τ -open definably τ -connected
subsets of G which are definably τ -homeomorphic to k-cells in U cover G.
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Let {Os : s ∈ S} be this collection. To finish, it is enough to show that if
C is an open cell in Rk then π1(C) = 1 (since definable homeomorphisms
induce isomorphisms between the o-minimal fundamental groups).

We will show this by induction on the construction of cells. If C has di-
mension zero then this is obvious. Assume that C = (a, b) ⊆ R∪{−∞, +∞}
is an open cell of dimension one and α : [0, q] −→ C is a definable loop at
c ∈ C. Consider the continuous definable map H : [0, q]× [0, q] −→ C given
by

H(t, x) := α(
t + x + |t− x|

2
).

Then H is a definable homotopy between α and εc. So [α] = 1 and π1(C) = 1
as required.

Suppose that B is a cell, π1(B) = 1 and C = (f, g)B with f, g : B −→ R∪
{−∞, +∞} continuous definable maps such that f < g. Let c = (b, a) ∈ C
and let σ : [0, q] −→ C be a definable loop at c. We can write σ(t) =
(β(t), α(t)) for some definable loop β : [0, q] −→ B at b and α : [0, q] −→ R a
definable loop at a. By assumption there is a definable homotopy F : [0, q]×
[0, p] −→ B between β and εb and a definable homotopy E : [0, q]× [0, r] −→
R between α and εa. Let H : [0, q] × [0, max{r, p}] −→ C be the definable
map such that if r ≤ p then

H(t, x) =


(F (t, x), E(t, x)) if x ≤ r,

(F (t, x), E(t, r)) if x ≥ r,

and if p ≤ r then

H(t, x) =


(F (t, x), E(t, x)) if x ≤ p,

(F (t, p), E(t, x)) if x ≥ p.

Then H is a definable homotopy between σ and εc. So [σ] = 1 and
π1(C) = 1 as required. �

Proposition 3.4 Let G be a definably τ -connected locally definable group.
Then the o-minimal fundamental group π1(G) of G (with respect to the in-
duced τ -topology) is countable. In fact, if G is definable, then π1(G) is finitely
generated.

Proof. Consider the countable cover {Os : s ∈ S} of G by τ -open
definably τ -connected definable subsets given by Proposition 3.3. For each
pair of distinct elements s, t ∈ S such that Os∩Ot 6= ∅ and for each definably
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τ -connected component C of this intersection choose a point as,t,C ∈ C.
For each pair (as,t,C , as′,t′,D) of distinct points and l ∈ {s, t} ∩ {s′, t′} let
σl

(C,D),s,t,s′,t′ be a τ -path in Ol from as,t,C to as′,t′,D. Also, for each as,t,C such

that eG ∈ Os, let σs
(eG,C),s,t (respectively, σs

(C,eG),s,t) be a τ -path in Os from

eG to as,t,C (respectively, from as,t,C to eG).
Let Σ be the countable collection of all τ -paths σl

(C,D),s,t,s′,t′ , σs
(eG,C),s,t and

σs
(C,eG),s,t as above. The set Σ generates a free countable language Σ∗ such

that some of its words correspond in an obvious way to τ -paths in G. To
finish the proof it is enough to show that any τ -loop in G is τ -homotopic to
a τ -loop which is a concatenation of τ -paths in Σ and thus corresponds to a
word in Σ∗.

Let λ be a τ -loop in G. Then by saturation and o-minimality there exists
a minimal k for which we can choose points 0 = t(0) < t(1) < · · · < t(k) <
t(k+1) = qλ such that for each j = 0, . . . , k, we have λ([t(j), t(j+1)]) ⊆ Os(j)

for some s(j) ∈ S. Thus λ = λ0 · · · · · λk where, for each j, λj : [0, qλj
] −→ G

is the τ -path with qλj
= t(j + 1)− t(j) and given by λj(t) = λ(t + t(j)). For

i = 0, . . . , k − 1, let Ci be the definably τ -connected component of Os(i) ∩
Os(i+1) containing λi(qλi

) and let εi be a τ -path in Ci from as(i),s(i+1),Ci
to

λi(qλi
). Let σ0 be the τ -path σ

s(0)
(eG,C0),s(0),s(1) in Os(0) and let σk be the τ -path

σ
s(k)
(Ck−1,eG),s(k−1),s(k) in Os(k). Finally, for i = 1, . . . , k − 1, let σi be the τ -path

σ
s(i)
(Ci−1,Ci),s(i−1),s(i),s(i),s(i+1) in Os(i). Since by Proposition 3.3, π1(Os(j)) = 1 for

all j = 0, . . . , k, we have that σ0 is τ -homotopic to λ0 · ε−1
0 , σk is τ -homotopic

to εk−1 · λk and, for each i = 1, . . . , k − 1, σi is τ -homotopic to εi−1 · λi · ε−1
i .

Hence, λ is τ -homotopic to σ0 · σ1 · · · · · σk ∈ Σ∗ as required.
Assume now that G is definable. Let K be the simplicial complex of

dimension one whose vertices are the end points of the τ -paths in Σ and whose
edges are the images of the τ -paths in Σ. Clearly we have a homomorphism
π1(|K|, eG) −→ π1(G) which sends an edge loop in K into the τ -loop it
determines in G. This is well defined since if two edge loops are homotopic in
|K| then they are obviously τ -homotopic in G. The argument in the previous
paragraph shows that the homomorphism π1(|K|, eG) −→ π1(G) is surjective.
Now as explained in [2] Chapter 3, Subsection 3.5.3, the fundamental group
of a (finite) simplicial complex is finitely generated. Hence π1(G) is also
finitely generated. �

For the rest of the section, fix G a definably τ -connected locally definable
group.

We will construct now an “abstract universal covering map” u : U −→ G
from which we will obtain a locally definable covering map v : V −→ G which
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will be a locally definable covering homomorphism once we put a suitable
locally definable group structure on V . The later will then be shown to be
isomorphic to p̃ : G̃ −→ G.

Given two τ -paths σ : [0, qσ] −→ G and λ : [0, qλ] −→ G in G, we put
σ ' λ if and only if σ(0) = λ(0) = eG, σ(qσ) = λ(qλ) and [σ · λ−1] = 1 ∈
π1(G). Here, λ−1 : [0, qλ−1 ] −→ G is the τ -path such that qλ−1 = qλ and
λ−1(t) = λ(qλ − t) for every t in [0, qλ−1 ]. The relation ' is an equivalence
relation and we denote the equivalence class of σ under ' by 〈σ〉. For each
s ∈ S, let Us = {〈σ〉 : σ is a τ -path in G such that σ(0) = eG and σ(qσ) ∈ Os}
and fix a τ -path σs : [0, qs] −→ G such that σ(0) = eG and σ(qs) ∈ Os.

Claim 3.5 There is a well-defined bijection

φs : Us −→ Os × π1(G) : 〈λ〉 7→ (λ(qλ), [λ · η · σ−1
s ]),

where η : [0, qη] −→ Os is a τ -path in Os such that η(0) = λ(qλ) and η(qη) =
σs(qs).

Proof. Clearly, φs is well-defined, i.e. it does not depend on the choice of
η since π1(Os) = 1 (Proposition 3.3) and for 〈λ〉 = 〈λ′〉 we have λ(qλ) = λ(qλ′)
and

[λ · η · σ−1
s ] = [λ · λ′−1 · λ′ · η · σ−1

s ]
= [λ · λ′−1][λ′ · η · σ−1

s ]
= [λ′ · η · σ−1

s ].

Also, for o ∈ Os and [γ] ∈ π1(G) we have φs(〈λ〉) = (o, [γ]) for λ =
γ · σs · η−1, where η : [0, qη] −→ G is a τ -path in Os such that η(0) = o
and η(qη) = σs(qs). Thus φs is surjective. On the other hand, suppose that
φs(〈λ〉) = φs(〈λ′〉). Then λ(qλ) = λ′(qλ′) and [λ · η · σ−1

s ] = [λ′ · η′ · σ−1
s ]. But

we also have

[λ · η · σ−1
s ] = [λ · λ′−1][λ′ · η · σ−1

s ]
= [λ · λ′−1][λ′ · η′ · σ−1

s ]
= [λ · λ′−1][λ · η · σ−1

s ]

(the fact π1(Os) = 1 (Proposition 3.3) implies that λ′ · η · σ−1
s is τ -homotopic

to λ′ · η′ · σ−1
s ). Thus we have [λ ·λ′−1] = 1, 〈λ〉 = 〈λ′〉 and φs is injective. �

Set U = ∪{Us : s ∈ S} and let u : U −→ G be the surjective map given
by u(〈λ〉) = λ(qλ). By Claim 3.5 and its proof we have, for each s ∈ S,

(•) u−1(Os) is the disjoint union of the subsets φ−1
s (Os × {[γ]}) with [γ] ∈

π1(G);
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(••) u restricted to φ−1
s (Os × {[γ]}) is a bijection onto Os.

Claim 3.6 If s, t ∈ S are such that Os ∩ Ot 6= ∅ and C is a definably τ -
connected component of Os ∩Ot, then the restriction of the bijection

φt ◦ φ−1
s : (Os ∩Ot)× π1(G) −→ (Os ∩Ot)× π1(G)

to C ×{[γ]} is the same as C ×{[γ]} −→ C ×{[γC ]} : (o, [γ]) 7→ (o, [γC ]) for
some [γC ] ∈ π1(G).

Proof. Let o ∈ C. By Claim 3.5 and its proof , φt◦φ−1
s (o, [γ]) = (o, [λ·η′ ·

σ−1
t ]), where λ = γ ·σs ·η−1 and η : [0, qη] −→ Os and η′ : [0, qη′ ] −→ Ot are τ -

paths such that η(0) = η′(0) = o, η(qη) = σs(qs) and η′(qη′) = σt(qt). Thus to
prove the claim it is enough to show that [γ·σs·η−1·η′·σ−1

t ] = [γ·σs·θ−1·θ′·σ−1
t ]

whenever θ : [0, qθ] −→ Os and θ′ : [0, qθ′ ] −→ Ot are τ -paths such that
θ(0) = θ′(0) ∈ C, θ(qθ) = σs(qs) and θ′(qθ′) = σt(qt).

Since C is τ -path connected, let ρ : [0, qρ] −→ C be a τ -path such that
ρ(0) = o and ρ(qρ) = θ(0) = θ′(0). Now using the fact that π1(Os) =
π1(Ot) = 1 (Proposition 3.3) we see that ρ · θ (respectively θ′ · ρ−1) is τ -
homotopic to η (respectively η′−1). Thus η−1 · η′ is τ -homotopic to θ−1 · θ′.
From here we get [γ · σs · η−1 · η′ · σ−1

t ] = [γ · σs · θ−1 · θ′ · σ−1
t ] as required. �

We will let 1 ∈ R be a fixed 0-definable positive element of R and denote
the element n · 1 of the group (R, 0, +) by n. By Proposition 3.4, we will
identify π1(G) with a subset of N ⊆ R and thus, assuming that G ⊆ Rl,

O(s,[γ]) := Os × {[γ]}
is a definable subset of Rl+1 and O := ∪{O(s,[γ]) : (s, [γ]) ∈ S × π1(G)} is a
locally definable subset of Rl+1.

Let {(si, lj) : (i, j) ∈ N × N} be an enumeration of S × π1(G). Define
inductively (on i) the sets Ni, O

′
(si,lj)

and V(si,lj) in the following way:

N0 = ∅ and O′
(s0,lj)

= V(s0,lj) = O(s0,lj);

assuming that Ni, O
′
(si,lj)

and V(si,lj) were already defined, put

Ni+1 = {n : n < i + 1 and Osi+1
∩Osn 6= ∅};

O′
(si+1,lj)

= O(si+1,lj) \ ∪{C × {lj} : C is a definably τ -connected component

of Osi+1
∩Osn , n ∈ Ni+1 and (φsi+1

◦ φ−1
sn

)|C×{lC}(o, lC) = (o, lj)};

V(si+1,lj) = O′
(si+1,lj)

∪
⋃
{V C

(sn,lC) : C is a definably τ -connected component

of Osi+1
∩ Osn , n ∈ Ni+1 and (φsi+1

◦ φ−1
sn

)|C×{lC}(o, lC) = (o, lj)}, where
V C

(sn,lC) = {x ∈ V(sn,lC) : x = (o, l) with o ∈ C}. 1

1We wish to thank here Elias Baro (Universidad Autónoma de Madrid) for pointing
out an imprecision on an early version of our inductive construction.
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By Claim 3.6, the sets V(si,lj) are well defined definable subsets of Rl+1.

Claim 3.7 Let V = ∪{V(si,lj) : (i, j) ∈ N×N}. Then V is a locally definable
set and the surjective map v : V −→ G given by the projection onto the first
coordinate is a locally definable covering map, i.e., for each i, we have:

(1) v−1(Osi
) = ∪{V(si,lj) : j ∈ N} (disjoint union);

(2) v|V(si,lj)
is a definable bijection onto Osi

.

Proof. This follows by induction on the definition of the definable sets
V(si,lj) together with Claim 3.6. �

Fix seG
∈ S such that eG ∈ OseG

and assume without loss of generality
that σseG

= εeG
(the trivial τ -loop at eG, see page 7). Let eV = (eG, [εeG

]) ∈ V .

Claim 3.8 Let (o, [γ]) ∈ V and suppose that λ : [0, qλ] −→ G is a τ -path
such that λ(0) = eG, λ(qλ) = o and φs(〈λ〉) = (o, [γ]). Then there exists a v-

path λ̃ : [0, qeλ] −→ V in V such that λ̃(0) = eV , λ̃(qeλ) = (o, [γ]) and v◦λ̃ = λ.
In particular, V is v-path connected and the o-minimal fundamental group
π1(V ) of V with respect to the v-topology is trivial.

Proof. By saturation and o-minimality there exists a minimal k for
which we can choose points 0 = t(0) < t(1) < · · · < t(k) < t(k + 1) = qλ

such that for each j = 0, . . . , k, we have λ([t(j), t(j + 1)]) ⊆ Os(j) for some
s(j) ∈ S.

We prove the result by induction on k. If k = 0, then λ([0, qλ]) ⊆ Os(0)

and [γ] = [εeG
], and we put λ̃ := (v|V(s(0),[εeG

])
)−1 ◦ λ. For the inductive step

let η := λ|[0,t(k)] and δ : [0, qλ − t(k)] −→ Os(k) : t 7→ λ(t + t(k)). By the
induction hypothesis, let η̃ : [0, t(k)] −→ V be a v-path such that η̃(0) = eV ,
η̃(t(k)) = (η(t(k)), [γ′]) and v ◦ η̃ = η, where φs(k−1)(〈η〉) = (η(t(k)), [γ′]).
Assume that s(k) appear after s(k − 1) in the enumeration of S introduced
before. The other case is treated symmetrically. If φs(k)(〈η〉) = (η(t(k)), [γ′′]),
then (η(t(k)), [γ′]) and (η(t(k)), [γ′′]) are the same point in V(s(k),[γ′′]). Since
λ = η · δ and π1(Os(k)) = 1 (Proposition 3.3), we have [γ] = [γ′′]. Thus, if

δ̃ := (v|V(s(k),[γ′′])
)−1 ◦ δ, then η̃(t(k)) = δ̃(0), and λ̃ := η̃ · δ̃ satisfies the claim.

So, in particular, V is v-path connected.
By Lemma 2.7, any v-loop δ in V at eV is the unique lifting λ̃ of a τ -

loop λ = v ◦ δ in G at eG as defined in the previous paragraph. So we see
that (eG, [εeG

]) = eV = λ̃(0) and eV = λ̃(qeλ) = (eG, [λ]). This implies that

[λ] = 1 and so v∗([λ̃]) = [λ] = 1. Therefore, since by Proposition 2.10 (i),
v∗ : π1(V ) −→ π1(G) is injective, it follows that π1(V ) = 1. �
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Our next goal is to make the locally definable covering map v : V −→ G
into a locally definable covering homomorphism. For this we will need the
following claim:

Claim 3.9 Let h : Y −→ X be either v : V −→ G or (v, v) : V × V −→
G × G, and let eY be eV or (eV , eV ) respectively, and eX be eG or (eG, eG)
respectively. Suppose that g : X −→ G is a continuous locally definable map
such that g(eX) = eG. Then there is a unique continuous locally definable
map g̃ : Y −→ V such that g̃(eY ) = eV and v ◦ g̃ = g ◦ h.

Proof. The uniqueness of such a locally definable lifting g̃ of g ◦ h
follows from Lemma 2.11. To construct g̃ : Y −→ V we will use the fact
that h : Y −→ X is a locally definable covering map, and by Lemma 2.5 and
Claim 3.8, π1(V × V ) ' π1(V ) × π1(V ) = 1. We will also use the notation
introduced right after Lemma 2.7.

Let {Ul : l ∈ L} be either {Os : s ∈ S} or {Os × Ot : s, t ∈ S}. Let
f = g ◦ h : Y −→ G and for each l ∈ L, let {V l

i : i ∈ Il} be the definably
h-connected components of f−1(Ul). For all l ∈ L, i ∈ Il, choose yl

i ∈ V l
i

such that if eY ∈ V l
i then eY = yl

i, and let ηl
i be an h-path in Y from eY to yl

i.
Since each V l

i is definably h-connected, by Lemma 2.9 there is a uniformly
definable family {γl

i(w) : w ∈ V l
i } of h-paths in V l

i from yl
i to w. For w ∈ V l

i ,
let δl

i(w) be the h-path ηl
i · γl

i(w) from eY to w. Let σl
i(w) = f ◦ δl

i(w) and

put f̃(w) = eY ∗ σl
i(w).

If w ∈ V l
i ∩V k

j then we have another h-path δk
j (w) from eY to w obtained

from V k
j , and f ◦ (δk

j (w) · (δl
i(w))−1) = σk

j (w) · (σl
i(w))−1 is a τ -path from eG

to eG. By hypothesis, [σk
j (w) · (σl

i(w))−1] ∈ f∗(π1(Y )) = 1 and by Remark

2.8 (2), eY ∗ σl
i(w) = eY ∗ σk

j (w) and so f̃ is well defined. Note that the same

argument shows that f̃ does not depend on the choice of the points yl
i ∈ V l

i

or of the h-paths ηl
i.

We now show that f̃ is a locally definable map. For this it is enough to
show that f̃|V l

i
is a definable map since by saturation any definable subset of

Y is contained in a finite union of V l
i ’s. But for w ∈ V l

i , we have f̃(w) =

eY ∗ σl
i(w) which is the endpoint of the lifting σ̃l

j(w) of σl
j(w) starting at eY .

Since σl
j(w) = (f ◦ηl

i)·(f ◦γl
i(w)), f̃(w) is the endpoint of the lifting ˜f ◦ γl

i(w)

of f ◦ γl
i(w) starting at the endpoint f̃ ◦ ηl

i(qηl
i
) of the lifting f̃ ◦ ηl

i of f ◦ ηl
i.

Thus, if W l
i is a v-open subset of v−1(Ol) such that v|W l

i
: W l

i −→ Ol is a

definable homeomorphism and f̃ ◦ ηl
i(qηl

i
) ∈ W l

i , then f̃(w) = ((v|W l
i
)−1 ◦ (f ◦

γl
i(w)))(qγl

i(w)) where qγl
i(w) is the end point of the domain of γl

i(w).
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To finish we need to show that g̃ := f̃ is continuous. For this we use
v ◦ g̃ = g ◦ h = f (which is immediate from the above characterization of

f̃(w)) and the fact that, as remarked after Definition 2.2, v : V −→ G is an
open mapping. �

Let µ : G × G −→ G and ι : G −→ G be the multiplication and the
inverse in G. Let µ̃ : V ×V −→ V and ι̃ : V −→ V be the unique continuous
locally definable maps given by Claim 3.9.

Claim 3.10 (V, µ̃, ι̃, eV ) is a locally definable group and v : V −→ G is a
locally definable covering homomorphism.

Proof. We have that µ̃ ◦ (µ̃ × idV ) and µ̃ ◦ (idV × µ̃) are the liftings of
the same continuous locally definable map µ ◦ (µ× idG) = µ ◦ (idG × µ) and
they coincide at (eV , eV , eV ). Thus by Lemma 2.11, we have µ̃ ◦ (µ̃× idV ) =
µ̃ ◦ (idV × µ̃) and so (V, µ̃) is a locally definable semigroup. Similarly, we see
that µ̃ ◦ (ι̃× idV ) ◦∆V = eV = µ̃ ◦ (idV × ι̃) ◦∆V and µ̃ ◦ iV1 = idV = µ̃ ◦ iV2
where ∆V : V −→ V ×V is the diagonal map, iV1 : V −→ V ×V : v 7→ (v, eV )
and iV2 : V −→ V × V : v 7→ (eV , v). Thus (V, µ̃, ι̃, eV ) is a locally definable
group as required. Since v ◦ µ̃ = µ ◦ (v, v) and v ◦ ι̃ = ι ◦ v, it follows that
v : V −→ G is a locally definable homomorphism which must be a locally
definable covering homomorphism since it is also a locally definable covering
map. �

We are now ready to prove the main theorem of the paper (Theorem 1.4
in the introduction is a special case of this):

Theorem 3.11 Let G be a definably τ -connected locally definable group.
Then the o-minimal universal covering homomorphism p̃ : G̃ −→ G is a
locally definable covering homomorphism and π1(G) is isomorphic to π(G).

Proof. Suppose that q : K −→ V is a locally definable covering ho-
momorphism. Then from Propositions 2.10 and 2.12 we obtain Kerq '
Aut(K/V ) ' π1(V )/q∗(π1(K)) = 1 since π1(V ) = 1, by Claim 3.8. So
q : K −→ V is a locally definable isomorphism (since it is surjective). Con-
sequently, by [3] Lemma 3.8, the set of all h : H −→ G in Cov0(G) which are
locally definably isomorphic to v : V −→ G is cofinal in Cov0(G) and hence

the inverse limit p̃ : G̃ −→ G is isomorphic to v : V −→ G. By Propositions
2.10 and 2.12 we obtain π(G) ' Kerv ' Aut(V/G) ' π1(G) since π1(V ) = 1.
Thus the result holds as required. �
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Proof of Corollary 1.5: Let G be a definably t-connected definable group.
By Proposition 3.4, π1(G) is finitely generated and, by the isomorphism
π1(G) ' π(G) (Theorem 3.11) and [3] Proposition 3.11, π1(G) is abelian. If
G is abelian, then by [12] the assumptions of [3] Theorem 3.15 hold for G.
Therefore we have π1(G) ' π(G) ' Zl and G[k] ' (Z/kZ)l for some l ∈ N
as required.
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