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Abstract

We show that if G is a definably compact, definably connected
definable group defined in an arbitrary o-minimal structure, then G is
divisible. Furthermore, if G is defined in an o-minimal expansion of a
field, k ∈ N and pk : G −→ G is the definable map given by pk(x) = xk

for all x ∈ G, then for all x ∈ G, we have |(pk)−1(x)| ≥ kr where r > 0
is the maximal dimension of abelian definable subgroups of G.
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1 On divisibility of definable groups

We work over an arbitrary o-minimal structure N and definable means N -
definable (possibly with parameters). We are interested here in understand-
ing the subset (pm)−1(x) of a definably compact definably connected definable
group G where x ∈ G and, for each m ∈ N, pm : G −→ G is the definable
map that sends z to zm.

A definable group is a group whose underlying set is a definable set and
the graphs of the group operations are definable sets. The notion of definably
compact is the analogue of the notion of semi-algebraically complete and was
introduced Peterzil and Steinhorn in [8]. The theory of definable groups,
which includes real algebraic groups and semi-algebraic groups, began with
Anand Pillay’s paper [12] and has since then grown into a well developed
branch of mathematics (see for example [8], [9] and [10]). In the literature
there are many interesting results about definable groups which have an
analogue in the theory of Lie groups. Among these we have the following
properties:

(TOP) every definable group G has a unique definable topological structure
such that the group operations are continuous and the definable homomor-
phisms are also continuous;

(DCC) the descending chain condition for definable subgroups of a definable
group G;

(QT) existence in the category of definable groups of the quotient of a
definable group by a definable normal subgroup together with the existence
of a corresponding definable section;

(AB) every definable group G of positive dimension has a definable abelian
subgroup of positive dimension.

Properties (TOP), (DCC) and (AB) were proved in [12]. Property (QT)
is from [2]. In the paper [13] by Strebonski the following property is proved
using the o-minimal Euler characteristic for definable sets defined by van den
Dries [1] using the cell decomposition theorem. This is an Euler-Grothendieck
characteristic for the definable category in the sense of [6].

(TOR) If G is a definable group, then for all m ∈ N, the subgroup G[m] of
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m-torsion points of G is a finite definable subgroup.

Property (TOR) has the following consequence:

(DIV) If G is a definably connected definable abelian group, then G is
divisible, i.e., for all m ∈ N, the definable homomorphism pm : G −→ G is
surjective.

In fact, let G be a definably connected definable abelian group and m ∈ N.
Since G[m] is a finite definable subgroup, mG is a definable subgroup of G
of dimension dim G. By [12], (G : mG) < ℵ0. But since G is definably
connected, again by [12], we must have mG = G as required.

In the paper [7] Margarita Otero observes that with the results from o-
minimal algebraic topology available in [3] together with classical arguments
one can prove that if N is an o-minimal expansion of a field, then a definably
connected, definably compact definable group is divisible. Here we generalise
this result in the following way:

Theorem 1.1 If G is a definably compact, definably connected definable
group defined in an arbitrary o-minimal structure, then G is divisible. Fur-
thermore, if G is defined in an o-minimal expansion of a field, k ∈ N and
pk : G −→ G is the definable map given by pk(x) = xk for all x ∈ G, then for
all x ∈ G, we have |(pk)

−1(x)| ≥ kr where r > 0 is the maximal dimension
of abelian definable subgroups of G.

The proof of this theorem does not require o-minimal algebraic topology
and follows at once from the next Proposition.

Proposition 1.2 Let G be a definably compact, definably connected defin-
able group defined in an arbitrary o-minimal structure. Then there exists
a definably compact, definably connected definable abelian subgroup B of G
which is unique up to conjugation such that:

(i) dimB is the maximal dimension of abelian definable subgroups of G and

(ii) G = ∪{gBg−1 : g ∈ G}.

From Proposition 1.2 we get Theorem 1.1 in the following way. By Propo-
sition 1.2, for x ∈ G, there is b ∈ B and g ∈ G such that x = gbg−1. By
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(DIV) let a ∈ B be such that ak = b. Then (gag−1)k = gakg−1 = gbg−1 = x.
Thus G is divisible.

Assume now that N is an o-minimal expansion of a field and l = dimB.
Then by the proof of the structure theorem in [4] (or [3]), the degree of pk in
B is kl, and so |(pk)

−1(b)| ≥ kl for all b ∈ B. On the other hand, for x ∈ G,
by Proposition 1.2, there is b ∈ B and g ∈ G such that x = gbg−1. By (DIV)
let a ∈ B be such that ak = b. Then (gag−1)k = gakg−1 = gbg−1 = x. Thus
|(pk)

−1(x)| ≥ kl for all x ∈ G.

For the proof of Proposition 1.2 we require the following claims.

Claim 1.3 Let G be a group, H a subgroup of G and Z a normal subgroup
of G contained in H and in the center of G. If G/Z = ∪{gZ(H/Z)g−1Z :
g ∈ G}, then G = ∪{gHg−1 : g ∈ G}.

Proof. Let a ∈ G. Then there is g ∈ G and h ∈ H such that aZ =
gZhZg−1Z. So, there are z1, z2, z3 ∈ Z such that a = gz1hz2g

−1z3. Since
Z ⊆ Z(G), we get a = g(z1hz2z3)g

−1. Hence, G = ∪{gHg−1 : g ∈ G} as
required. 2

Claim 1.4 Let G be a group and let H and K be subgroups of G containing
a normal subgroup Z of G which is contained in the center of G. If H/Z
and K/Z are conjugate subgroups of G/Z, then H and K are conjugates
subgroups of G.

Proof. Suppose that H/Z = gZ(K/Z)g−1Z. If h ∈ H, then there are
z1, z2, z3 ∈ Z and k ∈ K such that h = gz1kz2g

−1z3. Since Z ⊆ Z(G) and
Z ⊆ K, we have h = g(z1kz2z3)g

−1 ∈ gKg−1 and H ⊆ gKg−1. Similarly, if
k ∈ K, then there are z ∈ Z and h ∈ H such that gkg−1 = hz ∈ H (since
Z ⊆ H) and so gKg−1 ⊆ H. In conclusion, H = gKg−1 as required. 2

Proof of Proposition 1.2. By [2] Corollary 4.8 or [9] Corollary 5.4, G
is abelian or G/Z(G)0 is definably semi-simple. In the first case the result
follows from (DIV) and the main theorem of [4] (or [3]). So assume that
G/Z(G)0 is definably semi-simple. The quotient of G/Z(G)0 by its finite
center is by [10] the direct product H1×· · ·×Hk of subgroups such that each
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Hi is definably isomorphic to an Ri-semialgebraic subgroup of GL(ni, Ri)
where Ri is a real closed field definable in N . Moreover, by the proof of [11]
Theorem 5.1, each Hi is a definably simple, definably compact, definably
connected Ri-definable group defined over the empty set and so Hi(R) is a
compact, connected, simple Lie group.

If Ti is the maximal torus of Hi(R), then Ti is definable in R as the
definably connected component of Z(C(Ti)) (using the DCC on definable
groups and the fact that any definable group in the field of real numbers is a
Lie group). Also, since dimTi is the maximal dimension of abelian compact
Lie subgroups of Hi(R), by the definability of o-minimal dimension (see [1]),
we can assume that Ti is defined over the emptyset. As Hi(R) is covered by
the conjugates of Ti, and the real closed field Ri is elementarily equivalent
to R, Hi is covered by the conjugates (by elements of Hi) of Ti(Ri). A
similar argument and definability of o-minimal dimension shows that dimTi

is the maximal dimension of abelian definable subgroups of Hi. Furthermore,
if Ci is a definably connected definable abelian subgroup of Hi such that
dimCi = dimTi, then Ci is a conjugate of Ti(Ri). Indeed, by definability of
o-minimal dimension, there is a first-order formula φ(u, v) over the empty set
such that for every r ∈ Ri, the formula φ(u, r) defines a definably connected
definable abelian subgroup of Hi of dimension dimTi and Ci is defined by
φ(u, s) for some s ∈ Ri. (For the fact that ”definably connected” is first-
order see [5] Theorem 0.3). Now since the first-order sentence saying that for
all r the subgroup of Hi(R) defined by φ(u, r) is a conjugate of Ti is true in
R, it must also hold in Ri. Hence, Ci is a conjugate of Ti(Ri) as required.

To simplify the notation, we will from now on use Ti to denote Ti(Ri) for
each i = 1, . . . , k.

Let A be the minimal (by DCC) definable subgroup of G/Z(G)0 such
that A/Z(G/Z(G)0) = T1 × · · · × Tk. Then dimA = dim(T1 × · · · × Tk) and
by Claim 1.3, G/Z(G)0 = ∪{gZ(G)0Ag−1Z(G)0 : g ∈ G}. Note also that A
is definably connected. In fact, if A0 is the definably connected component
of A, then by [2] Lemma 3.15 its quotient by the finite center of G/Z(G)0 is
a definably connected subgroup of T1×· · ·×Tk of maximal dimension. Thus
this quotient is T1 × · · · × Tk and so A = A0.

If B is the minimal definable subgroup of G such that B/Z(G)0 = A,
then dimB = dimZ(G)0 · dimA and by Claim 1.3, G = ∪{gBg−1 : g ∈ G}.
Also by the argument above B is definably connected. Since B is solvable
definably compact, it is abelian (by [2] Corollary 4.8 or [9] Corollary 5.4).
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It remains to show that B is unique up to conjugation and dimB is
the maximal dimension of abelian definable subgroups of G. Let B1 be
a definably connected definable abelian subgroup of G. By [2] Lemma
3.15, A1 = B1/Z(G)0 and A1/Z(G/Z(G)0) are definably connected definable
abelian subgroups of G/Z(G)0 and H1×· · ·×Hk respectively. Since dimTi is
the maximal dimension of abelian definable subgroups of Hi, it follows that
dimA1 ≤ dimA. So dimB1 = dim(B1 ∩ Z(G)0) · dimA1 ≤ dimB.

Assume now that dimB1 = dimB. Then necessarily dim(B1 ∩ Z(G)0) =
dimZ(G)0 and dimA1 = dimA. The first condition implies that Z(G)0 ⊆ B1

and so, by Claim 1.4, we need to show that A1 is conjugate to A in order
to conclude that B1 is conjugate to B. For this, for each i = 1, . . . , k,
consider the projection Ci of A1/Z(G/Z(G)0) into Hi. By [2] Lemma 3.15,
each Ci is a definably connected definable abelian subgroup of Hi. Since
A1/Z(G/Z(G)0) is contained in C1 × · · · × Ck and dimA1 = dimA, we must
have dimCi = dimTi for each i. Thus, since C1 × · · · × Ck is definably
connected, A1/Z(G/Z(G)0) = C1 × · · · × Ck. Now as each Ci is a conjugate
of Ti, it follows that C1 × · · · × Ck is a conjugate of T1 × · · · × Tk and so by
Claim 1.4 A1 is a conjugate of A as required.
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