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1 Introduction

Throughout this paper, N will be an ℵ1-saturated o-minimal structure and
definable will mean N -definable (possibly with parameters). We will assume
the reader’s familiarity with the basic theory of o-minimal structures and de-
finable groups in such structures. See for example [vdd] and [p] respectively.

When studying definable groups one often makes use of certain groups
which are not definable and are called in the literature

∨
-definable groups

(see [pst]). Roughly, these are groups whose underlying sets are unions of
definable sets and the graphs of the group operations are unions of definable
sets. In a real closed field these sets, when equipped with a natural topology,
are called in [dk] locally semi-algebraic spaces. For this reason, we prefer to
call

∨
-definable groups locally definable groups since the groups that we will

study here will be equipped with a topology such that in the semi-algebraic
case they are locally semi-algebraic spaces. Furthermore, as we shall see
in Section 2 when we introduce the exact definitions, what we call here a
locally definable group is a small modification of what is called in [pst] a

∨
-

definable group. In [pst]
∨

-definable groups are defined with a restriction on
the size of the parameter set and with no restriction on the size of the cover
by definable subsets. Here we require that locally definable groups have a
countable subcover by definable subsets. This is not a big restriction since
all the important examples are of this form and this constrain allows us to
prove many results which otherwise would be impossible to verify.

Let us mention a few examples where locally definable groups have oc-
curred in connection with the theory of definable groups. In [e1], we prove
the Lie-Kolchin-Mal’cev theorem for solvable definable groups. This theo-
rem says that given a solvable definable group G, the commutator subgroup
G(1) of G and the smallest definable subgroup d(G(1)) of G containing G(1)

are nilpotent. The commutator subgroup G(1) is a locally definable sub-
group of G. In [pst], Peterzil and Starchenko show that if G is a solvable
definable group which is definably compact (the o-minimal analogue of semi-
algebraically complete), then G is abelian by finite. The proof of this result
given in [pst] uses the groups of definable homomorphisms between definable
abelian groups. The group of definable homomorphisms between two defin-
able abelian groups is a locally definable group. In [pps], Peterzil, Pillay and
Starchenko use locally definable groups to show that if a definable group is
not nilpotent by finite, then the group structure interprets a field. In [ps] (see
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also [s]), Peterzil and Steinhorn construct certain definably compact, abelian
definable groups which are not the direct product of one-dimensional defin-
ably compact, abelian definable groups. In a sense, these definable groups
are constructed by first giving their o-minimal universal covers and their o-
minimal fundamental groups. These o-minimal universal covers and these
o-minimal fundamental groups are locally definable groups.

In the paper [e2] we developed the general theory of locally definable
groups. The goal of this paper was to generalise the last example and show
that the o-minimal universal cover of a definable group or a locally definable
group is a locally definable group. In this way, in Section 3 the theory
of locally definable covering homomorphisms is developed. The o-minimal
universal covering homomorphism p̃ : G̃ −→ G of a definably connected
locally definable group G is defined as the inverse limit of the locally definable
covering homomorphisms h : H −→ G of G with H definably connected. The
o-minimal fundamental group π(G) of G is defined as the kernel of p̃. Thus
we have a short exact sequence

1 → π(G) → G̃
p̃→ G → 1.

It is not immediately clear that this short exact sequence is in the category
of locally definable groups. Note also that in arbitrary o-minimal structures,
the o-minimal fundamental group as defined above is a completely new object
even for definable groups. Nevertheless we show that π(G) is always abelian
and the following theorem holds (see Theorem 3.15).

Theorem 1.1 Let G be a definably connected, abelian locally definable group.
Suppose that, for each k > 0, G is k-divisible and the subgroup of k-torsion
points of G has dimension zero. Then the following hold:

(i) the o-minimal universal covering group G̃ of G is divisible and torsion
free;

(ii) the o-minimal fundamental group π(G) of G is torsion-free abelian
group;

(iii) the k-torsion subgroup of G is isomorphic to π(G)/kπ(G), for each
k > 0.
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In section 4, we assume that N is an o-minimal expansion of a real closed
field and show that, for a definably connected locally definable groupG, the o-
minimal fundamental group π(G) is isomorphic to the o-minimal fundamental
group π1(G) defined using definable paths and definable homotopies as in
[bo].

2 Locally definable groups

In this section we define locally definable groups and present some of the
properties of these groups that we will need in the paper.

Definition 2.1 A set Z is a locally definable set over A where A ⊆ N and
|A| < ℵ1 if there is a collection {Zi : i ∈ I} of definable subsets of Nn, all
definable over A such that: (i) Z = ∪{Zi : i ∈ I}; (ii) there is I0 ⊆ I with
|I0| < ℵ1 and Z = ∪{Zi : i ∈ I0}; (iii) for every i, j ∈ I there is k ∈ I such
that Zi ∪ Zj ⊆ Zk.

Given two locally definable sets X and Z over A, we say that X is locally
definable subset of Z over A if X is a subset of Z.

A map α : Z −→ X between locally definable sets over A is called a
locally definable map over A if for every definable subset V ⊆ Z defined over
A, the restriction α|V is a definable map over A.

By saturation, the set Z does not depend on the choice of the collection
{Zi : i ∈ I} in the sense that if Z = ∪{Yj : j ∈ J} with each Yj definable
over B, |B| < ℵ1, then the following hold: (i) every Yj is contained in some
Zi and (ii) there is J0 ⊆ J with |J0| < ℵ1 and Z = ∪{Yj : j ∈ J0}. For this
reason we will always assume from now on that |I| < ℵ1.

Let α : Z −→ X be a locally definable map over A between locally
definable sets over A and let Y be a locally definable subset of X over A.
Then α(Z) is a locally definable set over A and α−1(Y ) is a locally definable
subset of Z over A.

If Z = ∪{Zi : i ∈ I} is a locally definable set over A, we define the
dimension of Z by dimZ = max{dimZi : i ∈ I}.

Recall that, by [pst], a group G = (G, ·) is a
∨

-definable group over
A ⊆ N , where |A| < ℵ1, if there is a collection {Zi : i ∈ I} of definable
subsets of Nn, all definable over A such that: (i) G = ∪{Zi : i ∈ I}; (ii) for
every i, j ∈ I there is k ∈ I such that Zi∪Zj ⊆ Zk and (iii) the restriction of
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the group multiplication to Zi × Zj is a definable map into Nn. We modify
this definition slightly in the following way.

Definition 2.2 A group (G, ·) is a locally definable group over A, with A ⊆
N and |A| < ℵ1, if there is a collection {Zi : i ∈ I} of definable subsets of
Nn, all definable over A such that: (i) G = ∪{Zi : i ∈ I}; (ii) there is I0 ⊆ I
with |I0| < ℵ1 and G = ∪{Zi : i ∈ I0}; (iii) for every i, j ∈ I there is k ∈ I
such that Zi ∪ Zj ⊆ Zk and (iv) the restriction of the group multiplication
to Zi × Zj is a definable map into Nn.

Given two locally definable groups H and G over A, we say that H is
locally definable subgroup of G over A if H is a subgroup of G.

A homomorphism α : G −→ H between locally definable groups over A is
called a locally definable homomorphism over A if for every definable subset
Z ⊆ G defined over A, the restriction α|Z is a definable map over A.

As in the
∨

-definable case, the locally definable group G over A does
not depend on the choice of the collection {Zi : i ∈ I} in the sense that
if G = ∪{Yj : j ∈ J} with each Yj definable over B, |B| < ℵ1, then by
saturation and the definition the following hold: (i) every Yj is contained in
some Zi and (ii) there is J0 ⊆ J with |J0| < ℵ1 and G = ∪{Yj : j ∈ J0}. For
this reason we will always assume from now on that |I| < ℵ1. This condition
will be used in the proof of one of our main results, namely Theorem 3.6.

Also note that if α : H −→ G is a locally definable homomorphism over
A between locally definable groups over A and if K is a locally definable
subgroup of G over A, then α(H) is a locally definable group over A and
α−1(K) is a locally definable subgroup of H over A.

Before we proceed any further we recall the two main examples of locally
definable groups.

Example 2.3 The following are the two main examples of locally definable
groups over A, with A ⊆ N and |A| < ℵ1.

(1) The locally definable groups over A of dimension zero: Let {Zi : i ∈ I}
be a collection of finite subsets of Nk all of which defined over A such that
for all i, j ∈ I there is k ∈ I with Zi ∪ Zj ⊆ Zk and (Z, ·) is an abstract
group, where Z = ∪{Zi : i ∈ I}, and there is I0 ⊆ I with |I0| < ℵ1 and
Z = ∪{Zi : i ∈ I0}. Then (Z, ·) is a locally definable group over A of
dimension zero.
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(2) The locally definable groups over A which are the subgroups of (type)
definable groups: Let (G, ·) be a (type) definable group over B ⊆ A; let
{Zi : i ∈ I} be a collection of definable subsets of G all of which defined
over A such that for all i, j ∈ I there is k ∈ I with Zi ∪ Zj ⊆ Zk, (Z, ·) is
a subgroup of (G, ·), where Z = ∪{Zi : i ∈ I}, and there is I0 ⊆ I with
|I0| < ℵ1 and Z = ∪{Zi : i ∈ I0}. Then (Z, ·) is a locally definable group
over A.

The proof of [pst] Proposition 2.2 also show the following theorem.

Theorem 2.4 Let G ⊆ Nk be a locally definable group over A. Then there
is a uniformly definable family {Vs : s ∈ S} of definable subsets of G defined
over A and containing the identity element of G and there is a unique topology
τ on G such that: (i) {Vs : s ∈ S} is a basis for the τ -open neighbourhoods
of the identity element of G; (ii) (G, τ) is a topological group and (iii) every
generic element of G has an open definable neighbourhood U ⊆ Nk such that
U ∩ G is τ -open and the topology which U ∩ G inherits from τ agrees with
the topology it inherits from Nk.

In Theorem 2.4, by a uniformly definable family {Vs : s ∈ S} of definable
subsets of G defined over A we mean that S is definable over A and there is
a definable subset of Nk × S over A such that the fiber over s is Vs for each
s ∈ S.

As in [pst] Lemma 2.6 we see that the following result holds.

Theorem 2.5 Let G be a locally definable group over A and H a locally
definable subgroup of G over A. Then the following holds: (i) the τ -topology
on H is the subspace topology induced by the τ -topology on G; (ii) H is closed
in G in the τ -topology and (iii) H is open in G in the τ -topology if and only
if dimH = dimG.

The proof of [pst] Lemma 2.8 gives the following theorem.

Theorem 2.6 Any locally definable homomorphism between locally definable
groups is continuous with respect to the τ -topology.

Theorems 2.4, 2.5 and 2.6 are called property (TOP) for locally definable
groups since they generalise the corresponding property for definable groups.
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From now on, whenever we use topological notions on a locally definable group
we are referring to the τ -topology.

The following easy result will be useful later.

Lemma 2.7 Let G be a locally definable group over A. Then there exists a
collection {Xi : i ∈ I} of open definable subsets of G over A such that: (i)
G = ∪{Xi : i ∈ I}; (ii) there is I0 ⊆ I with |I0| < ℵ1 and G = ∪{Xi : i ∈ I0};
(iii) for every i, j ∈ I there is k ∈ I such that Xi ∪Xj ⊆ Xk.

Proof. Let {Zi : i ∈ I} be the collection of definable subsets of G over
A such that: (i) G = ∪{Zi : i ∈ I}; (ii) there is I0 ⊆ I with |I0| < ℵ1

and G = ∪{Zi : i ∈ I0}; (iii) for every i, j ∈ I there is k ∈ I such that
Zi ∪Zj ⊆ Zk. Let U be an open definable neighbourhood in G of eG over A.
For each i ∈ I, let Xi be the open definable subset UZi of G over A. Since,
for each i ∈ I, we have Zi ⊆ Xi, then the collection {Xi : i ∈ I} satisfies the
lemma. 2

We will now introduce the notion of compatible locally definable subsets
of a locally definable group. This notion will be very useful later.

Definition 2.8 Let G be a locally definable group over A and let H be a
locally definable subgroup (resp., subset) of G over A. We say that H is a
compatible locally definable subgroup (resp., subset) if for every open definable
subset U of G over A, the set H ∩ U is a definable subset of G over A.

For example, if H is a definable subgroup (resp., subset) of G over A,
then H is a compatible locally definable subgroup (resp., subset) of G. We
now prove some lemmas on the notion of compatible locally definable subsets
which will be used quite often later.

Lemma 2.9 Let G be a locally definable group over A and let X be a locally
definable subset of G over A. Then X is compatible if and only if for every
definable subset Z of G, not necessarily over A, the intersection Z ∩X is a
definable subset of G.

Proof. Suppose that X is a compatible locally definable subset of G over
A and let Z be a definable subset of G. By Lemma 2.7 and saturation, there
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are open definable subsets U1, . . . , Ul of G over A such that Z ⊆ U1∪· · ·∪Ul.
But then Z ∩X = Z ∩ (U1 ∩X ∪ · · · ∪Ul ∩X) is definable since each Ui ∩X
is definable. The converse is clear. 2

Lemma 2.10 Let G, H and K be locally definable groups over A. The
following hold:

(i) G is a compatible locally definable subgroup of G over A;

(ii) if K is a compatible locally definable subgroup of G over A and H is a
locally definable subgroup of G over A containing K, then K is a compatible
locally definable subgroup of H over A;

(iii) if K is a compatible locally definable subgroup of H over A and H is
a compatible locally definable subgroup of G over A, then K is a compatible
locally definable subgroup of G over A.

Proof. (i) is obvious. For (ii), let U be an open definable subset ofH over
A. Then, by Lemma 2.7 and saturation, there is an open definable subset V
of G over A such that U ⊆ V . But then U ∩K = U ∩ (V ∩K) is definable
over A. For (iii), let U be an open definable subset of G over A. Then U ∩H
is an open definable subset of H over A. Hence U ∩ K = (U ∩ H) ∩ K is
definable over A. 2

Lemma 2.11 Let α : G −→ H be a locally definable map over A between
locally definable groups over A. If Y is a compatible locally definable subset
of H over A, then α−1(Y ) is a compatible locally definable subset of G over
A.

Proof. Let Z be an open definable subset of G over A. Then α(Z) is a
definable subset of H over A and, since there is a uniformly definable basis
{Vs : s ∈ S} for the τ -open neighbourhoods of the identity element of H,
there is an open definable subset X of H over A such that α(Z) ⊆ X. But
clearly Z ∩ α−1(Y ) = α−1

|Z (X ∩ Y ). Thus, since Y is compatible, X ∩ Y is

definable. Hence α−1
|Z (X ∩ Y ) is definable since α|Z is definable. 2
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Lemma 2.12 Suppose that f, g : G −→ H are locally definable maps over
A between locally definable groups over A. Then {x ∈ G : f(x) = g(x)} is a
compatible locally definable subset of G over A.

Proof. Consider the locally definable map α : G −→ H given by
α(x) = f(x)g(x)−1. By Lemma 2.11, {x ∈ G : f(x) = g(x)} = α−1(eH)
is a compatible locally definable subset of G over A. 2

Lemmas 2.10 and 2.11 will be used quite often in the paper without
mentioning it.

Lemma 2.13 Let G be a locally definable group over A. If H is a compatible
locally definable subgroup of G over A and X an open definable subset of G
over A, then the equivalence relation on X given by x ' y if and only if
xH = yH is definable over A.

Proof. Let θ : X×X −→ θ(X×X) be the map given by θ(x, y) = x−1y.
Then, by definition of locally definable groups and saturation, θ is a definable
map over A and θ(X ×X) is an open definable subset over A. Since H is a
compatible locally definable subgroup of G over A, the set Z = θ(X×X)∩H
is a definable subset of H over A. But, for all x ∈ X, we have xH ∩ X =
xZ ∩ X. Thus the equivalence relation on X given by x ' y if and only if
xH = yH is definable since x ' y if and only if there is z ∈ Z such that
y = xz. 2

The next result is the generalization of [pst] Lemma 2.15 (i).

Proposition 2.14 Let G be a locally definable group over A and let H be
a compatible locally definable subgroup of G over A. Then the following are
equivalent: (i) H is open in G; (ii) dimH = dimG and (iii) (G : H) < ℵ1.

Proof. By Theorem 2.5, H is open in G if and only if dimH = dimG.
On the other hand, if (G : H) < ℵ1, then by compactness we clearly have
dimH = dimG.

Suppose that dimH = dimG. We must show that (G : H) < ℵ1, i.e., we
must show that there is a locally definable subset {zs : s ∈ S} of G over A
such that G = ∪{zsH : s ∈ S}.
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Let Z be an open definable subset of G over A. We must show that Z
is covered by finitely many cosets of H all defined over A. By Lemma 2.13,
the equivalence relation on Z given by x ' y if and only if xH = yH is
definable over A. But since xH = yH if and only if xH ∩ Z = yH ∩ Z, we
see that the equivalence classes of ' in Z have dimension dimH = dimG.
Therefore, there are finitely many equivalence classes of' in Z for otherewise,
by [vdd] Chapter IV (1.5), the definable set Z would have dimension greater
than dimG, which is a contradiction. So there are finitely many elements
u1, . . . , urZ of Z defined over A such that Z ⊆ ∪{ulH : l = 1, . . . , rZ}.

Let {Vj : j ∈ J} be the collection of open definable subsets of G over
A given by Lemma 2.7. Let S = {(j, l) : j ∈ J, l = 1, . . . , rVj

} and for
s = (j, l) ∈ S, let zs be the element ul obtained as above with Z = Vj. Then
by Lemma 2.7, G = ∪{zsH : s ∈ S}. Also {zs : s ∈ S} is a locally definable
subset of G over A since each zs is defined over A and {zs : s ∈ S} is the
union of the collection of all finite subsets of {zs : s ∈ S}. 2

The following corollary of the proof of Proposition 2.14 will be used quite
often.

Corollary 2.15 Let G be a locally definable group over A and let H be a
compatible locally definable subgroup of G over A. If (G : H) < ℵ1, then
there is a locally definable subset {zs : s ∈ S} of G over A such that G =
∪{zsH : s ∈ S} (disjoint union).

The following definition is the analogue of [pst] Definition 2.12.

Definition 2.16 Let G be a locally definable group over A. We say that a
set Z ⊆ G is definably connected if there is no definable subset U ⊆ G over
A such that U ∩ Z is a nonempty proper subset of Z which is closed and
open in the topology induced on Z by G.

The next remark can be proved in exactly the same way as [pst] Lemmas
2.13 and 2.14.

Remark 2.17 Let G be a locally definable group over A. Then the following
hold:

(1) Every definable open subset Z ⊆ G over A can be partitioned into
finitely many definably connected definable subsets of G over A.
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(2) There is a locally definable subgroup G′ of G over A which is definably
connected and such that dimG′ = dimG.

As pointed out in [pst], the definably connected locally definable sub-
groups given by Remark 2.17 (2) are not unique. In fact, let N be a non
standard model of the theory of the ordered additive group of real numbers,
G = (N2,+), G′ = {(x, y) ∈ N2 : there exists n ∈ N such that −n < x < n}
and G′′ = {(x, y) ∈ N2 : there exists n ∈ N such that −n < y < n}. Then
G′ and G′′ are two distinct definably connected locally definable subgroups
of G over Z.

Nevertheless, we have the following generalization of [pst] Lemma 2.15
(iii).

Proposition 2.18 Let G be a locally definable group over A. Then there is
a unique definably connected compatible locally definable normal subgroup G0

of G over A with dimension dimG. Moreover, the following hold:

(i) G0 contains all definably connected locally definable subgroups of G over
A;

(ii) G0 is the smallest compatible locally definable subgroup of G over A
such that (G : G0) < ℵ1

(iii) there is a locally definable subset {xs : s ∈ S} of G over A such that
G = ∪{xsG0 : s ∈ S} (disjoint union).

Proof. By Lemma 2.7, let {Zk : k ∈ K} be a collection of open definable
subsets of G over A such that: (i) G = ∪{Zk : k ∈ K}; (ii) there is K0 ⊆ K
with |K0| < ℵ1 and G = ∪{Zk : k ∈ K0}; (iii) for every i, j ∈ K there is
k ∈ K such that Zi ∪ Zj ⊆ Zk. By definition of locally definable groups,
we may assume that each Zk contains the identity 1 of G. By Remark
2.17 (1), each Zk can be partitioned into finitely many definably connected
components. For each such Zk, let Z0

k be the definably connected component
of Zk which contains 1.

We claim that G0 = ∪{Z0
k : k ∈ K} is a compatible locally definable

subgroup of G over A. Indeed, given i, j ∈ K, we have Zi∪Zj ⊆ Zk for some
k ∈ K, hence Z0

i ∪Z0
j ⊆ Zk. But Z0

i ∪Z0
j is a definably connected set which

contains 1, hence it must be contained in Z0
k . Similarly, Z0

i · Z0
j and (Z0

i )
−1
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are contained in some Z0
k . Thus G0 is a locally definable subgroup of G over

A which, by construction, is obviously compatible, definably connected and
dimG0 = dimG.

By Proposition 2.14, we have (G : G0) < ℵ1 and so, by Corollary 2.15,
G = ∪{zsG0 : s ∈ S} (disjoint union) for some locally definable subset
{zs : s ∈ S} of G over A. Thus to show that G0 is normal, it is enough to
show that for each zs with s ∈ S, zsG

0(zs)
−1 = G0. But this is obvious since,

for every Z0
i , the open definably connected definable set zsZ

0
i (zs)

−1 over A
containing the identity of G is necessarily contained in a set of the form Z0

j .
As G = ∪{zsG0 : s ∈ S} (disjoint union) for some locally definable subset

{zs : s ∈ S} of G over A, we see that G0 contains all definably connected
locally definable subgroups of G over A.

By Proposition 2.14, if H is a compatible locally definable subgroup of
G such that (G : H) < ℵ1, then dimH = dimG. Let H0 be the compatible,
definably connected locally definable subgroup of H over A obtained from
H in the same way as we obtained G0 from G. Then, by Lemma 2.10
(iii), H0 is a compatible definably connected locally definable subgroup of
G over A such that dimH0 = dimG and so, by (i), H0 ⊂ G0. Hence, by
Proposition 2.14, H0 is open in G0. Therefore, again by Proposition 2.14,
we have (G0 : H0) < ℵ1 and so, by Corollary 2.15, G0 = ∪{zsH0 : s ∈ S}
(disjoint union) for some locally definable subset {zs : s ∈ S} of G0 over
A. But both H0 and G0 are definably connected, so |S| = 1, H0 = G0 and
G0 ⊆ H. 2

3 Locally definable covering groups

In this section we present the theory of locally definable covering groups. We
will often follow the topological case on Fulton’s book [f] and the definable
case treated in [eo].

3.1 Locally definable covering homomorphisms

Definition 3.1 A locally definable homomorphism p : H −→ G over A
between locally definable groups over A is called a locally definable covering
homomorphism if p is surjective and there is a family {Ul : l ∈ L} of open
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definable subsets of G over A such that G = ∪{Ul : l ∈ L} and, for each
l ∈ L, the compatible locally definable subset p−1(Ul) of H over A is a
disjoint union of open definable subsets of H over A, each of which is mapped
homeomorphically by p onto Ul.

We call {Ul : l ∈ L} a p-admissible family of definable neighbourhoods
over A.

If p : H −→ G is a locally definable covering homomorphism over A,
then for each x ∈ G, the fibre p−1(x) is a compatible locally definable subset
of H over A of dimension zero. Furthermore, p : H −→ G is an open
surjection. In fact, let V be an open definable subset of H over A and, for
each l ∈ L, let {U l

s : s ∈ Sl} be the collection of open disjoint definable
subsets of H over A such that p−1(Ul) = ∪{U l

s : s ∈ Sl} and p|U l
s

: U l
s −→ Ul

is a definable homeomorphism over A for every s ∈ Sl. Since |A| < ℵ1,
by saturation, there is {W1, . . . ,Wm} ⊆ {U l

s : l ∈ L, s ∈ Sl} such that
V ⊆ ∪{Wi : i = 1, . . . ,m}. But then V = ∪{V ∩Wi : i = 1, . . . ,m} and
p(V ) = ∪{p(V ∩Wi) : i = 1, . . . ,m} is open.

If q : K −→ H is another locally definable covering homomorphism over
A, then p◦q : K −→ G is also a locally definable covering homomorphism over
A. Indeed, if {Vr : r ∈ R} is a q-admissible family of open neighbourhoods
of H over A, then {p(Vr ∩ U l

s) : r ∈ R, l ∈ L, s ∈ Sl} is a p ◦ q-admissible
family of open neighbourhoods of G over A.

The next remark follows from Lemma 2.12 and the argument in the proof
of [f] Lemma 11.5.

Lemma 3.2 Let p : H −→ G be a locally definable covering homomorphism
over A and let f, g : K −→ H be two continuous locally definable maps over
A between locally definable groups over A such that p ◦ f = p ◦ g. If K is
definably connected and f(z) = g(z) for some z ∈ K, then f = g.

Proof. Let {Ul : l ∈ L} be a p-admissible family of open neighbourhoods
of G over A. Let {U l

s : s ∈ Sl} be the collection of open disjoint definable
subsets of H over A such that p−1(Ul) = ∪{U l

s : s ∈ Sl} and p|U l
s

: U l
s −→ Ul

is a definable homeomorphism over A for every s ∈ Sl.
By continuity, there is a cover of K by a family {V l

k : l ∈ L, k ∈ Ml} of
open definably connected definable subsets of K over A such that we have
(p◦f)(V l

k) = (p◦g)(V l
k) ⊆ Ul for every l ∈ L and k ∈Ml. Note that if v ∈ V l

k
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and f(v) ∈ U l
s, then f|V l

k
= (p|U l

s
)−1 ◦ (p ◦ f)|V l

k
. Thus, by Lemma 2.12, the

set {z ∈ K : f(z) = g(z)} is an open and closed compatible locally definable
subset of K over A. Since K is definably connected, we have f = g. 2

Definition 3.3 Consider a locally definable covering homomorphism p :
H −→ G over A. The group Aut(H/G) of locally definable covering trans-
formations over A is the group of all locally definable homeomorphisms
φ : H −→ H over A such that p ◦ φ = p.

Note that Aut(H/G) acts on p−1(eG) and, if H is definably connected,
then by Lemma 3.2, φ ∈ Aut(H/G) is uniquely determined by φ(eH).

Proposition 3.4 Let h : H −→ G be a locally definable covering homomor-
phism over A. Suppose that H is definably connected. Then

Kerh ' Aut(H/G)

and Aut(H/G) is abelian.

Proof. For y ∈ Kerh, let ly : H −→ H be the locally definable homeo-
morphism over A given by ly(z) = yz. Clearly ly ∈ Aut(H/G) and this corre-
spondence determines an injective homomorphism Kerh −→ Aut(H/G). We
now show that this homomorphism is also surjective. Take φ ∈ Aut(H/G)
and fix z ∈ H. As h = h ◦ φ, there is y ∈ Kerh such that ly(z) = yz = φ(z).
But then by Lemma 3.2, we have φ = ly.

We now show that Kerh ⊆ Z(H), from which it follows that Aut(H/G)
is abelian. Let y ∈ Kerh. Then we have a locally definable map σy : H −→
Kerh over A given by σy(x) = xyx−1 for every x ∈ H. Since Kerh has
dimension zero, by Lemma 2.11, (σy)

−1(y) is an open and closed compatible
locally definable subset of H over A containing eH . Since H is definably
connected, we have H = (σy)

−1(y) and the result follows. 2

The analogue of the previous and the next result for definable covering
homomorphisms is proved in [eo]. The arguments are quite similar. But
before we need the following lemma.
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Lemma 3.5 Let H be a locally definable group over A and V an open com-
patible locally definable subset of H over A such that dimH \ V < dimH.
Then there is a set {ys ∈ H : s ∈ S} whose elements are defined over A such
that H = ∪{ysV : s ∈ S}

Proof. Let K be the prime model of ThA(N ) and suppose that {Xi :
i ∈ I} (resp., {Vj : j ∈ J}) is the collection of all open definable subsets of
H (resp., V ) over A. Let M be a sufficiently saturated model of ThA(N ),
i ∈ I, a ∈ Xi(M) and let c ∈ Xi(M) be a generic point over K such that
tp(c/Ka) is finitely satisfiable in K. Then c is a generic point of Xi(M)
over Ka (see the proof of [p] Lemma 2.4). Since dimH \ V < dimH, we
also have that dimXi \ (Xi ∩ V ) < dimXi. Thus (Xi ∩ V )(M) is a large
definable subset of Xi(M) over A, i.e., every generic point of Xi(M) over A
is contained in (Xi ∩ V )(M). But we also have that dimH \ V a−1 < dimH.
So Xi(M) ∩ V (M)a−1 is a large definable subset of Xi(M) over A ∪ {a} (to
see that Xi ∩ V a−1 is a definable set, we use the fact that by Lemma 2.9,
Xia ∩ V is a definable set). Therefore, by definition, c ∈ Vj(M)a−1 and
a ∈ c−1Vj(M) for some j ∈ J . Since tp(c/Ka) is finitely satisfiable over K,
there is b ∈ Xi(K) such that a ∈ b−1Vj(M) for some j ∈ J . Therefore, by
the compactness theorem, for each i ∈ I, there are b1, . . . , bri ∈ Xi(K) and
j1, . . . , jri ∈ J such that, for every a ∈ Xi(M), we have a ∈ ∪{(bl)−1Vjl(M) :
l = 1, . . . , ri}. 2

Theorem 3.6 Let h : H −→ G be a surjective locally definable homo-
mophism over A between locally definable groups over A. If Kerh has dimen-
sion zero, then h : H −→ G is a locally definable covering homomorphism
over A.

Proof. We start by proving that there exists a locally definable map
α : G −→ H over A such that h ◦ α = 1G.

Let {Xi : i ∈ I} (resp., {Yj : j ∈ J}) be the collection of all open definable
subsets of H (resp., G) over A. Fix j ∈ J . Since {h(Xi) : Xi ⊆ h−1(Yj)}
is a cover of Yj by definable subsets over A, by saturation, there is a finite
subset I(j) of I such that {h(Xi) : i ∈ I(j)} is a cover of Yj by definable
subsets over A. Let Uj = ∪{Xi : i ∈ I(j)}. Then h−1(y) ∩ Uj is finite for
every y ∈ Yj. Moreover, since by o-minimality, for each i ∈ I(j), there is a
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uniform bound for |h−1(y) ∩Xi|, there is a uniform bound for |h−1(y) ∩ Uj|.
So there is a definable map sj : Yj −→ Uj over A such that h|Uj

◦ sj = 1Yj
.

Let κ ≤ ω be an enumeration of J and without loss of generality we
may assume that {Yj : j ∈ κ} is an increasing sequence. We define the
locally definable map α : G −→ H of the claim in the following way. Put
α|Y0 = s0; suppose that α|Yj

has been defined, then we define α|Yj+1
by

α|Yj+1
(y) = α|Yj

(y) for y ∈ Yj and α|Yj+1
(y) = sj+1(y) for y ∈ Yj+1 \ Yj.

Clearly, by construction, we have h ◦ α = 1G.
Let α : G −→ H be the locally definable map over A given above. For

each a ∈ Kerh, let αa : G −→ H be the locally definable map given by
αa(x) = aα(x). Then for each x ∈ G we have h−1(x) = {αa(x) : a ∈ Kerh}.
For a ∈ Kerh, let Sa = αa(G). Then Sa ∩Sb = ∅ if and only if a 6= b. In fact,
y ∈ Sa ∩ Sb if and only if there are u, v ∈ G such that αa(u) = y = αb(v) if
and only if u = h(y) = v if and only if a = b.

By o-minimality there is an open compatible locally definable subset U
of G such that dimG \ U < dimG and α : U −→ H is continuous. But then
αa : U −→ H is continuous for each a ∈ Kerh. By the above and Lemma
2.11, V = h−1(U) is an open compatible locally definable subset of H which
is a disjoint union of open locally definable subsets Va = αa(U) with a ∈ Kerh
such that h|Va : Va −→ U is a locally definable homeomorphism over A for
every a ∈ Kerh. Since h(H \ h−1(U)) ⊆ G \ U and dimKerh = 0, we also
have dimH \ V < dimH.

By Lemma 3.5 there is a set {ys ∈ H : s ∈ S} over A such that H =
∪{ysV : s ∈ S}. Hence, it follows that G = ∪{h(ys)U : l = s ∈ S}. So, for
each s ∈ S, we have that h−1(h(ys)U) is the disjoint union of the open locally
definable sets ysVa with a ∈ Kerh. Furthermore, h|ysVa : ysVa −→ h(ys)U is
a locally definable homeomorphism for every a ∈ Kerh. Hence, h : H −→ G
is a locally definable covering homomorphism over A. 2

Corollary 3.7 Suppose that h : H −→ G is a locally definable covering
homomophism over A. If G is definably connected, then h|H0 : H0 −→ G is
a locally definable covering homomorphism over A.

Proof. Clearly, Kerh|H0 has dimension zero. So by Theorem 3.6 we need
to show that h|H0 : H0 −→ G is surjective. Note that by Proposition 2.18
(iii), there is a locally definable subset {xs : s ∈ S} ofH over A such thatH =
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∪{xsH0 : s ∈ S} (disjoint union). Let s, t ∈ S and suppose that h(xtH
0) ∩

h(xsH
0) 6= ∅. Then there are u, v ∈ H0 such that h(xt)h(u) = h(xs)h(v).

Thus h(xs) = h(xt)h(uv
−1) ∈ h(xtH0) and h(xt) = h(xs)h(vu

−1) ∈ h(xsH0).
Hence, h(xsH

0) = h(xtH
0). So there is a subset S0 ⊂ S such that G =

∪{h(xs)h(H0) : s ∈ S0} (disjoint union). Since h is an open mapping, h(H0)
and so each h(xs)h(H

0) is open in G. Thus each h(xs)h(H
0) is open and

closed in G. If h|H0 : H0 −→ G is not surjective, then |S0| > 1 and this
implies that G is not definably connected. In fact, there is a definable subset
U of G, which can only be covered by more than one of the sets h(xs)h(H

0)
with s ∈ S0. By saturation, there are s1, . . . , sl ∈ S0 and definable subsets
Ui ⊆ h(xsi

)h(H0) with i = 1, . . . , l, such that U is the disjoint union (U ∩
U1) ∪ · · · ∪ (U ∩ Ul) = (U ∩ h(xs1)h(H0)) ∪ · · · ∪ (U ∩ h(xsl

)h(H0)) of open
and closed subsets of U . 2

3.2 The universal covering homomorphism

The goal now is to show that for a definably connected locally definable
group G there exists a universal covering homomorphism p̃ : G̃ −→ G of
G. Universal here means that if h : H −→ G is a locally definable covering
homomophism (over some A with |A| < ℵ1), then there exists a covering

homomorphism p̃(H,h) : G̃ −→ H such that p̃ = h ◦ p̃(H,h).
We denote by Cov(G) the category whose objects are locally definable

covering homomorphisms p : H −→ G (over some A with |A| < ℵ1) and
whose morphisms are surjective locally definable homomorphisms r : H −→
K (over some A with |A| < ℵ1) such that q ◦ r = p, where q : K −→ G is a
locally definable covering homomorphism (over some A with |A| < ℵ1). Let
p : H −→ G and q : K −→ G be locally definable covering homomorphisms.
If r : H −→ K is a morphism in Cov(G), then by Theorem 3.6, r : H −→ K
is a locally definable covering homomorphism. Here is another immediate
consequence of Theorem 3.6.

Lemma 3.8 If p : H −→ G and q : K −→ G are locally definable covering
homomorphisms over A, then p×G q : H ×G K −→ G, πH : H ×G K −→ H
and πK : H ×G K −→ K, where πH and πK are the obvious projections, are
locally definable covering homomorphisms over A such that p×G q = p◦πH =
q ◦ πK.
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Lemma 3.8 shows that Cov(G) is an inverse system. Given G a definably
connected locally definable group, we denote by Cov0(G) the full subcategory
of Cov(G) whose objects are locally definable covering homomorphisms p :
H −→ G with H definably connected. Corollary 3.7 and Lemma 3.8 shows
that Cov0(G) is an inverse system.

Definition 3.9 Let G be a definably connected locally definable group. The
inverse limit p̃ : G̃ −→ G of the inverse system Cov0(G) is called the (o-
minimal) universal covering homomorphism of G.

The kernel of the universal covering homomorphism p̃ : G̃ −→ G of G is
called the (o-minimal) fundamental group of G and is denoted by π(G).

By definition of inverse limit, the elements of G̃ are sequences x = (x(K,k))
with x(K,k) ∈ K, k : K −→ G ∈ Cov0(G) such that l(x(L,k◦l)) = x(K,k) for

all l : L −→ K ∈ MorCov0(G). In G̃ the product z = xy of x = (x(K,k))
and y = (y(K,k)) is given by the sequence (z(K,k)) with z(K,k) ∈ K, k : K −→
G ∈ Cov0(G) such that z(K,k) is the product x(K,k)y(K,k)) of the elements
x(K,k) and y(K,k) in K with the same k : K −→ G ∈ Cov0(G) as for z(K,k).
If h : H −→ G ∈ Cov0(G), then there exists a covering homomorphism

p̃(H,h) : G̃ −→ H such that p̃ = h◦p̃(H,h) and sending the sequence x = (x(K,k))
into the element x(H,h) ∈ H.

By construction we have the following theorem.

Theorem 3.10 Let G be a definably connected locally definable group. Then
we have the following short exact sequence

1→ π(G)→ G̃
p̃→ G→ 1.

We do not know if in general this short exact sequence exists in the
category of locally definable groups.

3.3 The o-minimal fundamental group

In this subsection we develop the theory of o-minimal fundamental groups of
definably connected locally definable groups.

Proposition 3.11 Let G be a definably connected locally definable group.
Then π(G) is abelian.
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Proof. As we saw after Definition 3.9, a point x ∈ G̃ is a sequence
x = (x(K,k)) with x(K,k) ∈ K and k : K −→ G ∈ Cov0(G) such that for every
morphism l : L −→ K in Cov0(G) we have l(x(L,k◦l)) = x(K,k). Moreover,

the product xy in G̃ of x = (x(K,k)) and y = (y(K,k)) is given by (x(K,k)y(K,k))
with x(K,k), y(K,k) ∈ K and k : K −→ G ∈ Cov0(G). Thus if x ∈ π(G), then
p̃(K,k)(x) = x(K,k) ∈ Ker(k : K −→ G) for every k : K −→ G ∈ Cov0(G)
since p̃ = k ◦ p̃(K,k). So, by Proposition 3.4, π(G) is abelian. 2

Let h : H −→ G be a locally definable covering homomorphism. Suppose
that H and G are definably connected and let q̃ : H̃ −→ H and p̃ : G̃ −→
G be the o-minimal universal covering homomorphisms. Then we have an
isomorphism

h̃ : H̃ −→ G̃

such that for every K
k→ H ∈ Cov0(H) and K

h◦k→ G ∈ Cov0(G) we have

q̃(K,k) = p̃(K,h◦k) ◦ h̃, i.e., for x = (x(K,k)) ∈ G̃, the coordinate h̃(x)(K,h◦k) of

h̃(x) is equal to the coordinate x(K,k) of x. Since the collection of all K
h◦k→

G ∈ Cov0(G) for K
k→ H ∈ Cov0(H) is cofinal in Cov0(G), the coordinates

h̃(x)(K,h◦k) determine the element h̃(x). Let us verify why h̃ : H̃ −→ G̃ is

an isomorphism. If z = (z(L,l)) ∈ H̃ and x = (x(K,k)) ∈ G̃ are elements

such that h̃(z) = x, then z(L,l) = q̃(L,l)(z) = p̃(L,h◦l)(x) = x(L,h◦l). But
x(L,h◦l) = πL(x(K×GL,(h◦l)◦πL)) and so, we have πL(x(K×GL,(h◦l)◦πL)) = z(L,l) for
all k : K −→ G ∈ Cov0(G) and l : L −→ H ∈ Cov0(H). Consequently,

h̃ : H̃ −→ G̃ is indeed an isomorphism.
The isomorphism h̃ : H̃ −→ G̃ restricts to an injective homomorphism

h∗ : π(H) −→ π(G).

Proposition 3.12 Let h : H −→ G be a locally definable covering homomor-
phism. Suppose that H and G are definably connected. Then the following
hold:

(i) h∗ : π(H) −→ π(G) is an injective homomorphism;

(ii) π(G)/h∗(π(H)) ' Aut(H/G).

Proof. As we saw above, h∗ : π(H) −→ π(G) is injective. We prove
(ii). First we define a group homomorphism θ : π(G) −→ Aut(H/G), with
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θ(x) : H −→ H : w 7→ θ(x)(w) = φp̃(H,h)(x)(w), where φp̃(H,h)(x) is the unique
locally definable covering transformation such that φp̃(H,h)(x)(eH) = p̃(H,h)(x).
Since p̃(H,h)(x) ∈ Kerh, we have that φp̃(H,h)(x) is indeed in Aut(H/G). Since
p̃(H,h)(xy) = p̃(H,h)(x)p̃(H,h)(y), it follows that θ is a homomorphism.

Let q̃ : H̃ −→ H be the o-minimal universal covering homomorphism
of H. Then we have q̃ = p̃(H,h) ◦ h̃ where h̃ is an isomorphism. So by the
definition of h∗ : π(H) −→ π(G), the kernel of θ is h∗(π(H)). It remains

to show that θ is surjective. So let φ ∈ Aut(H/G). Since p̃(H,h) : G̃ −→ H
is surjective, there is x ∈ G such that p̃(H,h)(x) = φ(eH). But p̃(x) = h ◦
p̃(H,h)(x) = h ◦ φ(eH) = h(eH) = eG. So x ∈ π(G) and θ(x) = φ. 2

Let h : H −→ G be a locally definable covering homomorphism. Suppose
that H and G are definably connected. Then by Proposition 3.12 we have a
short exact sequence

1→h∗(π(H))→ π(G)
θ→ Aut(H/G)→ 1.

If k : K −→ H is another locally definable covering homomorphism with K
definably connected, then we have an obvious commutative diagram

1 → h∗(π(H)) → π(G)
θ→ Aut(H/G) → 1

↑ ↑id ↑θK
H

1→ (h ◦ k)∗(π(K))→ π(G)
θ→ Aut(K/G)→ 1

of homomorphisms.

Corollary 3.13 Let G be a definably connected locally definable group. Then
π(G) is the direct limit of the family of group homomorphisms

{θKH : Aut(K/G) −→ Aut(H/G) | K −→ H ∈ MorCov0(G)}.

For the proof of the main theorem of this subsection we will require the
following lemma.

Lemma 3.14 Let G be a definably connected, abelian locally definable group
over A and let k > 0. Suppose that G is k-divisible and the subgroup of k-
torsion points of G has dimension zero. If h : H −→ G is a locally definable
covering homomorphism over A with H definably connected, then H is k-
divisible and the subgroup of k-torsion points of H has dimension zero.

20



Proof. Consider the map pk : G −→ G : x 7→ kx which is a locally
definable homomorphism over A. By the assumptions on G and Theorem
3.6, this is also a locally definable covering homomorphism over A. We also
have a commutative diagram

H
pk→ H

↓h ↓h

G
pk→ G.

Thus the kernel of pk : H −→ H is contained in the kernel of pk◦h : H −→ G
which is a locally definable covering homomorphism over A. So the kernel of
pk : H −→ H has dimension zero. It remains to show that H = pk(H). First
we note that H = ∪{zpk(H) : z ∈ Kerh}. In fact, h|pk(H) : pk(H) −→ G is
surjective, thus if x ∈ H, then there is y ∈ pk(H) such that h(y) = h(x). So
z = xy−1 ∈ Kerh and x = zy ∈ zpk(H).

Let z1, z2 ∈ Kerh. If z1pk(H)∩z2pk(H) 6= ∅, then there are x1, x2 ∈ pk(H)
such that z1x1 = z2x2. So z2 = z1(x1x

−1
2 ) ∈ z1pk(H) and z1 = z2(x2x

−1
1 ) ∈

z2pk(H). Therefore, z1pk(H) = z2pk(H). So there is a subset S0 ⊂ Kerh such
that H = ∪{zpk(H) : z ∈ S0} (disjoint union). Since dimpk(H) = dimH, by
Theorem 2.5, pk(H) and so each zpk(H) is open in H. Thus each zpk(H) is
open and closed in H. If pk : H −→ H is not surjective, then |S0| > 1 and
this implies that H is not definably connected. In fact, there is a definable
subset U of H, which can only be covered by more than one of the sets
zpk(H) with z ∈ S0. By saturation, there are z1, . . . , zl ∈ S0 and definable
subsets Ui ⊆ zipk(H) with i = 1, . . . , l, such that U is the disjoint union
(U ∩ U1) ∪ · · · ∪ (U ∩ Ul) = (U ∩ z1pk(H)) ∪ · · · ∪ (U ∩ zlpk(H)) of open and
closed subsets of U . 2

The following result is the generalization of [eo] Theorem 2.1.

Theorem 3.15 Let G be a definably connected, abelian locally definable group.
Suppose that, for each k > 0, G is k-divisible and the subgroup of k-torsion
points of G has dimension zero. Then the following hold:

(i) the o-minimal universal covering group G̃ of G is divisible and torsion
free;

(ii) the o-minimal fundamental group π(G) of G is a torsion-free abelian
group;

21



(iii) the k-torsion subgroup of G is isomorphic to π(G)/kπ(G), for each
k > 0.

Proof. We consider, for each k > 0, the map pk : G −→ G : x 7→ kx
which is a locally definable homomorphism. By the assumptions on G and
Theorem 3.6, this is also a locally definable covering homomorphism.

By definition, for every k > 0, the isomorphism p̃k : G̃ −→ G̃ is given
by multiplication by k. In fact, by Lemma 3.14, if h : H −→ G ∈ Cov0(G),
then

H
pk→ H

↓h ↓h

G
pk→ G

is a commutative diagram of locally definable covering homomorphisms. So,
p̃(H,pk◦h)(kx) = kp̃(H,pk◦h)(x) = kx(H,pk◦h) = kx(H,h◦pk) = pk(x(H,h◦pk)) = x(H,h)

and the coordinate (kx)(H,pk◦h) of kx is equal to the coordinate x(H,h) of x
just like the coordinate p̃k(x)(H,pk◦h) of p̃k(x) is equal to the coordinate x(H,h)

of x. Thus kx = p̃k(x) and (i) holds.
By Proposition 3.12 (i), (pk)∗ : π(G) −→ π(G) is an injective homo-

morphism for all k > 0. Since (pk)∗ = p̃k |π(G), the homomorphism (pk)∗ :
π(G) −→ π(G) is given by (pk)∗(x) = kx. Therefore, π(G) is a torsion-free
abelian group and, by Propositions 3.4 and 3.12 (ii), the k-torsion subgroup
of G is isomorphic to π(G)/kπ(G), for each k > 0. 2

We conjecture that every definably connected locally definable abelian
group G, for each k > 0, G is k-divisible and the subgroup of k-torsion
points of G has dimension zero. For definable groups this is proved in [s].
However, the methods used there do not generalise to the locally definable
case.

4 In o-minimal expansions of fields

In this section we assume that N is an o-minimal expansion of a field. In this
case, given a definably connected locally definable group G, we can define an
o-minimal fundamental group π1(G) of G using definable paths and definable
homotopies adapting the definable case treated in [bo]. We will show that
π(G) and π1(G) are isomorphic.
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So let G be a definably connected locally definable group. A map f :
X −→ G where X is a definable set, is a definable map if there is a definable
subset Y of G such that f : X −→ Y is a definable map. A definable path in
G is a continuous definable map α : [0, 1] −→ G.

The o-minimal fundamental group π1(G) of G is defined in the usual
way except that we use definable paths α : [0, 1] −→ G in G such that
α(0) = α(1) = eG and definable homotopies. If f : G −→ H is a continuous
locally definable map between definably connected locally definable groups
with f(eG) = eH , then the induced map f∗ : π1(G) −→ π1(H) : [σ] 7→ [f◦σ] is
a group homomorphism and we have the usual functorial properties. See [bo]
for the theory of o-minimal fundamental groups in the category of definable
sets with continuous definable maps.

We now generalize the theory of [eo] Section 2 to the category of locally
definable groups. Since the arguments are similar we will omit the details.
We start with the following analogue of [eo] Lemma 2.3.

Proposition 4.1 Let G be a definably connected locally definable group.
Then π1(G) is abelian.

Let p : H −→ G be a locally definable covering homomorphism (over
some A with |A| < ℵ1). Let Z be a definable set and let f : Z −→ G be
a definable continuous map. A lifting of f is a continuous definable map
f̃ : Z −→ H such that p ◦ f̃ = f .

Lemma 4.2 (Unicity of liftings) Let p : H −→ G be a locally definable
covering homomorphism over A. Let Z be a definably definably connected
definable set and let f : Z −→ G be a definable continuous map. If f̃1, f̃2 :
Z −→ H are two liftings of f , then f̃1 = f̃2 provided there is a z ∈ Z such
that f̃1(z) = f̃2(z).

Proof. As in the proof of Lemma 3.2, both sets {w ∈ Z : f̃1(w) =

f̃2(w)} and {w ∈ Z : f̃1(w) 6= f̃2(w)} are definable and open, the first one is
nonempty. 2

Lemma 4.3 (Path and homotopy lifting) Suppose that p : K −→ G be
a locally definable covering homomorphism over A. Then the following hold.
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(1) Let γ be a definable path in G and y ∈ K. If p(y) = γ(0), then there is
a unique definable path γ̃ in K, lifting γ, such that γ̃(0) = y.

(2) Suppose that H : [a, b]× [0, 1] −→ G is a definable homotopy between the
definable paths γ and σ in G. Let γ̃ be a definable path in K lifting γ. Then
there is a unique definable lifting H̃ of H, which is a definable homotopy
between γ̃ and σ̃, where σ̃ is a definable path in K lifting σ.

Proof. These results as their definable analogues in [eo] are consequences
of path and the homotopy lifting. In our category, the path and the homotopy
liftings can be proved as in [eo] by observing that, by saturation, a definable
subset of G is covered by finitely many open definable subsets of G. 2

Notation: Referring to Lemma 4.3, if γ is a definable path in G and
y ∈ K, we denote by y ∗ γ the final point γ̃(1) of the definable lifting γ̃ of γ
with initial point γ̃(0) = y.

The following consequence of Lemma 4.3 is proved in exactly the same
way as its definable analogue in [eo] Corollary 2.9.

Remark 4.4 Suppose that p : H −→ G is a locally definable covering ho-
momorphism over A and let y ∈ H be such that p(y) = eG. Suppose that H
and G are definably connected. Then the following hold.

(1) If σ is a definable path in G from eG to eG, then y = y ∗ σ if and only if
[σ] ∈ p∗(π1(H)).

(2) If σ and σ′ are two definable paths in G from eG to x, then y ∗σ = y ∗σ′
if and only if [σ · σ′−1] ∈ p∗(π1(H)).

If G is a locally definable group over A, we say that G is definably path
connected if for every u, v ∈ G there is a definable path α : [0, 1] −→ G such
that α(0) = u and α(1) = v.

Lemma 4.5 Let G be a locally definable group over A. Then the following
hold.

(1) For every definably connected open definable subset U of G over A there
is a definable subset Σ of U × U × [0, 1] × U over A such that for every
(u, v) ∈ U × U , the fiber Σ(u,v) = {(t, w) ∈ [0, 1]× U : (u, v, t, w) ∈ Σ} is the
graph of a definable path in G over A ∪ {u, v} from u to v.

(2) G is definably connected if and only if G is definably path connected.
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Proof. By Lemma 2.7, there is G is covered by the family {Ui : i ∈ I} of
all open definably connected definable subsets of G over A. By [vdd] Chapter
VI, Proposition 3.2, property (1) holds for each Ui. Since U = Ui1 ∪ · · · ∪Uil ,
property (1) holds for U .

Fix i0 ∈ I, xi ∈ Ui over A and let I0 = {i ∈ I : there is a definable
path in G from xi0 to xi}. By (1), ∪{Ui : i ∈ I0} is a nonempty open and
closed compatible locally definable subset of G over A which is definably path
connected. Thus G is definably connected if and only if G = ∪{Ui : i ∈ I0}.
2

The first part of the next proposition is also a consequence of Lemma
4.3 and is proved in exactly the same way as its definable analogue in [eo]
Corollary 2.8. We give here a different proof of the second part.

Proposition 4.6 Let h : H −→ G be a locally definable covering homomor-
phism. Suppose that H and G are definably connected. Then the following
hold:

(i) h∗ : π1(H) −→ π1(G) is an injective homomorphism;

(ii) π1(G)/h∗(π1(H)) ' Aut(H/G).

Proof. As we mentioned (i) is similar to [eo] Corollary 2.8. We prove
(ii). First we define a group homomorphism ψ : π1(G) −→ Aut(H/G), with
ψ([σ]) : H −→ H : w 7→ ψ([σ])(w) = φ[σ](w), where φ[σ] is the unique locally
definable covering transformation such that φ[σ](eH) = eH ∗σ. By definition,
eH ∗σ is in Kerh and so φ[σ] is in Aut(H/G). By Remark 4.4 (2), the map φ[σ]

is well defined and depends only on the class [σ] and not on the particular
representative of this class. Since eH ∗ (σ · σ′) = (eH ∗ σ) ∗ σ′, it follows that
ψ is a homomorphism. By Remark 4.4 (1), the kernel of ψ is h∗(π1(H)).
It remains to show that ψ is surjective. So let φ ∈ Aut(H/G). Since H is
definably connected, by Lemma 4.5 (2), there is a definable path α in H from
eH to φ(eH). Let σ = h ◦ α. Then [σ] ∈ π1(G) and ψ([σ]) = φ. 2

As in [eo] Theorem 2.1 we have the following result.

Theorem 4.7 Let G be a definably connected, abelian locally definable group.
Suppose that, for each k > 0, G is k-divisible and the subgroup of k-torsion
points of G has dimension zero. Then the following hold:
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(i) the o-minimal fundamental group π1(G) of G is a torsion-free abelian
group, and

(ii) the k-torsion subgroup of G is isomorphic to π1(G)/kπ1(G), for each
k > 0.

Proof. We consider, for each k > 0, the map pk : G −→ G : x 7→ kx
which is a locally definable homomorphism. By the assumptions on G and
Theorem 3.6, this is also a locally definable covering homomorphism. By
Proposition 4.6 (i), (pk)∗ : π1(G) −→ π1(G) is an injective homomorphism
for all k > 0. But as in [eo] Lemma 2.4, we see that (pk)∗ : π1(G) −→ π1(G)
is the homomorphism given by (pk)∗([σ]) = k[σ]. Therefore, π1(G) is a
torsion-free abelian group and, by Propositions 3.4 and 4.6 (ii), the k-torsion
subgroup of G is isomorphic to π1(G)/kπ1(G), for each k > 0. 2

Theorem 4.7 is also a consequence of Theorem 3.15 and the following
result.

Theorem 4.8 Let G be a definably connected locally definable group. Then
π(G) and π1(G) are isomorphic.

Proof. If h : H −→ G ∈ Cov0(G), then by Proposition 4.6 we have a
short exact sequence

1→h∗(π1(H))→ π1(G)
ψ→ Aut(H/G)→ 1.

If k : K −→ H is another locally definable covering homomorphism with K
definably connected, then we have an obvious commutative diagram

1 → h∗(π1(H)) → π1(G)
ψ→ Aut(H/G) → 1

↑ ↑id ↑ψK
H

1→ (h ◦ k)∗(π1(K))→ π1(G)
ψ→ Aut(K/G)→ 1

of homomorphisms. Therefore, π1(G) is the direct limit of the family of group
homomorphisms

{ψKH : Aut(K/G) −→ Aut(H/G) | K −→ H ∈ MorCov0(G)}.
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But by Proposition 3.4 we have a commutative diagram

Aut(H/G) ← Kerh → Aut(H/G)

↑θK
H ↑k ↑ψK

H

Aut(K/G) ← Ker(h ◦ k) →Aut(K/G)

where the horizontal arrows are isomorphisms. So π(G) is isomorphic to
π1(G). 2
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