A Novel Plasmonic Nanoantenna-Based Sensor for Illicit Materials and Drugs Detection

Marco Scalici^o and Patrizia Livreri^o, *Senior Member, IEEE*

IVE INTENT IVERTICATE IT AND A CHEER CHECK CHEER CHEE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 *Abstract***—Terahertz (THz) spectroscopy and imaging are of significant interest in molecular detection and identification. Illicit drugs are characterized by a different absorption spectrum, with sharp absorption peaks located in the THz frequency range. In this article, the design, simulation, and fabrication of two novel plasmonic nanoantennas with resonance frequencies over the 1–10-THz range for illicit materials and drugs detection are proposed. The first nanoantenna, called the butterfly nanoantenna, is composed of two symmetrical butterfly shaped gold arms with a length of 46.48** μ m, a width of 22.40 μ m, and a thickness of 200 nm, **separated by a gap of 20 nm. The two-layer substrate consists of 3-**µ**m silicon and 50-nm gold. The results of the simulation, performed by the 3-D CST Studio Suite 2023, show three different resonance frequencies at 2.1, 3.6, and 5.1 THz, respectively, with a** -10 -dB S_{11} lower than -18 dB and a

17 18 19 20 21 22 23 24 **directivity of up to 11.04 dBi. Starting from the single butterfly nanoantenna design, a novel geometrical nanoantenna,** called the shamrock nanoantenna, is composed of three symmetrical arms, each with a length of 23.14 μ m, a width **of 22.40** µ**m, and a thickness of 200 nm, separated by a central gap of 20 nm is introduced. The simulation results show two different resonance frequencies at 1.9 and 3.3 THz, with** −**10-dB** *S***¹¹ lower than** −**26 and** −**20 dB, respectively. A sensitivity of 1500 GHz/RIU at 1.9 THz, 2500 GHz/RIU at 2.1 THz, 6000 GHz/RIU at 3.3 THz, 10 000 GHz/RIU at 3.6 THz, and 11 500 GHz/RIU at 5.1 THz is theoretically observed for the detection of illicit materials and drugs with a thickness of 5** µ**m of analyte. The multiband sensor based on the proposed plasmonic nanoantennas with an enhancement factor (EF) of 6.09** × **10⁵ shows a very broad observation range providing a nondestructive method.**

²⁵ *Index Terms***— Drugs, illicit materials, nanoantenna, plasmonics, sensor, terahertz (THz).**

26 **I. INTRODUCTION**

R ECENTLY, growing interest in the localization and amplification of electromagnetic fields on plasmonic ²⁷ ECENTLY, growing interest in the localization and surfaces in the near-field region has been attributed to their promising applications, including energy deposition, refractive 31 index sensors, and spectroscopic hotspots. In particular, in the frequency range of 1–10 THz, numerous potential applications in the security and defense sectors have emerged owing to extensive exploration and notable advances in terahertz (THz) radiation.

Many materials relevant to security applications, including explosives and chemical and biological agents, exhibit char- acteristic THz spectra that can be used to identify illegal substances. With the increasing use of plastic explosives and

Manuscript received 7 June 2024; revised 10 July 2024; accepted 13 July 2024. The associate editor coordinating the review of this article and approving it for publication was Dr. Amir Ebrahimi. *(Corresponding author: Patrizia Livreri.)*

The authors are with the Department of Engineering, University of Palermo, 90128 Palermo, Italy (e-mail: marco.scalici@ community.unipa.it; patrizia.livreri@unipa.it).

Digital Object Identifier 10.1109/JSEN.2024.3429154

TABLE I RESONANCE FREQUENCY AT THZ OF ILLICIT MATERIALS AND DRUGS

Frequency	Illicit materials
(THz)	and drugs
19	PE4, HMX, TNT, MDMA
2.1	SEMTEX-H
3.3	Lactose a-monohydrate, Terfenadine
3.6	Co-Codamol
51	Naproxen sodium, Caffeine

chemical and biological agents, such as weapons of war and 40 terrorism, and the growing threat of illegal drug trafficking, 41 effective means for the rapid detection and identification of 42 these threats are indispensable $[1]$. For example, numerous $\frac{43}{43}$ explosives (e.g., HMX, SEMTEX-H, and TNT) and ille- ⁴⁴ gal drugs (e.g., methylenedioxymethamphetamine (MDMA), ⁴⁵ heroin, and cocaine) exhibit distinctive transmission and reflec- 46 tion spectra in the THz frequency range [\[2\]. In](#page-9-1) Table [I,](#page-0-0) ⁴⁷ the resonance frequencies of some illicit materials and ⁴⁸ drugs occurring over the 1.9–5.1-THz range have been ⁴⁹ reported $[3]$, $[4]$.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Because different substances have different absorption intensities and wavelengths, their absorption peaks and reflected intensities in infrared spectroscopy vary [\[5\]. Sp](#page-9-4)ec- troscopy technology is increasingly being used in biomedical research owing to its speed and nondestructive detection, and it can work very well for the detection of various molecules, such as illicit drugs or explosives [6].

 The application of THz spectroscopy and imaging in the detection and identification of illicit substances based on plasmonic nanoantennas allows nondestructive ⁶¹ sensing.

 A plasmonic nanoantenna is a nanometric device designed to exploit the phenomenon of surface plasmons, which are the collective oscillations of electrons that propagate along the metallic surface of a conductive material when excited by an electromagnetic field. When the wavelength of the incident ⁶⁷ light coincides with the wavelength of the nanoantenna plas- mon resonance, a significant increase in the light absorption or its interaction with the nanostructure occurs [7].

 Plasmonic nanoantennas are mainly used to manipulate light at the nanometer level for applications, such as highly sensitive chemical and biological sensors, advanced imaging technologies, such as plasmon microscopy, and advanced optical devices, such as super-resolution lenses and nanoscale light sources [8].

 Plasmonics studies have led to the use of nanoantenna dipoles with two or four arms [9], [10], or, at most, the classic bowtie [11] for the detection of different molecules, which facilitates the design of simple shapes to be designed and fabricated in the laboratory. However, the classic bowtie does 81 not allow obtaining a sensor for the detection of all resonance frequencies reported in Table I.

83 In this study, we propose novel geometric nanoantennas ⁸⁴ operating at THz frequencies that exhibit optimal charac-⁸⁵ teristics in terms of high electromagnetic-field enhancement, 86 directivity, and reflectivity. Inspired by the geometry of a 87 bowtie antenna [12] composed of two triangular arms, these 88 novel geometries have been demonstrated to be effectiveness ⁸⁹ in the near-infrared domain.

 The remainder of this article is organized as follows. 91 Section II presents the design, simulations, and parametric 92 analyses of butterfly nanoantennas. Section III reports the 93 simulations of the 2×2 butterfly nanoarrays. In Section IV, 94 starting with the butterfly nanoantenna, the design and simula- tions of the proposed shamrock nanoantenna are presented in detail. Shamrock nanoantenna array simulations are presented 97 in Section [V.](#page-4-0) Section [VI](#page-4-1) compares butterfly and shamrock nanoantennas with the classic bowtie and three-arm bowtie nanoantennas, and *Q*-factor values are reported. Section [VII](#page-6-0) discusses the sensitivity of the novel nanoantennas and the application of the nanoantenna array as a naked sensor. Finally, the conclusions are presented in Section [VIII.](#page-8-0)

103 **II. BUTTERFLY PLASMONIC NANOANTENNA DESIGN**

 Fig. [1](#page-1-1) shows a schematic model of the butterfly nanoantenna composed of two gold arms of length *L*, width *W*, and 106 flare angle Θ , separated by a gap *G*. A two-layer substrate, composed of silicon and gold, was used.

Fig. 1. CST schematic model of the butterfly nanoantenna.

According to Maxwell's equations and the properties of 108 materials, at RF/microwave resonance frequency, the length 109 *L* of a generic dipole antenna is given by 110

$$
L = \frac{\lambda}{2} = \frac{c}{f \times \sqrt{\epsilon_{\text{eff}}}}
$$
 (1)

with λ the wavelength of the electromagnetic waves, c the 112 speed of light, f the antenna operating frequency, and ϵ_{eff} the 113 dielectric constant.

Therefore, antenna size depends on the wavelength of the 115 incident wave. Moreover, owing to the infinite conductivity of $_{116}$ metals, the skin depth is irrelevant with respect to the size of 117 the antenna. When a circularly polarized plane wave along the 118 *z*-axis with an arbitrary electric-field intensity interacts with an ¹¹⁹ antenna, it induces electron oscillations at the metal–dielectric ¹²⁰ interface. 121

A research using this speed and nondeluntive detection of simulations,

we sturn work they in the speed and smaller detection of simulations,

we show that the simulations of the simulations of the simulations of the simu These electron oscillations at the frequency of the incident 122 wave are referred to as surface plasmon polaritons (SPPs). This 123 phenomenon generates an alternating current on the surface of 124 the antenna, which flows toward the gap of the antenna. SPPs 125 propagate as electromagnetic waves along the metal–dielectric 126 interface, but their amplitude diminishes exponentially. In metals, this decay is more rapid because of the absorption losses, ¹²⁸ whereas in the dielectric layer, the SPPs signal attenuates 129 gradually. Consequently, a nonlinear relationship is observed 130 between the antenna's length and its frequency in a plasmonic 131 device, unlike in RF/microwave antennas, where the size is 132 determined solely by frequency.

As the frequency approaches the THz band, the electric 134 field penetrates deeper into the metal owing to the decreased 135 conductivity of conductors. Therefore, the electrical behav- ¹³⁶ ior of the metal is characterized by a complex permittivity 137 $\epsilon_c(\omega) = \epsilon'(\omega) + i\epsilon''(\omega)$, which varies with the frequency. The 138 real part $\epsilon'(\omega)$ represents the energy stored in the medium, 139 while the imaginary part $\epsilon''(\omega)$ corresponds to the energy loss 140 within the medium. The loss tangent or dissipation factor δ , 141 defined as ϵ''/ϵ' , quantifies the signal loss as it propagates 142 through the medium. At the nanometric scale, there is a distinct $_{143}$ relationship between the excitation and charge responses. 144

Table [II](#page-2-0) reports the real and imaginary parts of ϵ_c for gold $_{145}$ at mid-infrared $[13]$. In this band, gold is preferred because 146 of its convenient complex permittivity as well as for its great ¹⁴⁷ chemical stability compared with other noble metals $[14]$. 148

The complex permittivity is also linked to its conductivity $_{149}$ through the relation $\epsilon_c = \epsilon_\infty + (i\sigma/\omega\epsilon_0)$ with ϵ_0 permittivity 150 in vacuum. At mid-infrared frequencies, the complex equation 151

Conductor type		
Gold (Au)	-5605.6	2243.2

TABLE III REAL AND IMAGINARY PARTS OF COMPLEX PERMITTIVITY AT MID-INFRARED RANGE

¹⁵² of electrical conductivity of gold is given by the Drude ¹⁵³ model [13]

$$
\sigma = \sigma' + i\sigma'' = \epsilon_0 \epsilon'' \omega + i\epsilon_0 (\epsilon' - 1) \omega. \tag{2}
$$

155 Table III reports the real and imaginary parts of σ for gold in the mid-IR range. The values in Tables II and III were set in CST Studio Suite to carry out the calculations based on the Drude model.

 Interaction with IR waves generates plasmonic modes that influence the size of IR/optical antennas, which depend not only on the geometry but also on the plasmonic effects related to the metal and its environment. Accordingly, the size of a nanoantenna follows a wavelength-scaling rule, 164 where the effective wavelength λ_{eff} governs the size, rather 165 than the actual wavelength, with λ_{eff} smaller than λ . This relationship can be derived from a simple dipole antenna model [15], [16], [17]

$$
\lambda_{\text{eff}} = n_1 + n_2 \frac{\lambda}{\lambda_p} \tag{3}
$$

169 where λ_{eff} is the effective wavelength scaling for plasmonic 170 antennas, $\lambda_p = (2\pi c/\omega_c)$ is the plasma wavelength of the 171 metal, with *c* is the speed of light and ω_c is the electron 172 plasma frequency, and n_1 and n_2 are parameters that depend on ¹⁷³ both the geometry and the dielectric properties of the material. 174 These parameters can be calculated for gold ($\lambda_p = 137$ nm), ¹⁷⁵ as follows:

$$
n_1 = -R\left(24 + 0.75\frac{\epsilon_{\infty}}{\epsilon_S}\right) \tag{4}
$$

$$
n_2 = 0.75 \frac{R}{\epsilon_S} \sqrt{\epsilon_\infty + 141.04 \epsilon_S} \tag{5}
$$

178 where *R* represents the radius of a dipole antenna, ϵ_{∞} is the 179 high-frequency permittivity, and ϵ ^{*S*} is the permittivity of the ¹⁸⁰ surrounding dielectric environment.

181 Starting from a desired resonance frequency equal to 182 5.1 THz, a value of $\lambda_{eff}/2 = 46.48 \mu m$ for the butterfly 183 nanoantenna length is obtained according to (3) . For a length 184 *L* of 46.48 μ m, an optimum width *W* value of 22.40 μ m and 185 an optimum bow angle Θ of 70.79° were obtained using 3-D ¹⁸⁶ CST Studio Suite 2023. The optimum geometric parameters of 187 the designed butterfly nanoantenna are presented in Table [IV.](#page-2-3) $Fig. 2$ $Fig. 2$ shows the real and imaginary parts of Z_{11} versus ¹⁸⁹ frequency in the range 1–7 THz. Three different resonance ¹⁹⁰ frequencies at 2.1, 3.6, and 5.1 THz are obtained with a $191 - 10$ -dB S_{11} approximately equal to -21 , -20 , and -18 dB,

TABLE IV GEOMETRIC PARAMETERS FOR THE BUTTERFLY NANOANTENNA

Fig. 2. Z_{11} and S_{11} versus frequency for butterfly nanoantenna.

TABLE V

BUTTERFLY NANOANTENNA PERFORMANCE IN TERMS OF *Z*11, *S*11, DIRECTIVITY, AND ELECTRIC FIELD

$_{res}$	Z_{11}	S_{11}	Directivity	Electric Field
(THz)	(Ω)	(dB)	(dBi)	$(V/\mu m)$
2.1	774.64	-21.044	5.931	165.092
3.6	1154.43	-20.012	5.699	218.576
5.1	732.27	-17.877	11.04	172.598

Fig. 3. Far field at 2.1, 3.6, and 5.1 THz for the butterfly nanoantenna.

respectively. An analytical description of the resonances of 192 plasmonic nanoantennas has been well discussed in the ¹⁹³ $\text{literature } [18]$.

The far field at the three resonance frequencies is shown 195 in Fig. [3.](#page-2-5) The electric field at 2.1 THz is shown in Fig. [4.](#page-3-2) ¹⁹⁶ Table [V](#page-2-6) lists the optimal performance of the butterfly nanoan-
197 tenna. The values of Z_{11} (Ω), S_{11} (dB), directivity (dBi), and 198 electric field $(V/\mu m)$ at the resonance frequencies 2.1 THz, 199 3.6 THz, 5.1 THz, are reported. ²⁰⁰

Fig. 4. Electric field for the butterfly nanoantenna at 2.1 THz.

TABLE VI GAP DISTANCE PARAMETRIC ANALYSIS

Gap	$_{res}$	Directivity	Electric Field
(nm)	(THz)	(dBi)	(V/m)
20	2.1	5.931	$1.79e\times10^{8}$
20	3.6	5.699	$2.18e\times10^{8}$
20	5.1	11.04	1.72×10^8
40	2.1	6.176	4.67 e \times 10 ⁷
40	3.6	5.723	$4.54e\times10^{7}$
40	5.1	11.22	$4.48e\times10^{7}$
80	2.1	6.165	$4.84e\times10^{7}$
80	3.6	5.673	$4.72e\times10^{7}$
80	5.1	11.16	$4.66e\times10^{7}$

TABLE VII LENGTH *L* AND WIDTH *W* PARAMETRIC ANALYSIS

²⁰¹ *A. Parametric Analysis*

 This section presents a parametric analysis of the nanoan- tenna design. The results of the gap distance parameter analysis are listed in Table VI. By increasing the value of the gap, an increase in the directivity and a decrease in the electric field at the three frequencies of interest occur. Because the decrease in the electric field is much more significant than the increase in directivity, a value of 20 nm was chosen for the gap based on parametric analysis. Table VII presents the results of the parametric analysis in terms of length and width. Starting from the length value calculated 212 using (2), decreasing the length to a value equal to 36 μ m, the r_{res} resonance frequencies f_{res} of 2.1, 3.6, and 5.1 THz shift to the right, assuming the values 2.5, 4.2, and 6.1 THz, respectively. 215 By increasing the length to a value equal to 66 μ m, the resonance frequencies f_{res} of 2.1, 3.6, and 5.1 THz shift to the left, assuming values 1.5, 2.6, and 3.7 THz, respectively.

 $_{218}$ III. 2 \times 2 BUTTERLY NANOANTENNA ARRAY 219 DESIGN AND SIMULATION

²²⁰ Starting from the design of a single butterfly nanoantenna 221 resonating at three desired frequencies (2.1, 3.6, and 5.1 THz), 222 a 2×2 array was designed. Fig. [5](#page-3-5) shows the real and imaginary 223 parts of Z_{11} and S_{11} . The resonance frequencies of the array ²²⁴ exhibited no shift. Fig. [6](#page-3-6) shows the far field at the three

Fig. 5. Z_{11} and S_{11} versus frequency for butterfly nanoantenna array.

Fig. 6. Butterfly array far-field and directivity.

resonance frequencies. Table VIII presents the performance of 225 the array in terms of Z_{11} , S_{11} , and the directivity.

IV. SHAMROCK ANTENNA DESIGN AND SIMULATION 227

To obtain a plasmonic nanoantenna-based sensor resonating 228 at all five resonance frequencies reported in Table I, consid- ²²⁹ ering that the butterfly nanoantenna had only three resonance 230 frequencies, 2.1, 3.6, and 5.1 THz, a modified structure for ²³¹ the butterfly nanoantenna was studied to resonate at 1.9 and 232 3.3 THz, respectively. 233

Fig. [7](#page-4-2) shows the CST schematic model of the novel mod- ²³⁴ ified butterfly geometry called the shamrock nanoantenna. ²³⁵ It presents three equal arms with length *L*/2, width *W*, flare ²³⁶ angle Θ , and gap *G*.

Table IX lists all geometric parameters for the sham- 238 rock nanoantenna with the same substrate as the butterfly ²³⁹ nanoantenna.

Fig. [8](#page-4-4) shows the real and imaginary parts of Z_{11} versus 241 frequency in the range of 1–7 THz. Two different resonance 242

Fig. 7. CST schematic model of the novel proposed shamrock nanoantenna.

TABLE IX GEOMETRIC PARAMETERS FOR THE SHAMROCK NANOANTENNA

Fig. 8. Z_{11} and S_{11} versus frequency for the shamrock nanoantenna.

TABLE X

PERFORMANCE OF THE SINGLE SHAMROCK NANOANTENNA IN TERMS OF *Z*11, *S*11, DIRECTIVITY, AND ELECTRIC FIELD

Jres THz)	Z_{11} (Ω)	511 (dB)	Directivity (dBi)	Electric Field $(V/\mu m)$
1.9	595.60	-26.81	5.667	163.021
3.3	469.57	-20.36	6.514	206.524

²⁴³ frequencies at 1.9 and 3.3 THz with a −10-dB *S*¹¹ equal to ²⁴⁴ approximately −26.81 and −20.36 dB, respectively, occur. ²⁴⁵ The far field at the two resonance frequencies is shown

²⁴⁶ in Fig. [9.](#page-4-5) Fig. [10](#page-4-6) shows the electric field at 1.9 THz. The 247 performance of the shamrock nanoantenna is listed in Table [X.](#page-4-7)

 $_{248}$ V. 2 \times 2 SHAMROCK ANTENNA ARRAY ²⁴⁹ DESIGN AND SIMULATION

²⁵⁰ Beginning with the design of a single shamrock nanoan-²⁵¹ tenna, a 2 \times 2 array was designed, as shown in Fig. [11.](#page-4-8)

 F_2 ²⁵² Fig. [12](#page-5-0) shows the real and imaginary parts of Z_{11} and S_{11} . ²⁵³ Fig. [13](#page-5-1) shows the far field at the two frequencies, and the ²⁵⁴ performance of the array is presented in Table [XI.](#page-4-9)

Fig. 9. Far field at 1.9 and 3.3 THz for the shamrock nanoantenna.

Fig. 10. Electric field for the shamrock nanoantenna.

Fig. 11. 2×2 shamrock array design.

TABLE XI PERFORMANCE OF THE SHAMROCK ARRAY IN TERMS OF *Z*11, *S*11, AND DIRECTIVITY

$_{res}$	Z_{11}	S_{11}	Directivity
(THz)	(Ω)	(dB)	(dBi)
I.9	730.77	-13.91	6.768
3.3	637.11	-18.36	7.208

VI. COMPARISON BETWEEN BUTTERFLY AND ²⁵⁵ SHAMROCK NANOANTENNAS AND CLASSIC₂₅₆ BOWTIE NANOANTENNAS ²⁵⁷

Fig. [14](#page-5-2) shows a classic bowtie with a gap 20 nm and 258 dimensions equal to those of a previously designed butterfly. 259 In Fig. [15,](#page-5-3) the real and imaginary parts of Z_{11} and S_{11} 260 versus the frequency over the 1–7-THz range for the classic 261 bowtie nanoantenna are shown. Three resonance frequencies 262 were obtained; however, only the second and third resonance 263 frequencies corresponded to those listed in Table [I.](#page-0-0) It was not ²⁶⁴ possible to obtain the first resonance frequency corresponding ²⁶⁵ to 1.9 or 2.1 THz. By varying the geometric dimensions of ²⁶⁶ the bowtie nanoantenna according to the parametric analysis 267 reported in Section [II,](#page-1-0) all three frequencies shifted to the right $_{268}$

Fig. 12. Z_{11} and S_{11} versus frequency for the shamrock nanoantenna array.

Fig. 13. Far field at 1.9 and 3.3 THz for the shamrock array.

TABLE XII BOWTIE NANOANTENNA PERFORMANCE IN TERMS OF *Z*11, *S*11, DIRECTIVITY, AND ELECTRIC FIELD

$_{res}$	Z_{11}	S_{11}	Directivity	Electric Field
(THz)	Ω)	(dB)	(dBi)	$(V/\mu m)$
	613	-12.38	5.750	166.39
3.6	902	-25.48	4.144	169.96
5.	690	-14.73	8.357	169.09

Fig. 14. CST schematic model of a bowtie nanoantenna.

²⁶⁹ or left. Table [XII](#page-5-4) lists *Z*11, *S*11, directivity, and electric field ²⁷⁰ for the three resonance frequencies.

²⁷¹ The CST schematic model of the simulated bowtie nanoan-²⁷² tenna with three arms is shown in Fig. [16.](#page-5-5)

 The graphs of Z_{11} and S_{11} , in Fig. [17,](#page-5-6) show the same resonance frequencies as the single classic bowtie, unlike the shamrock nanoantenna, which has two different resonance frequencies compared with the butterfly nanoantenna. Further- more, the three-arm bowtie shows a worsening of the *S*¹¹ ²⁷⁸ values.

Fig. 15. Z_{11} and S_{11} for the bowtie nanoantenna.

Fig. 16. CST schematic model of the bowtie nanoantenna with three arms.

Fig. 17. Z_{11} and S_{11} for three-arm bowtie nanoantenna.

Table [XIII](#page-6-1) presents the characteristics of the three-arm 279 classic bowtie nanoantenna in terms of Z_{11} , S_{11} , directivity, 280 and the electric field. 281

The *Q* factors for butterfly, shamrock, and bowtie nanoan- ²⁸² tennas are calculated by considering a series *RLC* equivalent 283 circuit model, where *L*, *C*, and *R*, represent the kinetic ²⁸⁴

TABLE XIII PERFORMANCE SINGLE THREE-ARM BOWTIE IN TERMS OF *Z*11, *S*11, DIRECTIVITY, AND ELECTRIC FIELD

f_{res} (THz)	Z_{11} (Ω)	S_{11} (dB)	Directivity (dBi)	Electric Field $(V/\mu m)$
2	597.48	-11.91	5.942	157.833
3.6	736.24	-16.38	4.651	158.398
5.1	524.32	-10.12	8.626	158.291
	L ₂	c, R,		С.

Fig. 18. *RLC* equivalent circuit model for a butterfly nanoantenna.

TABLE XIV *Q*-FACTOR VALUE FOR BUTTERFLY, SHAMROCK, AND BOWTIE **NANOANTENNAS**

Nanoantenna	$.9^{\circ}$ 4. ($\mathcal{A}(2,1)$	Q(3.3)	$Q_{(3,6)}$	2(5.1)
Butterfly		7.94		36.36	39
Shamrock	'0.61		18.75		
Bowtie				18.68	2^{\sim}

 inductance due to the inertia of the oscillating electrons, the capacitive coupling between different parts of the nanoantenna or between the nanoantenna and the surrounding medium, and the losses due to radiative and nonradiative damping, respectively, and depend on the geometry of the nanoantenna and the material properties of the metal and the surrounding dielectric.

 Fig. 18 shows the *RLC* equivalent circuit for the butterfly nanoantenna. The circuit consists of three loops of resistive, inductive, and capacitive elements coupled with capacitive elements $[20]$. Each loop corresponded to a single plasmonic resonance. The combination of inductive and capacitive ele- ments in each loop generates a resonance, whereas the resistive element accounts for energy dissipation (due to radiation and ohmic loss). The model for the *RLC* circuit is based on the resonance frequency formula for a series *RLC* circuit, which is given by

$$
f_{\rm res} = \frac{1}{2\pi\sqrt{\rm LC}}.\tag{6}
$$

³⁰³ The *Q* factor of the *RLC* circuit can be calculated using ³⁰⁴ the following equation:

$$
Q = \frac{f_{\text{res}}}{\Delta f}.\tag{7}
$$

 The *Q*-factor values for the butterfly, shamrock, and bowtie 307 nanoantennas are listed in Table [XIV,](#page-6-3) which shows that the butterfly and shamrock nanoantennas present a higher *Q* factor than the classic bowtie nanoantennas.

Fig. 19. Fabricated 2×2 butterfly nanoantennas array.

Fig. 20. Fabricated 2×2 shamrock nanoantennas array.

VII. SENSING AND DETECTION OF 310 VARIOUS MOLECULES 31

Regarding the sensing task, the nanoantenna-based sensor 312 can detect several molecules that have resonance peaks asso- ³¹³ ciated with the same molecules as the nanoantennas. 314

Figs. 19 and 20 show the images of the fabricated 315 2×2 array of the proposed nanoantennas (butterfly and 316 shamrock) under a scanning electron microscope. The combi-
 317 nation of the two proposed antennas allows us to address the ³¹⁸ spectrum of interest and can recognize various material crimes 319 and narcotic substances of various types. The resonance fre- ³²⁰ quencies of illegal materials with the corresponding proposed 321 nanoantennas are listed in Table XV [3]. 322

IF $\frac{3.00 \times 10^{10} \times$ Fig. 21 shows a generic correspondence between the results 323 of the numerical simulation and the generic experimental ³²⁴ simulation using MDMA, also called "Ecstasy." MDMA is 325 a psychoactive substance belonging to the phenethylamine ³²⁶ class and is known for its entactogenic effects, although it 327 is not strictly psychedelic. It is a semisynthetic compound ³²⁸ commonly derived from safrole $[21]$. It is one of the most 329 widespread narcotics and is typically consumed in the form 330 of tablets or crystals, dissolved in liquids, or less commonly ³³¹ smoked. MDMA abuse can pose health risks both physically 332 and mentally, with experimental evidence indicating neurotoxi-
333 city $[22]$. Detection with plasmonic nanoantenna-based sensors 334 is a completely nondestructive method, because it is sufficient 335 to place a few drops on the device to analyze the sample via 336 Fourier transform infrared spectroscopy, a technique used to 337 obtain the infrared absorption or emission spectrum of a solid, ³³⁸ liquid, or gas $[23]$, $[25]$. To achieve this, the material must be \sim 339 dissolved in a neutral solution to avoid altering the pH. A few 340 drops must be applied to a plasmonic sensor.

> The sensitivity of the proposed nanoantennas, calculated 342 as the shift in the resonance frequency per refractive index ³⁴³ unit (RIU) of the target material, was evaluated using the ³⁴⁴ finite-element method (FEM) implemented in ANSYS HFSS 345

Fig. 21. Numerical and experimental data for MDMA (Ecstasy) [4].

TABLE XV MATCHING BETWEEN NANOANTENNAS AND ILLICIT MATERIALS AND DRUGS

$_{res}$	Material	Matched Nanoantenna
1.9	PE4, HMX, TNT, MDMA	Shamrock
2.1	SEMTEX-H	Butterfly
3.3	Lactose a-monohydrate, Terfenadine	Shamrock
3.6	Co-Codamol	Butterfly
5.1	Naproxen sodium, Caffeine	Butterfly

TABLE XVI

PERFORMANCE OF BUTTERFLY AND SHAMROCK NANOANTENNAS IN SENSITIVITY GHZ/RIU WITH 1 μ M OF ANALYTE

$_{res}$	$\Delta n = 0.01$ RIU	Δf	Sensitivity	Analyte
(THz)	(THz)	(GHz)	(GHz/	Thickness
			RIU	(μm)
1.9	1.91	10	1000	
2.1	2.12	20	2000	
3.3	3.35	50	5000	
3.6	3.69	90	9000	
5.1	5.20	100	10000	

[E](#page-7-2)xample to the matrix of the state of the control of the state of software. The shift in resonance frequency owing to the presence of the target material indicates the antenna's ability to detect the material. The sensitivity values for the resonance frequencies 1.9, 2.1, 3.3, 3.6, and 5.1 THz, for both drugs and 350 explosives, and with an analyte thickness value equal to 1 μ m, 351 are listed in Table XVI. The calculated values show a great ability of butterfly and shamrock nanoantennas to distinguish between the presence and the absence of target materials at the given frequencies. In Table XVII, the sensitivity values for the resonance frequencies 1.9, 2.1, 3.3, 3.6, and 5.1, 356 with an analyte thickness value equal to 5 μ m, are listed. The sensitivity of the antennas shows significant variations in resonance frequencies for a given change in the refractive ³⁵⁹ index.

³⁶⁰ In Table [XVIII,](#page-7-4) a comparison of our work with state-of-³⁶¹ the-art similar works in terms of sensitivity is reported. The ³⁶² average sensitivity is calculated using the following formula:

$$
Average sensitivity = \frac{\sum_{i=1}^{N} S_i}{N}
$$

 364 where S_i represents the sensitivity at each specific resonance 365 frequency and N is the total number of frequencies.

TABLE XVIII

PERFORMANCE COMPARISON OF OUR WORK WITH OTHER SIMILAR THZ SENSORS

Ref.	Size	f_{res}	Sens.	Avg. Sens.	Analyte
	$(\mu m \times \mu m)$	(THz)	(GHz/	(GHz/	Thickness
			RIU	RIU	(μm)
[26]	36×36	2.2	300	296	
[27]	15×15	4.8	2020	1936	
Shamrock	46 x 22	3.3	5000	3375	
[28]	36×36	5.9	2000	1800	5
[27]	15×15	4.8	3800	1936	5
Butterfly	46 x 22	5.1	11500	7500	5

The shamrock and butterfly nanoantennas exhibit the ³⁶⁶ highest values of average sensitivity 3375 (GHz/RIU) and 367 7500 (GHz/RIU), for two different analyte thickness values, ³⁶⁸ 1 and 5 μ m, respectively, when compared with state-of-the-art 369 similar works. $\frac{370}{200}$

The measurement setup was composed of a Perkin-Elmer 37 spectrum one Fourier-transform infrared (FTIR) spectrometer, 372 which allows for $10\times$ optical and $15\times$ IR magnifications 373 for the detection of the molecules. All the spectra obtained 374 during the experiments were automatically normalized against 375 a background spectrum from a flat, unpatterned gold layer of 376 identical thickness to the nanostructures deposited on the same 377 substrate. In general, more than 100 scans were conducted with 378 an acquisition time of 5 s each. 379

Figs. 22 and 23 show the absorbance and reflectance charac- 380 teristics of butterfly and shamrock nanoantennas, respectively. 381 The points of interest are the three resonance frequencies, 382 which show that there is a large peak in the sensitivity. This 383 is why the nanoantenna can detect molecules in very small 384 quantities as long as they are in the same resonance range. ³⁸⁵ The sensor can be seamlessly integrated with micrometer 386 scale channels, making it suitable for the high-sensitivity 387 and real-time analysis of IR-emitting samples. This is par- ³⁸⁸ ticularly valuable in contexts in which IR spectroscopy is ³⁸⁹ significantly hindered by the absorption bands of liquid water. 390 Such applications are crucial in fields, such as environmental 391 monitoring, biomedical diagnostics, and chemical processing, ³⁹² where the accurate detection and analysis of trace elements 393 or contaminants are required. The development of a new ³⁹⁴ plasmonic sensing method is proposed for use as a window in 395 FTIR spectrometry, along with an innovative accessory that 396 can operate in either the reflection or transmission mode. ³⁹⁷ This approach offers a method for identifying the presence 398 of at least one contaminant in a physical sample by using ³⁹⁹ a spectrometer. The proposed plasmonic platform enhances ⁴⁰⁰

Fig. 22. Absorbance and reflectance versus wavelength for the butterfly nanoantenna.

Fig. 23. Absorbance and reflectance versus wavelength for the shamrock nanoantenna.

⁴⁰¹ infrared sensing capabilities by utilizing FTIR spectroscopy to ⁴⁰² provide precise and reliable detection and analysis of various ⁴⁰³ substances [29].

 The plasmonic sensor works by exploiting surface plasmon resonance (SPR), which amplifies the interaction between IR light and the sample, thereby increasing the sensitivity and specificity of spectrometric measurements. This method is particularly useful for detecting low-concentration analytes that are, otherwise, difficult to identify using conventional IR 410 spectroscopy [\[30\].](#page-9-24)

 In practical applications, the integration of this plasmonic platform with microfluidic channels allows for the continuous flow of samples, thereby facilitating real-time monitoring and analysis. Moreover, the ability of the accessory to function in both reflection and transmission modes provides versatility in sample analysis. Thus, the reflection mode is advantageous when dealing with opaque samples or when the surface characteristics are of interest, whereas the transmission mode is useful for transparent or thin samples and offers more comprehensive data collection. Overall, the introduction of this plasmonic platform and its accessory into FTIR spectrometry 42 represents a significant advancement, promising enhanced ana- ⁴²² lytical performance and broader application potential across ⁴²³ various scientific and industrial domains.

To quantify the surface-enhanced infrared absorption ⁴²⁵ (SEIRA) sensitivity, the enhancement factor (EF), which com- ⁴²⁶ pares the enhanced signal strengths to standard IR techniques, 427 is considered 428

$$
EF = \frac{\Delta R}{\Delta R_0} \cdot \frac{A_0}{A_{\text{SEIRA}}} \tag{8}
$$

where ΔR is the difference in the reflectance values with and 430 without the molecules, ΔR_0 is the reflectance difference with 431 a flat gold layer of the same thickness as the nanoantennas ⁴³² acquired under the same conditions, A_{SEIRA} is the area with 433 molecules in SEIRA measurements, and A_0 is the area in reference measurements. The active area A_{SEIRA} mainly originates 435 from molecules in the antenna hotspots. An approximation ⁴³⁶ of the active area is the surface of the gap, although this ⁴³⁷ is approximate if the nanoantennas with the substrate are ⁴³⁸ uniformly covered with analytes $[31]$. By analyzing an area A_0 439 of 200 \times 200 μ m², corresponding to a 2 \times 2 nanoarray, with 440 an A_{SEIRA} of 2 × 10⁸ nm², ΔR_0 is 4.93 × 10⁻⁹ calculated 441 on a 200 \times 200 μ m² gold sample of the exact same thickness 442 as the nanoantennas, and ΔR which is 15% of the variation $\frac{443}{40}$ between the measurement with and without the molecule, ⁴⁴⁴ an EF of approximately 6.09×10^5 is obtained.

VIII. CONCLUSION ⁴⁴⁶

In this study, a novel plasmonic sensing method utilizing 447 two distinct nanoantennas, namely, the butterfly-shaped and ⁴⁴⁸ shamrock-shaped nanoantennas, has been proposed. These 449 nanoantennas, when used jointly as standalone sensors, ⁴⁵⁰ demonstrate remarkable capabilities for detecting illicit sub- ⁴⁵¹ stances within the near-infrared spectrum. Their adaptability 452 and efficacy extend into the challenging THz frequency range, 453 positioning them as promising candidates for future nonde- ⁴⁵⁴ structive sensing technologies. 455

Moreover, the integration of multiband THz capabilities 456 enhances their utility in various applications, including the 457 detection of chemotherapeutic drugs in cancer treatment [\[32\]](#page-9-26) 458 and cancer DNA [33]. This advancement underscores the ⁴⁵⁹ potential of plasmonic nanoantenna-based sensors to revolu- ⁴⁶⁰ tionize advanced sensing methodologies by offering enhanced 46⁻¹ sensitivity and specificity. 462

Recent advancements have highlighted the efficacy of multiband THz sensors in biomedical applications. These sensors 464 offer precise and reliable detection outcomes across various ⁴⁶⁵ fields, showing their potential impact on scientific research ⁴⁶⁶ and practical applications [\[34\].](#page-9-28) The integration of novel 467 nanoantenna designs, coupled with multiband THz sensing 468 capabilities, represents a significant leap forward in sen- ⁴⁶⁹ sor technology. Such innovations have profound impacts on 470 advanced sensing methodologies, paving the way for enhanced 471 sensitivity and specificity for various sensing applications. 472

In conclusion, the development of multiband THz sensors marks a critical advancement in sensor technology, poised to revolutionize detection capabilities and expand the horizons of sensing technologies in the future.

⁴⁷⁷ REFERENCES

- ⁴⁷⁸ [\[1\] M](#page-0-1). O. AlNabooda, R. M. Shubair, N. R. Rishani, and G. Aldabbagh, ⁴⁷⁹ "Terahertz spectroscopy and imaging for the detection and iden-⁴⁸⁰ tification of illicit drugs," in *Proc. Sensors Netw. Smart Emerg.* ⁴⁸¹ *Technol. (SENSET)*, Beirut, Lebanon, Sep. 2017, pp. 1–4, doi: ⁴⁸² 10.1109/SENSET.2017.8125065.
- ⁴⁸³ [2] J. F. Federici et al., "THz imaging and sensing for security ⁴⁸⁴ applications—Explosives, weapons and drugs," *Semiconductor Sci.* ⁴⁸⁵ *Technol.*, vol. 20, no. 7, pp. S266–S280, Jul. 2005, doi: 10.1088/0268- ⁴⁸⁶ 1242/20/7/018.
- ⁴⁸⁷ [3] K. S. Kalasinsky, "Terahertz frequency spectroscopy and its potential for ⁴⁸⁸ security applications," in *Infrared and Raman Spectroscopy in Forensic* ⁴⁸⁹ *Science*, A. D. Burnett, J. E. Cunningham, A. G. Davies, P. Dean, and ⁴⁹⁰ E. H. Linfield, Eds., Hoboken, NJ, USA: Wiley, 2012, pp. 295–314.
- ⁴⁹¹ [4] D. G. Allis, P. M. Hakey, and T. M. Korter, "The solid-state terahertz ⁴⁹² spectrum of MDMA (Ecstasy)—A unique test for molecular modeling ⁴⁹³ assignments," *Chem. Phys. Lett.*, vol. 463, nos. 4–6, pp. 353–356, ⁴⁹⁴ Oct. 2008.
- ⁴⁹⁵ [5] A. Kasal, M. Budesinsky, and W. J. Griffiths, "Spectroscopic methods ⁴⁹⁶ of steroid analysis," in *Steroid Analysis*, H. L. J. Makin, D. B.Gower, ⁴⁹⁷ and D. N. Kirk, Eds., Dordrecht, The Netherland: Springer, 2010, ⁴⁹⁸ pp. 25–113.
- ⁴⁹⁹ [6] M. O. A. Malik, X. Ren, C.-M. Hsieh, Y. Zhang, and Q. Liu, ⁵⁰⁰ "Investigation of equivalence between non-resonant Raman excitation ⁵⁰¹ spectroscopy and conventional Raman spectroscopy," *IEEE J. Sel.* ⁵⁰² *Topics Quantum Electron.*, vol. 29, no. 4, pp. 1–9, Jul. 2023, doi: ⁵⁰³ 10.1109/JSTQE.2022.3185735.
- ⁵⁰⁴ [7] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and ⁵⁰⁵ M. L. Brongersma, "Plasmonics for extreme light concentration and ⁵⁰⁶ manipulation," *Nature Mater.*, vol. 9, no. 3, pp. 193–204, Mar. 2010.
- ⁵⁰⁷ [8] D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the ⁵⁰⁸ diffraction limit," *Nature Photon.*, vol. 4, no. 2, pp. 83–91, 2010.
- ⁵⁰⁹ [9] V. Aglieri et al., "Improving nanoscale terahertz field localization by ⁵¹⁰ means of sharply tapered resonant nanoantennas," *Nanophotonics*, vol. 9, ⁵¹¹ no. 3, pp. 683–690, Feb. 2020, doi: 10.1515/nanoph-2019-0459.
- ⁵¹² [10] V. Di Meo et al., "Probing denaturation of protein a via surface-enhanced ⁵¹³ infrared absorption spectroscopy," *Biosensors*, vol. 12, no. 7, p. 530, ⁵¹⁴ Jul. 2022, doi: 10.3390/bios12070530.
- ⁵¹⁵ [11] M. K. Anam and S. Choi, "Bowtie nanoantenna array integrated ⁵¹⁶ with artificial impedance surfaces for realizing high field enhance-⁵¹⁷ ment and perfect absorption simultaneously," *IEEE Access*, vol. 8, ⁵¹⁸ pp. 99858–99869, 2020, doi: 10.1109/ACCESS.2020.2997680.
- 63 (2) Lib[r](http://dx.doi.org/10.1016/j.rio.2021.100201)ary and a measure of the same signal of ⁵¹⁹ [12] M. J. Dodd and A. Z. Elsherbeni, "Bowtie antenna with integrated ⁵²⁰ matching network for wideband and circular polarization," in *Proc.* ⁵²¹ *IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting* ⁵²² *(USNC-URSI)*, Portland, OR, USA, Jul. 2023, pp. 1531–1532, doi: ⁵²³ 10.1109/usnc-ursi52151.2023.10238178.
- 524 [13] W. Amara et al., "Analysis of infrared nano-antennas material properties
525 for solar energy collection." Appl. Comput. Electromagn. Soc. J., vol. 35. ⁵²⁵ for solar energy collection," *Appl. Comput. Electromagn. Soc. J.*, vol. 35, ⁵²⁶ pp. 258–266, Mar. 2020.
- ⁵²⁷ [14] A. Chekini, S. Sheikhaei, and M. Neshat, "Nanoantenna arrays as diode-⁵²⁸ less rectifiers for energy harvesting in mid-infrared band," *Microw.* ⁵²⁹ *Opt. Technol. Lett.*, vol. 61, no. 2, pp. 412–416, Feb. 2019, doi: ⁵³⁰ 10.1002/mop.31562.
- ⁵³¹ [15] P. Biagioni, J. Huang, and B. Hecht, "Nanoantennas for visible andin-⁵³² frared radiation," *Rep. Prog. Phys.*, vol. 75, no. 2, 2012, Art. no. 024402.
- ⁵³³ [16] I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, ⁵³⁴ "Optical Yagi–Uda nanoantennas," *Nanophotonics*, vol. 1, no. 1, ⁵³⁵ pp. 65–81, Jul. 2012.
- ⁵³⁶ [\[17\]](#page-2-10) L. Mescia and A. Massaro, "New trends in energy harvesting from Earth ⁵³⁷ long-wave infrared emission," *Adv. Mater. Sci. Eng.*, vol. 2014, pp. 1–10, ⁵³⁸ Jan. 2014.
- ⁵³⁹ [\[18\]](#page-2-11) A. Locatelli, "Peculiar properties of loop nanoantennas," *IEEE Photon.* ⁵⁴⁰ *J.*, vol. 3, no. 5, pp. 845–853, Oct. 2011.
- ⁵⁴¹ [\[19\]](#page-0-5) S. Rakheja, P. Sengupta, and S. M. Shakiah, "Design and circuit ⁵⁴² modeling of graphene plasmonic nanoantennas," *IEEE Access*, vol. 8, ⁵⁴³ pp. 129562–129575, 2020, doi: [10.1109/ACCESS.2020.3009206.](http://dx.doi.org/10.1109/ACCESS.2020.3009206)
- 544 [\[20\]](#page-6-6) M. Amin and H. Bağci, "Investigation of Fano resonances induced by ⁵⁴⁵ higher order plasmon modes on a circular nano-disk with an elongated ⁵⁴⁶ cavity," *Prog. Electromagn. Res.*, vol. 130, pp. 187–206, 2012, doi: ⁵⁴⁷ [10.2528/pier12040507.](http://dx.doi.org/10.2528/pier12040507)
- ⁵⁴⁸ [\[21\]](#page-6-7) B. H. Morimoto, S. Lovell, and B. Kahr, "Ecstasy: 3,4- ⁵⁴⁹ methylenedioxymethamphetamine (MDMA)," *Acta Crystallographica* ⁵⁵⁰ *Sect. C, Cryst. Struct. Commun.*, vol. 54, no. 2, pp. 229–231, 1998.
- [\[22\]](#page-6-8) H. Kim, K. W. Kim, J. Park, J. K. Han, and J. Son, "Terahertz ⁵⁵¹ tomographic imaging of topical drugs," in *Conf. Lasers Electro-Opt.,* ⁵⁵² *OSA Tech. Dig.* Optica Publishing Group, 2012, Paper JW2A.48. 553
- [\[23\]](#page-6-9) Q. Pei, X. Zheng, J. Tan, Y. Luo, and S. Ye, "Probing the local near-field 554 intensity of plasmonic nanoparticles in the mid-infrared spectral region," 555 *J. Phys. Chem. Lett.*, vol. 15, no. 20, pp. 5390–5396, May 2024, doi: ⁵⁵⁶ 10.1021/acs.jpclett.4c00964. ⁵⁵⁷
- [24] F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, ⁵⁵⁸ "Surface-enhanced infrared spectroscopy using resonant nanoanten- ⁵⁵⁹ nas," *Chem. Rev.*, vol. 117, no. 7, pp. 5110–5145, Apr. 2017, doi: ⁵⁶⁰ 10.1021/acs.chemrev.6b00743. 561
 C. D'Andrea et al.. "Optical nanoantennas for multiband surface-
- [25] C. D'Andrea et al., "Optical nanoantennas for multiband surfaceenhanced infrared and Raman spectroscopy," *ACS Nano*, vol. 7, no. 4, ⁵⁶³ pp. 3522–3531, Apr. 2013. 564
- [26] A. S. Saadeldin, M. F. O. Hameed, E. M. A. Elkaramany, and 565 S. S. A. Obayya, "Highly sensitive terahertz metamaterial sensor," *IEEE* ⁵⁶⁶ *Sensors J.*, vol. 19, no. 18, pp. 7993-7999, Sep. 2019. 567
- [27] A. Veeraselvam, G. N. A. Mohammed, and K. Savarimuthu, "A ⁵⁶⁸ novel ultra-miniaturized highly sensitive refractive index-based tera- ⁵⁶⁹ hertz biosensor," *J. Lightw. Technol.*, vol. 39, no. 22, pp. 7281-7287, 570 Nov. 2021, doi: 10.1109/JLT.2021.3112529. 571
- [28] A. Ma et al., "Ultrasensitive THz sensor based on centrosymmetric 572 F-shaped metamaterial resonators," *Frontiers Phys.*, vol. 8, p. 441, ⁵⁷³ Oct. 2020. ⁵⁷⁴
- [29] M. Janneh, "(INVITED)Surface enhanced infrared absorption spec- ⁵⁷⁵ troscopy using plasmonic nanostructures: Alternative ultrasensitive 576 on-chip biosensor technique," *Results Opt.*, vol. 6, Jan. 2022, ⁵⁷⁷ Art. no. 100201, doi: 10.1016/j.rio.2021.100201.
- [30] B. T. Cunningham, "Photonic crystal surfaces as a general purpose plat- 579 form for label-free and fluorescent assays," *JALA: J. Assoc. Lab. Autom.*, ⁵⁸⁰ vol. 15, no. 2, pp. 120–135, Apr. 2010, doi: [10.1016/j.jala.2009.10.009.](http://dx.doi.org/10.1016/j.jala.2009.10.009) ⁵⁸¹
- [31] E. K. Herkert, D. R. B. Alvaro, M. Recchia, W. Langbein, P. Borri, and 582 M. F. Garcia-Parajo, "Hybrid plasmonic nanostructures for enhanced ⁵⁸³ single-molecule detection sensitivity," *ACS Nano*, vol. 17, no. 9, ⁵⁸⁴ pp. 8453-8464, May 2023, doi: 10.1021/acsnano.3c00576. 585
- [32] F. Rodino, M. Bartoli, and S. Carrara, "Simultaneous and selective 586 detection of etoposide and methotrexate with single electrochemical ⁵⁸⁷ sensors for therapeutic drug monitoring," *IEEE Sensors Lett.*, vol. 7, 588 no. 8, pp. 1–4, Aug. 2023, doi: 10.1109/lsens.2023.3300817. ⁵⁸⁹
- [33] H. Cheon, H.-J. Yang, S.-H. Lee, Y. A. Kim, and J.-H. Son, "Terahertz 590 molecular resonant of cancer DNA," *Sci. Rep.*, vol. 6, no. 1, 2016, ⁵⁹¹ Art. no. 37103. 592
- [34] A. Veeraselvam, G. N. A. Mohammed, K. Savarimuthu, and 593 P. D. Vijayaraman, "An ultra-thin multiband refractive index-based car- ⁵⁹⁴ cinoma sensor using THz radiation," *IEEE Sensors J.*, vol. 22, no. 3, ⁵⁹⁵ pp. 2045–2052, Feb. 2022, doi: 10.1109/JSEN.2021.3134663. 596

He has authored or co-authored the scientific 603 articles about microwave biosensors. 604

Patrizia Livreri (Senior Member, IEEE) received 605 the Laurea (Hons.) degree in electronics engi-
606 neering and the Ph.D. degree in electronics and 607 communications engineering from the University 608 of Palermo, Palermo, Italy, in 1986 and 1992, 609 respectively. The contract of the contract of

She is a Professor at the Department of 611 Engineering, University of Palermo, and a Vis- 612 iting Professor at San Diego State University, 613 San Diego, CA, USA. From 1993 to 1994, she 614 was a Researcher with CNR, Palermo. She 615

serves as the Scientific Director for the Microwave Instruments and 616 Measurements Laboratory, Department of Engineering, Palermo. She 617 has authored or co-authored the scientific books and more than 250 sci-
618 entific publications. Her current research interests include microwave 619 power amplifiers, antennas from microwave to terahertz, and microwave $\frac{620}{620}$ quantum radar. 621 and 722 and 721 and