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LIMITS OF TANGENTS OF A QUASI-ORDINARY

HYPERSURFACE

ANTÓNIO ARAÚJO AND ORLANDO NETO

Abstract. We compute explicitly the limits of tangents of a quasi-ordinary
singularity in terms of its special monomials. We show that the set of limits
of tangents of Y is essentially a topological invariant of Y .

1. Introduction

The study of the limits of tangents of a complex hypersurface singularity was mainly
developped by Le Dung Trang and Bernard Teissier (see [4] and its bibliography).
Chunsheng Ban [1] computed the set of limits of tangents Λ of a quasi-ordinary
singularity Y when Y has only one very special monomial (see Definition 1.2).
The main achievement of this paper is the explicit computation of the limits of
tangents of an arbitrary quasi-ordinary hypersurface singularity (see Theorems 2.8,
2.9 and 2.10). Corollaries 2.11, 2.12 and 2.13 show that the set of limits of tangents
of Y comes quite close to being a topological invariant of Y . Corollary 2.12 shows
that Λ is a topological invariant of Y when the tangent cone of Y is a hyperplane.
Corollary 2.14 shows that the triviality of the set of limits of tangents of Y is a
topological invariant of Y .
Let X be a complex analytic manifold. Let π : T ∗X → X be the cotangent bundle
of X . Let Γ be a germ of a Lagrangean variety of T ∗X at a point α. We say that
Γ is in generic position if Γ∩π−1(π(α)) = Cα. Let Y be a hypersurface singularity
of X . Let Γ be the conormal T ∗

YX of Y . The Lagrangean variety Γ is in generic
position if and only if Y is the germ of an hypersurface with trivial set of limits of
tangents.
Let M be an holonomic DX -module. The characteristic variety of M is a La-
grangean variety of T ∗X . The characteristic varieties in generic position have a
central role in D-module theory (cf. Corollary 1.6.4 and Theorem 5.11 of [6] and
Corollary 3.12 of [5]). It would be quite interesting to have good characterizations
of the hypersurface singularities with trivial set of limits of tangents. Corollary 2.14
is a first step in this direction.
After finishing this paper, two questions arose naturally:
Let Y be an hypersurface singularity such that its tangent cone is an hyperplane.

Is the set of limits of tangents of Y a topological invariant of Y ?

Is the triviality of the set of limits of tangents of an hypersurface a topological

invariant of the hypersurface?

Let p : Cn+1 → Cn be the projection that takes (x, y) = (x1, . . . , xn, y) into x. Let
Y be the germ of a hypersurface of Cn+1 defined by f ∈ C{x1, . . . , xn, y}. Let W
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2 ANTÓNIO ARAÚJO AND ORLANDO NETO

be the singular locus of Y . The set Z defined by the equations f = ∂f/∂y = 0 is
called the apparent contour of f relatively to the projection p. The set ∆ = p(Z)
is called the discriminant of f relatively to the projection p.
Near q ∈ Y \Z there is one and only one function ϕ ∈ OCn+1,q such that f(x, ϕ(x)) =
0. The function f defines implicitly y as a function of x. Moreover,

(1.1)
∂y

∂xi
=
∂ϕ

∂xi
= −

∂f/∂xi
∂f/∂y

on Y \ Z.

Let θ = ξ1dx1 + . . . ξndxn + ηdy be the canonical 1-form of the cotangent bundle
T ∗Cn+1 = Cn+1×Cn+1. An element of the projective cotangent bundle P∗Cn+1 =
Cn+1 × Pn i s represented by the coordinates

(x1, . . . , xn, y; ξ1 : · · · : ξn : η).

We will consider in the open set {η 6= 0} the chart

(x1, . . . , xn, y, p1, . . . , pn),

where pi = −ξi/η, 1 ≤ i ≤ n. Let Γ0 be the graph of the map from Y \W into Pn

defined by

(x, y) 7→

(
∂f

∂x1
: · · · :

∂f

∂xn
:
∂f

∂y

)
.

Let Γ be the smallest closed analytic subset of P∗Cn+1 that contains Γ0. The
analytic set Γ is a Legendrian subvariety of the contact manifold P∗Cn+1. The
projective algebraic set Λ = Γ ∩ π−1(0) is called the set of limits of tangents of Y .

Remark 1.1. It follows from (1.1) that
(
∂f

∂x1
: · · · :

∂f

∂xn
:
∂f

∂y

)
=

(
−
∂y

∂x1
: · · · : −

∂y

∂xn
: 1

)
on Y \ Z.

Let c1, . . . , cn be positive integers. We will denote by C{x
1/c1
1 , . . . , x

1/cn
n } the

C{x1, . . . , xn} algebra given by the immersion fromC{x1, . . . , xn} into C{t1, . . . , tn}

that takes xi into t
ci
i , 1 ≤ i ≤ n. We set x

1/ci
i = ti. Let a1, . . . , an be positive ra-

tionals. Set ai = bi/ci, 1 ≤ i ≤ n, where (bi, ci) = 1. Given a ramified monomial

M = xa1

1 · · ·xan
n = tb11 · · · tbnn we set O(M) = C{x

1/c1
1 , . . . , x

1/cn
n }.

Let Y be a germ at the origin of a complex hypersurface of Cn+1. We say that Y is
a quasi-ordinary singularity if ∆ is a divisor with normal crossings. We will assume
that there is l ≤ m such that ∆ = {x1 · · ·xl = 0}.
If Y is an irreducible quasi-ordinary singularity there are ramified monomials
N0, N1, . . . , Nm, gi ∈ O(Ni), 0 ≤ i ≤ m, such that N0 = 1, Ni−1 divides Ni in
the ring O(Ni), gi is as unity of O(Ni), 1 ≤ i ≤ m, g0 vanishes at the origin and
the map x 7→ (x, ϕ(x)) is a parametrization of Y near the origin, where

(1.2) ϕ = g0 +N1g1 + . . .+Nmgm.

Replacing y by y − g0, we can assume that g0 = 0. The monomials Ni, 1 ≤ i ≤ m,
are unique and determine the topology of Y (see [3]). They are called the special

monomials of f . We set Õ = O(Nm).

Definition 1.2. We say that a special monomial Ni, 1 ≤ i ≤ m, is very special if
{Ni = 0} 6= {Ni−1 = 0}.
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Let M1, . . . ,Mg be the very special monomials of f , where Mk = Nnk
, 1 = n1 <

n2 < . . . < ng, 1 ≤ k ≤ g. Set M0 = 1, ng+1 = ng + 1. There are units fi of
O(Nni+1−1), 1 ≤ i ≤ g, such that

(1.3) ϕ =M1f1 + . . .+Mgfg.

2. Limits of tangents

After renaming the variables xi there are integers mk, 1 ≤ k ≤ g + 1, and positive
rational numbers akij , 1 ≤ k ≤ g, 1 ≤ i ≤ k, 1 ≤ j ≤ mk such that

(2.1) Mk =
k∏

i=1

mk∏

j=1

x
akij

ij , 1 ≤ k ≤ g.

The canonical 1-form of P∗Cn+1 becomes

(2.2) θ =

g+1∑

i=1

mi∑

j=1

ξijdxij .

We set pij = −ξij/η, 1 ≤ i ≤ g + 1, 1 ≤ j ≤ mi. Remark that

(2.3)
∂y

∂xij
= aiij

Mi

xij
σij ,

where σij is a unit of Õ.

Theorem 2.1. If
∑m1

i=1 a11i < 1, Λ ⊂ {η = 0}.

Proof. Set m = m1, xi = x1i and ai = a11i, 1 ≤ i ≤ m. Given positive integers
c1, . . . , cm, it follows from (2.3) that

(2.4)
m∏

i=1

pcii =
m∏

i=1

x
ai

∑
m
j=1

cj−ci
i φ,

for some unit φ of Õ. By (1.3) and (2.3),

(2.5) φ(0) = f1(0)
∑m

j=1
cj

m∏

j=1

a
cj
j .

Hence

η
∑

m
i=1

ci = ψ
m∏

i=1

ξcii x
ci−ai

∑
m
j=1

cj
i ,(2.6)

for some unit ψ. If there are integers c1, . . . , cm such that the inequalities

(2.7) ak
∑m

j=1 cj < ck, 1 ≤ k ≤ m,

hold, the result follows from (2.6). Hence it is enough to show that the set Ω of
the m-tuples of rational numbers (c1, . . . , cm) that verify the inequalities (2.7) is
non-empty. We will recursively define positive rational numbers lj, cj , uj such that

(2.8) lj < cj < uj ,
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j=1,. . . ,m. Let c1, l1, u1 be arbitrary positive rationals verifying (2.8)1. Let 1 <
s ≤ m. If li, ci, ui are defined for i ≤ s− 1, set

(2.9) ls =
as
∑s−1

j=1 cj

1−
∑m

j=s aj
, us = (as/as−1)cs−1.

Since
∑

j≥s aj < 1 and

us − ls =
as

as−1(1−
∑m

j=s aj)


(1 −

m∑

j=s−1

aj)cs−1 − as−1

∑

j<s−1

cj




=
as

as−1(1−
∑m

j=s aj)


(1 −

m∑

j=s−1

aj)(cs−1 − ls−1)


 ,

it follows from (2.8)s−1 that ls < us. Let cs be a rational number such that
ls < cs < us. Hence (2.8)s holds for s ≤ m.
Let us show that (c1, . . . , cm) ∈ Ω. Since ck < uk, then

ck <
ak
ak−1

ck−1, for k ≥ 2.

Then, for j < k,

ck <
ak
ak−1

ak−1

ak−2
· · ·

aj+1

aj
cj =

ak
aj
cj .

Hence,

(2.10) akcj < ajck, for j > k.

Since lk < ck,

ak

k−1∑

j=1

cj < ck −
m∑

j=k

ajck.

Hence, by (2.10),

ak

k−1∑

j=1

cj < ck −
m∑

j=k

akcj .

Therefore ak
∑m

j=1 cj < ck. �

Theorem 2.2. Let 1 ≤ k ≤ g. Let I ⊂ {1, . . . ,mk}. Assume that one of the

following three hypothesis is verified:

(1)
∑

j∈I akkj > 1;

(2) k = 1,
∑

j∈I a11j = 1 and
∑m1

j=1 a11j > 1;

(3) k ≥ 2 and
∑

j∈I akkj = 1.

Then Λ ⊂ {
∏

j∈I ξkj = 0}.

Proof. Case 1: We can assume that I = {1, . . . , n}, where 1 ≤ n ≤ mk. Set
ai = akki. Given positive integers c1, . . . , cn, it follows from (2.3) that

(2.11)

n∏

i=1

ξciki =

n∏

i=1

x
ai

∑n
j=1

cj−ci

ki η
∑n

i=1
ciε,
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where ε ∈ Õ. Hence it is enough to show that there are positive rational numbers
c1, . . . , cn such that

(2.12) ak(
n∑

j=1

cj)− ck > 0, 1 ≤ k ≤ n.

We will recursively define lj , cj , uj ∈ ]0,+∞] such that cj , lj ∈ Q,

(2.13) lj < cj < uj ,

j=1,. . . ,n, and uj ∈ Q if and only if
∑n

i=j ai < 1. Choose c1, l1, u1 verifying (2.13).
Let 1 < s ≤ n − 1. Suppose that li, ci, ui are defined for 1 ≤ i ≤ s − 1. If∑n

j=s aj < 1, set

(2.14) ls = (as/as−1)cs−1, us =
as
∑s−1

j=1 cj

1−
∑n

j=s aj
.

Since

us − ls =
as

as−1(1−
∑n

j=s aj)


as−1

s−2∑

j=1

cj − cs−1(1−
n∑

j=s−1

aj)




≤
as

as−1(1−
∑n

j=s aj)


(1−

n∑

j=s−1

aj)(us−1 − cs−1)


 ,

it follows from (2.13)s−1 that ls < us.
If
∑n

j=s aj ≥ 1, set ls as above and us = +∞.

We choose a rational number cs such that ls < cs < us. Hence (2.13)s holds for
1 ≤ s ≤ n.
Let us show that c1, . . . , cn verify (2.12). We will proceed by induction. First we
will show that c1, . . . , cn verify (2.12)n. Suppose that an < 1. Since cn < un, we
have that

cn <
an
∑n−1

j=1 cj

1− an
.

Hence an
∑n

j=1 cj > cn. If an ≥ 1, then

an

n∑

j=1

cj ≥
n∑

j=1

cj > cn.

Hence (2.12)n is verified. Assume that c1, . . . , cn verify (2.12)k, 2 ≤ k ≤ n. Since
ck > lk,

ak

n∑

j=1

cj > ck >
ak
ak−1

ck−1.

Hence ak−1

∑n
j=1 cj > ck−1. Therefore (c1, . . . , cn) verify (2.12)k−1.

Case 2: Set aj = a11j and xj = x1j . We can assume that I = {1, . . . , n}, where
1 ≤ n ≤ m1. Given positive integers c1, . . . , cn, it follows from (1.2) that

(2.15)

n∏

i=1

ξcii =

n∏

i=1

x
ai

∑n
j=1

cj−ci
i η

∑n
i=1

ciε,
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where ε ∈ Õ and ε(0) = 0. Hence it is enough to show that there are positive
rational numbers c1, . . . , cn, such that

(2.16) ak

n∑

j=1

cj = ck, 1 ≤ k ≤ n.

We choose an arbitrary positive integer c1. Let 1 < s ≤ n. If the ci are defined for
i < s, set

(2.17) cs =
as
as−1

cs−1.

Let us show that c1, . . . , cn verify (2.16). We will proceed by induction in k. First
let us show that (2.16)n holds.
Let j < n− 1. By (2.17),

(2.18) cn−1 =
an−1

an−2

an−2

an−3
· · ·

aj+1

aj
cj =

an−1

aj
cj .

By (2.17), and since
∑n

j=1 aj = 1,

cn =
an
an−1

cn−1 =
cn−1

an−1
(1−

n−1∑

j=1

aj) =
cn−1

an−1
−

n−1∑

j=1

aj
an−1

cn−1.

Hence, by (2.18)

cn =
cn−1

an−1
−

n−1∑

j=1

cj.

Therefore,
∑n

j=1 cj = cn−1/an−1. Hence by (2.17),

an

n∑

j=1

cj = an
cn−1

an−1
= cn.

Therefore (2.16)n holds.
Assume (2.16)k holds, for 2 ≤ k ≤ n. Then

ak

n∑

j=1

cj = ck =
ak
ak−1

ck−1.

Hence, ak−1

∑n
j=1 cj = ck−1.

Case 3: We can assume that I = {1, . . . , n}, where 1 ≤ n ≤ mk. Given positive
integers c1, . . . , cn, it follows from (2.3) that

n∏

ı=1

ξciki =

(
n∏

i=1

x
akki(

∑n
j=1

cj)−ci

ki

)
η
∑n

i=1
ciε,

where ε ∈ Õ and ε(0) = 0. We have reduced the problem to the case 2. �

Theorem 2.3. If
∑m1

k=1 a11j = 1, Λ is contained in a cone.

Proof. Set ai = a11i, i = 1, . . .m1. Given positive integers c1, . . . , cm1
, there is a

unit φ of Õ such that

(2.19)

m1∏

i=1

ξcii = (−1)
∑m1

j=1
cjφ

m1∏

i=1

x
∑m1

j=1
cjai−ci

i η
∑m1

j=1
cj .
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By the proof of case 2 of Theorem 2.2, there is one and only onem1-tuple of integers
c1, . . . , cm1

such that (c1, . . . , cm1
) = (1), ai

∑m1

j=1 cj = ci, 1 ≤ i ≤ m1, and Λ is
contained in the cone defined by the equation

(2.20)

m1∏

i=1

ξcii − (−1)
∑m1

j=1
cjφ(0)η

∑m1
j=1

cj = 0,

where φ(0) is given by (2.5). �

Remark 2.4. Set D∗
ε = {x ∈ C : 0 < |x| < ε}, where 0 < ε << 1. Set µ =

∑g+1
k=1mk.

Let σ : C → Cµ be a weighted homogeneous curve parametrized by

σ(t) = (εkit
αki)1≤k≤g+1,1≤i≤mk

.

Notice that the image of σ is contained in Cµ \∆. Set θ0(t) = 1 and

θki(t) =
∂ϕ

∂xki
(σ(t), ϕ(σ(t))), 1 ≤ k ≤ g + 1, 1 ≤ i ≤ mk,

for t ∈ D∗
ε . The curve σ induces a map from D∗

ε into Γ defined by

t 7→ (σ(t), ϕ(σ(t)); θ11(t) : · · · : θg+1,mg+1(t) : θ0(t)).

Let ϑ : D∗
ε → Pµ be the map defined by

(2.21) t 7→ (θ11(t) : · · · : θg+1,mg+1(t) : θ0(t)).

The limit when t→ 0 of ϑ(t) belongs to Λ. The functions θki are ramified Laurent
series of finite type on the variable t. Let h a be ramified Laurent series of finite
type. If h = 0, we set v(h) = ∞. If h 6= 0, we set v(h) = α, where α is the
only rational number such that lim

t→0
t−αh(t) ∈ C\ {0}. We call α the valuation of h.

Notice that the limit of ϑ only depends on the functions θki, θ0 of minimal valuation.
Moreover, the limit of ϑ only depends on the coefficients of the term of minimal
valuation of each θij , θ0. Hence the limit of ϑ only depends on the coefficients of
the very special monomials of f . We can assume that mg+1 = 0 and that there are
λk ∈ C \ {0}, 1 ≤ k ≤ g, such that

(2.22) ϕ =

g∑

k=1

λkMk.

Remark 2.5. Let L be a finite set. Set CL = {(xa)a∈L : xa ∈ C}. Let
∑

a∈L ξadxa
be the canonical 1-form of T ∗CL. Let Λ be the subset of PL defined by the equations

(2.23)
∏

a∈I

ξa = 0, I ∈ I,

where I ⊂ P(L). Set I ′ = {J ⊂ L : J ∩ I 6= ∅ for all I ∈ I}, I∗ = {J ∈ I ′ such
that there is no K ∈ I ′ : K ⊂ J,K 6= J}. The irreducible components of Λ are the
linear projective sets ΛJ , J ∈ I∗, where ΛJ is defined by the equations

ξa = 0, a ∈ J.

Let Y be a germ of hypersurface of (CL, 0). Let Λ be the set of limits of tangents
of Y . For each irreducible component ΛJ of Λ there is a cone VJ contained in the
tangent cone of Y such that ΛJ is the dual of the projectivization of VJ . The union
of the cones VJ is called the halo of Y . The halo of Y is called ”la auréole” of Y in
[4].
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Remark 2.6. If Λ is defined by the equations (2.23), the halo of Y equals the union
of the linear subsets VJ , J ∈ I∗ of C L , where VJ is defined by the equations

xa = 0, a ∈ L \ J.

Lemma 2.7. The determinant of the n× n matrix (λi − δij) equals

(−1)n(1−
n∑

i=1

λi).

Proof. Notice that det(λi − δij) =

=

∣∣∣∣∣∣∣∣∣

1

−In−1

...
1

λ1 · · · λn−1 λn − 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1

−In−1

...
1

0 · · · 0
∑n

i=1 λi − 1

∣∣∣∣∣∣∣∣∣
.

�

Theorem 2.8. Assume that
∑m1

i=1 a11i < 1. Set

L = ∪g
k=2{k} × {1, . . . ,mk}, I = ∪g

k=2{{k} × I :
∑

j∈I

akkj ≥ 1}.

The set Λ is the union of the irreducible linear projective sets ΛJ , J ∈ I∗, defined

by the equations η = 0 and

(2.24) ξkj = 0, (k, j) ∈ J.

The tangent cone of Y equals {x11 · · ·x1m1
= 0}. The halo of Y is the union of the

cones VJ , J ∈ I∗, where VJ is defined by the equations x1j = 0, 1 ≤ j ≤ m1, and

(2.25) xkj = 0, (k, j) ∈ L \ J.

Proof. Let us show that ΛJ ⊂ Λ. We can assume that there are integers n1, . . . , ng,
1 ≤ nk ≤ mk, 1 ≤ k ≤ g, such that J = ∪g

k=1{k} × {nk + 1, . . . ,mk}. We will use
the notations of Remark 2.4.
Set m =

∑g
k=1mk, n = m−#J . Assume that there are positive rational numbers

αk, βk, 1 ≤ k ≤ g, such that αki = αk if 1 ≤ i ≤ nk, αki = βk if nk + 1 ≤ i ≤ mk,
and αk > βk, 1 ≤ k ≤ g. Since v(θki) = v(Mk)− v(xki) = v(Mk)− αki,

lim
t→0

ϑ(t) ∈ ΛJ .

Let ψ : (C \ {0})n → ΛJ be the map defined by

(2.26) ψ(εij) = lim
t→0

ϑ(t).

The map ψ has components ψki, 1 ≤ i ≤ nk, 1 ≤ k ≤ g. In order to prove the
Theorem it is enough to show that we can choose the rational numbers αk, βk in
such a way that the Jacobian of ψ does not vanish identically. We will proceed by
induction in k. Let k = 1. Since

∑m1

i=1 a11i < 1, n1 = m1. Choose positive rationals
α1, β1, α1 > β1. There is a rational number v0 < 0 such that v(θ1i) = v0, for all
1 ≤ i ≤ n1.
Assume that there are αk, βk such that v(θki) = v0 for 1 ≤ i ≤ nk and v(θki) > v0
for nk + 1 ≤ i ≤ mk, k = 1, . . . , u. Set

αu+1 =
αu +

∑u
k=1

∑mk

i=1(au+1,k,i − auki)αki

1−
∑nu+1

i=1 au+1,u+1,i
.
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Since the special monomials are ordered by valuation and, by construction of ΛJ ,∑nk

i=1 akki < 1 for all 1 ≤ k ≤ g, αu+1 is a positive rational number. Choose a
rational number βu+1 such that 0 < βu+1 < αu+1. Set

αu+1 = αu+1 +

∑mu+1

i=nu+1+1 au+1,u+1,iβu+1

1−
∑nu+1

i=1 au+1,u+1,i
.

Then, v(θu+1,i) = v(Mu+1)− αu+1 = v(Mu)− αu = v0 for 1 ≤ i ≤ nu+1.

Set M̂k =
∏k

i=1

∏mk

j=1 ε
akij

ij , 1 ≤ i ≤ nk, 1 ≤ k ≤ g. With these choices of αki, we
have that

ψki =
M̂kakki
εki

, 1 ≤ i ≤ nk, 1 ≤ k ≤ g.

Let D be the jacobian matrix of ψ. Since ∂ψki/∂εuj = 0 for all u > k, D is upper
triangular by blocks. Let Dk be the k-th diagonal block of D, 1 ≤ k ≤ g. We have
that

Dk =

(
M̂k

εkiεkj
akki(akkj − δij)

)
.

By Lemma 2.7, det(Dk) = λ(1−
∑mk

i=1 akki) for some λ ∈ C\{0}. Hence Λ contains
an open set of ΛJ . Since Λ is a projective variety and ΛJ is irreducible, Λ contains
ΛJ . �

Theorem 2.9. Assume that
∑m1

i=1 a11i > 1. Set

L = ∪g
k=1{k} × {1, . . . ,mk}, I = ∪g

k=1{{k} × I :
∑

j∈I

akkj ≥ 1}.

The set Λ is the union of the irreducible linear projective sets ΛJ , J ∈ I∗, defined

by the equations (2.24).
The tangent cone of Y equals {y = 0}. The halo of Y is the union of the cones VJ ,
J ∈ I∗, where VJ is defined by the equations y = 0 and (2.25).

Proof. The proof is analogous to the proof of Theorem 2.8. On the first induction
step we choose

β1 =

(
1−

∑n1

i=1 a11i∑m1

i=n1+1 a11i

)
α1.

Hence β1 < α1, v(θ1i) = v(η) = 0 for 1 ≤ i ≤ n1 and v(θ1i) > 0 for n1+1 ≤ i ≤ m1.
The rest of the proof proceeds as in the previous case. �

Theorem 2.10. Assume that
∑m1

i=1 a11i = 1. Set

L = ∪g
k=2{k} × {1, . . . ,mk}, I = ∪g

k=2{{k} × I :
∑

j∈I

akkj ≥ 1}.

The set Λ is the union of the irreducible projective algebraic sets ΛJ , J ∈ I∗, where

ΛJ is defined by the equations (2.20) and (2.24).
There are integers c, di such that a11i = di/c, 1 ≤ i ≤ m1 and c is the l.c.d. of
d1, . . . , dm1

. The tangent cone of Y equals

(2.27) yc − f(0)c
m1∏

i=1

xdi

1i = 0.
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The halo of Y is the union of the cones VJ , J ∈ I∗, where VJ is defined by the

equations (2.25) and (2.27).

Proof. Following the arguments of Theorem 2.8, it is enough to show that ΛJ ⊂ Λ
for each J ∈ I∗. Choose J ∈ I∗. Let Λ̃J be the linear projective variety defined
by the equations (2.24). We follow an argument analogous to the one used in
Theorem 2.8. We have n1 = m1. We choose positive rational numbers α1, β1 such
that β1 < α1. Then v(θ1i) = 0 for all i = 1, . . . ,m1. The remaining steps of the
proof proceed as before. Hence

lim
t→0

ϑ(t) ∈ Λ̃J .

Let ψ : (C \ {0})n → Λ̃J be the map defined by (2.26). By Theorem 2.3 the image
of ψ is contained in ΛJ . By Lemma 2.7, det(D1) = 0. Let D′

1 be the matrix
obtained from D1 by eliminating the m1-th line and column. Then det(D′

1) =

λ′(1 −
∑m1−1

i=1 akki) for some λ′ ∈ C \ {0}. Hence, ΛJ ⊂ Λ. �

Let Y be a quasi-ordinary hypersurface singularity.

Corollary 2.11. The set of limits of tangents of Y only depends on the tangent

cone of Y and the topology of Y .

Corollary 2.12. If the tangent cone of Y is a hyperplane, the set of limits of

tangents of Y only depends on the topology of Y .

Corollary 2.13. Let xα1

1 · · ·xαk

k be the first special monomial of Y . If α1 + · · ·+
αk 6= 1, the set of limits of tangents of Y only depends on the topology of Y .

Corollary 2.14. The triviality of the set of limits of tangents of Y is a topological

invariant of Y .

Proof. The set of limits of tangents of Y is trivial if and only if all the exponents
of all the special monomials of Y are greater or equal than 1. �
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4. D.T. Lé and B. Teissier, ”Limites d’espaces tangentes en géometrie analitique”, Comment.
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