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CHAPTER 1. INTRODUCTION  
Steep slopes, deforestation, unconsolidated deposits, high annual rainfall, and a highly 

dissected landscape contribute to frequent landslides along one of the most important 

Colombian highways, the "Via al Llano," often causing traffic disruptions. This road connects 

Bogota, the capital of Colombia, with Villavicencio, the capital of the Meta state, facilitating the 

transportation of agricultural and industrial products and promoting economic development 

through tourism. 

The Via al Llano highway traverses five municipalities: Chipaque, Caqueza, Quetame, 

Guayabetal, and Villavicencio. These areas are characterized by folds, faults, joints, and 

outcrops of various lithologies and ages (INGEOMINAS, 1998, 2011). The geological 

composition on the region includes Precambrian phyllites, Paleozoic sandstones and 

claystones, Jurassic conglomerates, Cretaceous siltstones, mudstones, and quartz-rich 

sandstones, as well as Quaternary deposits resulting from fluvial and gravitational processes 

(INGEOMINAS, 1998, 2011). 

The landscape of the road features steep slopes molded by both tributaries and the main 

watercourses of the Rio Negro, Rio Blanco, and Guayuriba River. The study area, which 

encompasses the basins of these rivers, experiences significant precipitation ranging from 1000 

to 2500 mm/year in the north and central areas, and 2500 to 5000 mm/year in the south, with 
peak rainfall occurring in May, June, and July, often triggering landslides. 

Recent mass wasting events in June 2017 and May 2019 blocked the road for 1 and 6 months, 

respectively, despite efforts by the Colombian Geological Service (SGC) to mitigate such 

incidents through inventory maintenance and hazard mapping since 2010. Hence, Calderón-

Guevara et al. (2022) and Herrera-Coy et al. (2023) have pursued alternative landslide 

prediction methods for the Via al Llano area. However, their focus on predictive modeling often 

yields maps with insufficient correlation to the road, necessitating a new approach. 

To address the complexity and potential disconnect between the area and the road, this study 

aims to enhance spatial resolution by subdividing it into five municipalities based on political 

boundaries. This subdivision accounts for significant lithological, climatic, and 

geomorphological variability, yielding results at a scale of 1:50,000 instead of the previous 

1:100,000 scale. In addition, annual average precipitation will be considered as an independent 

predictive variable, derived from data interpolation of rain gauge stations surrounding the 

study area. This variable also exhibits unique seasonal behaviors in each of the five 

municipalities throughout the year. 

Furthermore, the study will assess the feasibility of developing automatic inventories using 

radiometric data from optical and radar satellite images. Leveraging the Google Earth Engine 

(GEE) platform, we aim to streamline the time-consuming process of manual landslide 

inventory creation. Additionally, radar images will be evaluated for their effectiveness in 
landslide detection, particularly in cloud-obscured areas. 

Subsequently, the relationship between predictor variables (e.g., elevation, slope angle, aspect, 

curvature, lithology, precipitation, NDVI) and landslides will be modeled using Multivariate 

Adaptive Regression Splines (MARS) technique. Models will be calibrated and validated using 

ten training and ten test samples, with predictive performance assessed through the area under 
the Receiver Operating Curve (AUC). 
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Additionally, geomorphological maps will be produced for the five municipalities, inspired by 

the methodology used in Italy with "Cuaderno 13" elaborated by AIGEO and CARG entities. 

 

CHAPTER 2. STUDY AREA AND MATERIALS  
2.1. Location  
The Via al Llano is considered one of the most important highways in Colombian, connecting 

Bogota (the capital) to Villavicencio (the capital of the Meta state) (Fig. 1a). This route facilitates 

tourism, the transportation of agricultural-industrial products and promotes economic 

progress in the territories located in the center and in the southeastern part of the country. In 

addition, the road passes through the municipalities of Chipaque, Cáqueza, Quetame, 

Guayabetal and Villavicencio (Fig. 1b).   

The current highway has 86 km of length, crossing the Cordillera Oriental, one of the three 

branches of the Colombian Andes formed by the subduction of the Nazca plate beneath South 

America. The study area covers 520km2, which includes basins that drain water toward the 

road (Fig. 1b, 2a, and 2b). The main rivers on the area are Rio Blanco, Rio Negro and Guayuriba 

River (Fig. 2).  

 

Fig. 1. (a)Location on Regional setting. (b) Study area and municipalities traversed by the road. 

Coordinate Reference System EPSG: 3116. MAGNA-SIRGAS/Colombian Bogota zone. 
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Fig. 2. (a)Watercourses in Chipaque and Caqueza. (b) Watercourses in Quetame, Guayabetal and 

Villavicencio. 

The study area is part of the topographic sheets “247” and “266” at a scale of 1:100,000 (Fig. 

3A, 3B), according to the division established by the Instituto Geográfico Agustín Codazzi (IGAC), 

the entity responsible for the official basic cartography of Colombia. These two sheets cover the 

departments of Cundinamarca and Meta. Additionally, the study area encompasses 10 

topographic sheets at a scale of 1:25,000 (Fig. 3C), which, according to the official 

nomenclature, are as follows: 247-I-C, 247-I-D, 247-III-A, 247-III-B, 247-III-D, 247-IV-A, 247-
IV-C, 266-I-B, 266-II-A, 266-II-C. 

 

Fig. 3. (a)Topographic sheets of Colombia. (b) Study area on the topographic grid sheet at a scale of 

1:100,000. (c) Study area on the topographic grid division sheet at a scale of 1:25,000.  
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2.2. Geology  
In the area, Precambrian metamorphic rocks, and Paleozoic to Cenozoic sedimentary rocks 

outcrop (INGEOMINAS, 1998, 2011). The metamorphic rocks are grouped in the Quetame 

Group, comprising the Susumuco and Guayabetal Formations. Both formations consist of gray 

and green phyllites, but the Guayabetal Formation also includes quartzite and gray schist, 

products of low-grade contact metamorphism from pre-Devonian age (INGEOMINAS et al., 
2001). 

The Quetame Group is in fault contact with Paleozoic sedimentary rocks grouped by Segovia 

(1963, as cited in  INGEOMINAS et al., 2011)  as the Farallones Group. This group includes the 

Areniscas de Gutierrez Formation, Lutitas de Pipiral Formation, and Capas Rojas del Guatiquia 

Formation. The Areniscas de Gutierrez Formation is composed of conglomeratic, shales, and 

sandstone levels, from the Middle Devonian. The Lutitas de Pipiral Formation consists of gray 

shales and siltstones intercalated with some gray limestones, also from the Middle Devonian. 

Lastly, the Capas Rojas del Guatiquia Formation comprises gray to red siltstone intercalated 

with gray-green sandstones, dating back to the Carboniferous period (INGEOMINAS et al., 
2011).  

In angular discordance with the preceding Paleozoic sedimentary rocks is the Buenavista 

Formation, from the Upper Jurassic Period (Tithonian). This formation is characterized by 

breccias and conglomerates containing sedimentary and metamorphic lithics in the lower 

segment, and sandstones to mudstones in the upper levels. The potential formation involves 

erosion and deposition associated with the syn-rift processes during the Triassic-Jurassic and 
Lower Cretaceous rifting in the area, in a Cretaceous Sea (INGEOMINAS et al., 2011).  

The Cáqueza Group represents the initial formations of the Lower Cretaceous Period (from 

Berriasian to Hauterivian). These rocks display an angular unconformity with the Buenavista 

Formation and the Paleozoic Farallones Group. The Cáqueza group is composed of the Lutitas 

de Macanal Formation and the Areniscas de Cáqueza Formation, which have variable 

thicknesses due to differential subsidence from tectonic movements on the rifting period. The 

Lutitas de Macanal Formation comprises black shales intercalated with sandstones and 

features abundant fossils of ammonites and bivalves. The Areniscas de Cáqueza Formation 

consists of sandstones rich in quartz, intercalated with light beds of black mudstones. It also 

contains fossils of bivalves, echinoderms, ammonites, and foraminifera, dating from the 

Hauterivian Age (INGEOMINAS et al., 2011). 

Following this, the next rocks were deposited in concordant-transitional sequences in a 

continental environment post-rift, during Upper Cretaceous. The Fomeque Formation consists 

of gray-black bioclastic limestones intercalated with black to green mudstone, dating from the 

Barremian to Aptian periods (Guerrero, 2002, as cited in INGEOMINAS et al., 2011). 

Subsequently, in a concordant sequence, the Une Formation is found, which is a succession of 

thick sandstone layers, separated by beds of claystone with shale layers, from the Albian to 

Cenomanian Age. The Chipaque Formation composed of black mudstones with minor 

intercalations of fine-grained sandstones and limestones, deposited between the Cenomanian 

to Santonian Ages. The last Cretaceous lithology found in the study area is the Arenisca Dura 

Formation composed of fine-grained quartzose sandstones, white in color, tabular, massive, 

with intercalations of thin layers of very fine sandstones exhibiting wavy planar parallel 
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lamination. This formation is dated from the Santonian to the Campanian (INGEOMINAS et al., 

2011). 

During the Upper Miocene, rhyodacite intruded into the Lutitas de Macanal Formation in the 

Quetame region. This intrusion occurs during the new compression environment that 

subsequently leads to the current mountain range. During this period, the faults that were 

normal in the rift period become reactivated and change their behavior to thrust faults 
(INGEOMINAS et al., 2011).  

Additionally, in the study area, there are unconsolidated units from Holocene Epoch. This 

includes alluvial terraces, colluvial deposits and recent alluvial deposits. The latest deposits are 

located along the riverbeds, of the Une River, the Caqueza River, the Negro River, Blanco River 

and the Guatiquia River (INGEOMINAS et al., 2001, 2011).  

The lithological composition and stratigraphic position of each formation exposed in the study 

area are summarized in the stratigraphic table in Fig. 5 (INGEOMINAS et al., 2001, 2011). 

Similarly, the location of each formation in the area is represented in the lithological map of the 

Fig. 4, information extracted from the geological maps of sheets 247 and 266 at a 1:100,000 

scale from the Colombian Geological Service (SGC) (INGEOMINAS, 1998, 2011). Additionally, 

the drainage locations were updated using images available on Google Earth between the years 
2020 and 2022. 

 

Fig. 4. Distribution of Lithologies in the study area of “Via al Llano” highway. Modified from 

(INGEOMINAS, 1998, 2011) 
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Fig. 5. Stratigraphic Column of the Study Area currounding the Highway “Via al Llano”. Mofidied from 

INGEOMINAS et al., (2011) 
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For a more thorough analysis, the study area was divided into the five municipalities through 

which the road passes: Chipaque, Cáqueza, Quetame, Guayabetal, and Villavicencio, located 

from north to south, respectively. In the Chipaque area (Fig. 6), structures exhibit a 

predominantly north-south strike orientation; however, the dip direction of these formations 

varies due to the presence of two synclines. The Teusacá Syncline that has its axial axis in the 

middle of the Chipaque Formation, while the Mercadillo Syncline is located in the middle of the 

Fomeque Formation. Additionally, three faults cut across the road and the course of the Une 

River. The first brings the Une and Fomeque formations into contact, the second is situated in 

the middle of the Fomeque Formation with a NE-SW direction, and the third is known as the 

Cáqueza River Fault, running parallel to its course (INGEOMINAS, 2011; INGEOMINAS et al., 

2011). 

In the Cáqueza area (Fig. 7), the Lutitas de Macanal Formation covers the most extensive area 

and displays a series of faults, predominantly of reverse component. Among them, the Cáqueza 

River Fault, the Negro River Fault, and the Quebrada Honda Fault stand out. The Cáqueza River 

Fault maintains an orientation parallel to the river course, as its path is influenced by this fault. 

It is a strike-slip fault that affects the Fomeque, Areniscas de Caqueza, and Lutitas de Macanal 

formations. The Negro River Fault, with an approximate north-south direction, controls the 

course of the Negro River and is also classified as a strike-slip fault. On the other hand, the 

Quebrada Honda Fault, located to the south of the area, follows a direction of approximately 

N30°E with a dip towards the SE. Additionally, in the northern part of this area, the Ubaque 

Fault emerges, establishing contact between the Fomeque Formation with Areniscas de 

Caqueza, and Lutitas de Macanal formations. It is characterized as a thrust fault with a dip of 
N35°E (INGEOMINAS, 2011; INGEOMINAS et al., 2011). 

 

Fig. 6. Geological and structural setting in the Municipality of Chipaque. Modified from INGEOMINAS, 

(2011) 
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In the Quetame area (Fig. 8), the presence of the Lutitas de Macanal Formation and the Quetame 

Group is identified, with the latter being the lithological unit that covers the largest extent in 

the zone. The Las Mercedes and Quetame faults are responsible for the interaction between 

these two formations. Additionally, it is postulated that the Quetame Fault could be a high-angle 

regional and cortical structure that facilitated the intrusion of the rhyodacitic igneous body and 

some thermal springs south of the town of Quetame. This fault has an orientation of N25E and 

controls the course of the Contador River. Within the Quetame Group unit, the presence of the 

Quebrada Grande Fault and the Jabonera Fault is also observed, with the latter exerting control 

for the Negro River until its confluence with the Blanco River (INGEOMINAS, 2011; 
INGEOMINAS et al., 2011). 

 

 

Fig. 7. Geological and structural setting in the Municipality of Caqueza. Modified from (INGEOMINAS, 

(2011) 
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Fig. 8. Geological and structural setting in the Municipality of Quetame. Modified from INGEOMINAS, 

2011) 

 

In the Guayabetal area (Fig. 9), the predominant formations are the Quetame Group, along with 

the Areniscas de Gutiérrez and Lutitas de Pipiral formations. The Jabonera Fault persists in a 

north-south direction and affects the Areniscas de Gutiérrez Formation. Notably, over the 

Quetame Group, the presence of the San Juanito Fault stands out, facilitating contact with the 

Capas Rojas del Guatiquia Formation. This fault, with a sub-vertical inverse component, exhibits 

a westward dip. Subsequently, the Portachuelo Fault and the Susumuco Fault are encountered. 

The latter is considered a dextral strike-slip fault with a direction of N15W, controlling the 

course of the Susumuco Brook. Additionally, the Rio Blanco Fault separates the Quetame Group 

from the Farallones Group (Areniscas de Gutiérrez and Lutitas de Pipiral formations). It has an 

east-west orientation and a length of 10 km, structurally controlling the flow of water, initially 

from the Rio Blanco and then from the Rio Negro. Finally, over the formations of the Farallones 

Group, a variety of faults and folds are observed, including anticlines and synclines 

(INGEOMINAS, 1998; INGEOMINAS et al., 2001). 
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Fig. 9. Geological and structural setting in the Municipality of Guayabetal. Modified from INGEOMINAS, 

(1998) 

Finally, in the Villavicencio area (Fig. 10), the Susumuco Fault continues to affect the formations 

of the Farallones Group, with a movement considered dextral strike-slip. Additionally, the Rio 

Blanco Fault continues to control the course of the Rio Negro, and this reverse fault now extends 

to the northeast, maintaining the contact between the Quetame Group and the Farallones 

Group. However, to the east, it allows contact between the Capas Rojas del Guatiquia Formation 

and the Areniscas de Gutiérrez Formation. Another significant fault facilitating the contact 

between these two formations is the Portachuelo Fault. Also noteworthy is the Servita Fault, 

connecting the Devonian-age Lutias de Pipiral Formation with the Lower Cretaceous Lutitas de 

Macanal Formation, given its main inverse component. It is also observed a faulted contact 

between the Cretaceous-age Lutitas de Macanal and the Brechas de Buenavista Formation 

through the Buenavista Fault. Finally, there is the El Buque Fault, displacing the aforementioned 

formations from east to west due to its sinistral strike-slip component. Additionally, over the 

las Lutitas de Macanal, significant deformation is observed due to the presence of several 
synclines and anticlines within it (INGEOMINAS, 1998; INGEOMINAS et al., 2001). 
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Fig. 10. Geological and structural setting in the Municipality of Villavicencio. Modified from 

INGEOMINAS, (1998) 
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2.3. Geomorphology  
Geomorphology is the scientific discipline that studies the landforms of the Earth's surface and 

their spatial combinations (Ciccacci, 2010). Thus, the discipline aims to describe terrain 

features, explaining their origin and evolution over geological time. Additionally, it seeks to 

classify landscapes based on the dominant natural processes and agents shaping them, called 

morphogenetic environment (Servicio Geologico Colombiano et al., 2012). 

A morphogenetic environment encompasses the physical, chemical, biotic, and climatic 

conditions under which landforms were formed. According to the recompilation made by 

Servicio Geologico Colombiano et al., (2012) the morphogenetic environments are categorized 

into structural, volcanic, denudational, fluvial, deep-sea and coastal marine, glacial, aeolian, 

karstic, anthropogenic, and/or biological. 

In the study area, the Servicio Geologico Colombiano (SGC, Colombian Geological Survey) 

published geomorphological maps for sheets 247 and 266 in 2018, following the 

methodological proposal of Servicio Geologico Colombiano et al., (2012). In this context, the 

morphogenetic environments highlighted in the area are structural, denudational, fluvial, and 
glacial (Table 1, 2 and 3). 

• The structural environment corresponds to landforms generated by active tectonics 

resulting from the Earth's internal dynamics. Folding and faulting in rocks are associated 

with this environment, and cartographically, it is represented by purple. 

• The denudational environment is determined by weathering processes, predominantly 

hydro-erosive processes, and phenomena of transposition or mass removal acting on 

pre-existing landforms. For this type of region, the adopted cartographic color is brown. 

• The fluvial environment, differentiated by blue, corresponds to landforms generated by 

processes related to fluvial activity. 

• The glacial environment is distinguished by landforms formed by glacial action in high 

mountains. In cartography, it is differentiated by the color gray. 

• The anthropic environment refers to forms generated and modified by human activity 

on the land surface. In cartography, it is designated by the color black. 
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Fig. 11. Distribution of morphogenetic environments in the study area of “Via al Llano” highway. 

Modified from Servicio Geologico Colombiano & Universidad Pedagogica y Tecnologica de Colombia, 

2018a, 2018b).  

 

Fig. 12. Map of Landforms in the Municipality of Chipaque. Modified from Servicio Geologico 

Colombiano & Universidad Pedagogica y Tecnologica de Colombiav (2018a). 
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Table 1. Denudational, Glacial and Anthropic landforms in the Study area. Modified from Servicio 

Geologico Colombiano et al., (2012) 

  Acronym Unit Definition 

D
en

u
d
at
io
n
al
 E
n
v
ir
o
n
m
en

t 

Dldebl Denuded ridge 
system with 
long length 

They are systems or sets of ridges or crests located at different altitudes; with a relative relief 
index of less than 250 m and the length of the main axis greater than 1000 m; they are 
elongated forms perpendicular to the main drainage. The top or upper part can have different 
shapes depending on the degree of drainage incision, the type of saprolite developed by the 
dominant rock, and the erosive processes that have shaped it. The slope and orientation of the 
ridge axis can provide information on uplift processes and rates of the mountain range as a 
whole or the erosion speed of the main river or geomorphological axis 

Dsd Denuded ridge Topographic prominence with mountainous and elongated morphology, featuring long to 
extremely long slopes, concave to convex, with very steep to abrupt slopes, where pronounced 
erosion or mass movement processes prevail. Its origin is related to pronounced erosion 
processes in igneous and metamorphic rock substrates 

Dlo Undulating 
slope 

Sloping surface with hummocky or hilly morphology, inclined to steep slope, varying in length 
from short to very long. The drainage pattern is subdendritic to subparallel. These slopes can 
form on residual soils and colluvial deposits. 

Dts Elevated 
'hanging' 
terraces 

Flat or denuded surface with hummocky and hilly morphology, gently inclined slopes that 
appear as relics of ancient terraces and fluvial landforms, located at a higher elevation than the 
current riverbed base level. They correspond to areas affected by tectonism or regions where 
erosion processes are more influential than deposition. 

Dco Colluvial cone 
and lobe from 
solifluction 

Structure in the form of a cone or lobe with low hummocky morphology. Its origin is related to 
processes of transportation and deposition of materials on slopes and due to hydrogravitational 
processes in saturated and unsaturated soils. Its deposit consists of heterometric blocks and 
fragments of pre-existing rocks, embedded in a generally clayey to clayey sandy matrix 

Ddi Undifferentiated 
landslide cone 

Structure in the form of a cone or lobe with low, concave to convex morphology, featuring a 
stepped slope, semicircular niches, inclined blocks, irregular relief, the formation of cracks, and 
sudden changes in slope. Its origin is related to mass movements of soil or rock, where 
displacement occurs predominantly along a fault surface or in areas with high shear 
deformation. 

Deem Major erosion 
scarp 

Steep or sheer slope, of variable height, that can be formed by various causes: tectonic, by 
abrasion (fluvial and marine erosion), by gravitational and glacial processes. It can eventually 
range from short to long, with a concave, convex, or straight shape, featuring a steep to very 
steep slope. 

Def Faceted scarp Triangular or trapezoidal surface, with a wide base and narrow top, featuring hummocky, 
concave morphology of short to moderately long length and steep to very steep slopes. Its 
origin is related to erosion, incision, and mass movements on relict slopes appearing around 
structural reliefs composed of fractured materials. 

G
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Gshlc Counter-slope 
flank of a 
glaciated 
homoclinal 

ridge 

Slopes defined by the inclination of strata against the slope, of moderate to very long length, 
with concave to irregular stepped forms and steep to very steep slopes locally associated with 
snow accumulation depressions and glacial cirques. They exhibit sharp ridges (glacial are tes), 
glacial cirques, and locally valleys of the same origin, transverse, giving it an irregular 
appearance in profile. The irregular 'U'-shaped morphology of glacial are tes is a characteristic 
feature. 

Gshle Structural slope 
of a glaciated 
homoclinal 

ridge 

Slopes defined by the inclination of strata in the same direction as the slope, ranging from steep 

to very steep, of moderate to very long length, with concave-convex morphologies and 

undulating surfaces, and slopes ranging from steep to very steep. They exhibit sharp ridges 

(glacial are tes), delimiting glacial valleys in a 'U' shape. 

 

A
n
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ro
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E
n
v
ir
o
n
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en

t Ac Quarries Steep excavation with a height on the order of decimeters, irregularly shaped or terraced on 
slopes for the extraction of construction materials such as stone, sand, and gravel. This 
definition includes excavations carried out for the extraction of clays commonly referred to as 
brick clay pits 
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Table 2. Structural landforms in the Study area. Modified from Servicio Geologico Colombiano et al., 

(2012) 

  Acronym Unit Definition 

St
ru
ct
u
ra
l E

n
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ro
n
m
en

t 

Slcp Counter-slope 
flank 

Sloping surface, with regular to irregular morphology, defined by planes (strata, foliation, jointing, 
among others) arranged opposite to the slope. It can occur with a long to extremely long length 
and slopes ranging from gently inclined to steep. In this landform, structural data do not allow 
establishing an association with any regional-type structure (anticline, syncline, homoclinal, 
monocline, among others). 

Sle Structural slope Sloping surface, with regular to irregular morphology, defined by preferential planes (strata, 
foliation, jointing, among others) parallel to the slope. It can occur with a long to extremely long 
length and slopes ranging from gently inclined to steep. In this landform, structural data do not 
allow establishing an association with any regional-type structure (anticline, syncline, homoclinal, 
monocline, among others) 

Ss Mountain range Topographically prominent mountainous morphology, with long to extremely long, concave, 
convex, or straight slopes, featuring very steep to escarp slopes. Its origin is related to intense 
faulting processes in igneous, metamorphic, and sedimentary rock masses. In this landform, the 
absence of structural data does not allow establishing an association with any structure (anticline, 
syncline, homoclinal, monocline, among others) 

Ssan Anticlinal ridge Elongated topographic prominence with hilly to hummocky morphology, featuring sharp or 
rounded peaks or crests, limited by structural slopes ranging from inclined to very steep, straight 
or convex, and of long lengths. The axis of the structure is formed by the arching of strata or layers 
that diverge in inclination. 

Ssh Homoclinal ridge Symmetric or slightly symmetric elongated topographic prominence with mountainous to hilly 
morphology, featuring sharp peaks, defined by a sequence of stacked and inclined strata or layers 
(> 35°) in the same direction. Generally, it is the result of the development or erosion of a single 
flank of a geological structure 

Sshlc Counter-slope 
flank of a 

homoclinal ridge 

Moderate to long vertical to subvertical surface, concave in shape, stepped, scalloped, or irregular, 
with a steep to escarp slope, generated by strata arranged against the slope of the terrain, related 
to a homoclinal structure 

Sshle Structural slope 
of a homoclinal 

ridge 

Surface defined by the inclination of strata in favor of the slope, with short to moderately long 
length, straight to convex forms, and steep to very steep slopes, related to a homoclinal structure 

Sslp Compressive 
ridge and 

pressure ridge 

Ridge with hummocky to elongated topographic prominence, locally curved, associated with 
compressive zones. Its origin is related to truncation and vertical or lateral displacement due to 
intense faulting processes 

Ssslc Counter-slope 
flank of a 

synclinal ridge 

Short to moderately long vertical to subvertical surface, with convex to irregular stepped shape, 
featuring a steep to escarp slope, generated by strata arranged against the slope of the terrain, 
related to the flank of a synclinal structure 

Sssle Structural slope 
of a synclinal 

ridge 

Surface defined by strata inclined in favor of the slope of the terrain, with short to moderately long 
length, concave form, and inclined to steep slopes, related to the flank of a synclinal structure 
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Table 3. Fluvial landforms in the Study area. Modified from Servicio Geologico Colombiano et al., 

(2012) 

  Acronym Unit Definition 

F
lu
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Fca Alluvial channel Irregularly shaped channel excavated by the erosion of perennial or seasonal flows within rocky 
masses and/or alluvial sediments. Depending on factors such as slope, bedrock resistance, 
sediment load, and flow, they can persist for long distances. Straight channels are confined to 
narrow V-shaped valleys, generally associated with structural control of faults or joints. These 
channels, when spanning long distances, can form ponds and rapids. When streams flow in semi-
flat to flat areas (alluvial plain), channels are meandering or wandering, as a result of sudden 
changes in flow direction. Depending on the sediment load, slope, and flow, they can form 
anastomosed, braided, divergent, and other associated systems. 

Fpi Floodplain Surface with flat to low undulating morphology, eventually prone to flooding. It is located 
bordering river channels, locally limited by terrace scarps. It includes minor river plains in 'U' or 
'V' shapes, as well as minor colluvial cones on the flanks of intramontane valleys. In mountainous 
regions, where river channels tend to merge with their tributaries to form the main channel, in a 
sub-parallel drainage network of medium density, they appear as narrow, elongated, and deep 
surfaces. 

Fta Accumulation 
terrace 

Elongated surface, flat to gently undulating, shaped over alluvial sediments, appearing in paired 
form, limited by scarps of different heights along the course of a river. Its origin is related to 
processes of erosion and alluvial accumulation within ancient floodplains. Its formation includes 
phases of accumulation, incision, and vertical erosion. These terraces can be part of meandering 
straight channels. Their deposit consists of gravel, sand, silt, and clay, with a decrease in size as 
one moves away from the river channel. 

Ftae Escarpment of 
accumulation 

terrace 

Vertical to subvertical, stepped plane excavated in alluvial sediments bordering accumulation 
terraces. Its origin is related to the incision and deepening of the channel. The height of the scarps 
can reach tens of meters. 

Ftb Tilted terrace Flat to gently inclined surface, a remnant of an eroded, tilted, and/or folded terrace, with gently 
undulating morphology and inclinations between 5° to 10° in the upper parts, limited by scarps of 
varying height. Its origin is related to processes of uplift and tectonic folding affecting the bedrock. 

Ftbe Escarpment of 
tilted terrace 

Vertical to subvertical plane of short lengths, stepped, excavated in alluvial sediments bordering 
tilted accumulation terraces. Its origin is related to the incision and deepening of the channel in 
these terraces. The height of the scarps can reach tens of meters. 

 

 

Fig. 13. Map of Landforms in the Municipality of Caqueza. Modified from Servicio Geologico 

Colombiano & Universidad Pedagogica y Tecnologica de Colombia (2018a). 
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Fig. 14. Map of Landforms in the Municipality of Quetame. Servicio Geologico Colombiano & 

Universidad Pedagogica y Tecnologica de Colombia (2018b). 

 

Fig. 15. Map of Landforms in the Municipality of Guayabetal. Servicio Geologico Colombiano & 

Universidad Pedagogica y Tecnologica de Colombia (2018b). 
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Fig. 16. Map of Landforms in the Municipality of Villavicencio. Modified from Servicio Geologico 

Colombiano & Universidad Pedagogica y Tecnologica de Colombia (2018b). 

 

2.4. Historic landslides  
The Colombian Geological Service (SGC) has developed a digital platform that includes a huge 

catalog of mass wasting phenomena that have occurred in Colombia. This platform is known as 

the “Sistema de información de Movimientos en Masa” (SIMMA). The database is subdivided by 

municipalities (the political subdivision of Colombian states). For each municipality, there is a 

multi-temporal inventory of landslides that have occurred in the last 70 years, indicating the 

type of movement, their location, the date, and additional information. The latest update of the 

available inventory shapefile was in 2020 (Servicio Geologico Colombiano, 2020). According to 

the inventory, 377 landslides were identified. Of these, 206 were located in the municipality of 

Caqueza, making it the municipality with the highest number of recorded landslides. (Table 4). 

Additionally, according to the database, the most frequently type of landslide was slides, 

followed by falls (Table 4). The period with the highest quantity of landslides was between 

2015 and 2020 (Table 5). 

Another source of landslides event data is the National Unit of disaster Risk Management, or 

Unidad Nacional para la Gestión del Riesgo de Desastres (UNGR). This database includes 

information on mass movements that directly affect the population. While this database 

provides a description the situation, it does not contain specific information about the type of 

movement or the exact location with coordinates. Between 2017 and 2023, 42 emergency cases 

due to landslides was recorded in the study area (Table 3). The year with the most mass 

movements was 2011 and the municipality with the most frequent and consistent landslides 

between 2017 and 2023 was Quetame (Table 6).  
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According to news or public information there are certain areas along the highway that are 

highly susceptible or prone to landslide (RCN Radio, 2018). These areas are identified by the 

number of kilometers between Bogota, from 0 to 86 in Villavicencio. The most well-known 

critical zones are located at 4 km, 26 km, 46 km, 51 km, 52 km, 55 km, 56 km, 58 km, 60 km, 62 
km, 63 km, 64 km, 65 km, 68 km, 70 km (RCN Radio, 2018) (Fig. 17).   

 

Table 4. Type of landslide on the study area from SIMMA database. 

Type Study Area Chipaque Caqueza Quetame Guayabetal Villavicencio 
Slide 138 18 50 45 13 12 
Fall 108 0 81 16 9 6 
Soil Creep 67 5 60 1 0 1 
Flow 52 5 15 12 11 8 
Topple 12 0 0 8 1 0 
TOTAL 377 28 206 82 34 27 

 

Table 5. Date of landslides from SIMMA database. 

Date (year) Study Area Chipaque Caqueza Quetame Guayabetal Villavicencio 
1960-2000 12 10 0 2 0 0 
2001-2005 9 0 0 9 0 0 
2006-2010 23 4 0 14 5 0 
2011-2015 49 3 31 8 7 0 
2016-2020 51 2 4 28 17 0 
No data 233 9 171 21 5 27 
TOTAL with 
data 

144 19 35 61 29 0 

 

Table 6. Date of landslides from UNGR database. 

Date UNGR Study 
Area 

Chipaque Caqueza Quetame Guayabetal Villavicencio 

2017 8 1 0 4 1 2 
2018 7 1 2 1 3 0 
2019 3 0 0 2 1 0 
2020 3 0 1 2 0 0 
2021 11 0 4 2 0 5 
2022 6 0 3 1 0 2 
2023 4 0 1 3 0 0 
TOTAL 42 2 11 15 5 9 
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Fig. 17. Map of mass movements from SIMMA and UNGR on the “Via al Llano” highway. The numbers 

over the road indicate the respective kilometer of each critical zone, starting from kilometer 0 in 

Bogota  and ending at kilometer 86 in Villavicencio. 

 

According to the historical inventory obtained by SIMMA and UNGR, a total of 419 landslides 

have been identified (Fig. 17). In the Chipaque area, the predominant landslides are "slides" 

that are located on the south side of the road near the urban area of Chipaque, and on the north 

side near to Abasticos. “Flows” and "soil creep" prevail in the central area south of the road (Fig. 

18). Although areas at kilometer 4 and 26 have been identified as critical, no points from the 

inventory are observed in these areas. 

In the Cáqueza area, the largest number of landslides is found in the urban area, with a 

significant prevalence of "fall" type landslides, followed by "soil creep" and “flows” (Fig. 19). In 

the southern part of the area, specifically around Puente Quetame, "topples" have been 

recorded. In the rest of the area, especially in the central part and near the urban area of 

Cáqueza and El Tablon, "slides" have occurred (Fig. 19). The kilometer 26 near the urban area 

of Cáqueza is the only critical point on the road mentioned by the media. 
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In the Quetame area, numerous mass movements are observed on and near the road, mainly of 

the "slide" type (Fig. 20). In the urban area of Quetame, a wide variety of landslides are grouped, 

including “flows”, "topples," and "slides". Most "fall" type landslides are found in high and 

remote areas from the road. Six critical points have been identified, with kilometer 58 being the 
most unstable since 2019, when a landslide completely covered the road (Fig. 20). 

In the Guayabetal area, "slide" is the type of mass movements predominate in the urban area 

(Fig. 20). “Flows” and "falls" have been recorded on the road, while "slides" prevail in the high 

areas north of the road (Fig. 21). There are 6 critical areas of the road in this municipality, 

corresponding to kilometers 60, 62, 63, 64, 65, and 68. Kilometer 64 has been the most unstable 

since 2017, presenting "falls" and "slides" (Fig. 21). 

Finally, in the Villavicencio area, the old road to the Llano has been the most affected. 

Continuous mass movements from Servita to the Pipiral area have affected populations and 

transporters using this road (Fig. 22). The most prominent mass movement occurred in 2017 

on the road near the urban area of Servita. This can be easily observed in satellite images from 

2018 onwards. 

 

 

Fig. 18. Map of mass movement events in the municipality of Chipaque, obtained from SIMMA and 

UNGR. 
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Fig. 19. Map of mass movement events in the municipality of Caqueza, obtained from SIMMA and 

UNGR. 

 

 

Fig. 20. Map of mass movement events in the municipality of Quetame, obtained from SIMMA and 

UNGR. 



27 
 

 

 

Fig. 21. Map of mass movement events in the municipality of Guayabetal, obtained from SIMMA and 

UNGR. 

 

 

Fig. 22. Map of mass movement events in the municipality of Villavicencio, obtained from SIMMA and 

UNGR. 
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2.5. Previous landslides susceptibility studies in the study area  
In the study area, various susceptibility and hazard studies for mass movements have been 

conducted through different methodologies. Published and publicly available works cover from 

the year 2010 to the present, addressing different challenges and yielding diverse results. 

Below, we will explore the nine most relevant works that have contributed to the advancement 
and development in the study area. 

The analysis carried out by INGEOMINAS and IDEAM in 2010 resulted in the publication of the 

national map of Relative Hazard for mass movements at a scale of 1:500,000. Within this study, 

the segment corresponding to the road to Llano covers sheets 5-09 and 5-14 (Fig. 23). In sheet 

5-09, which includes municipalities from Chipaque to Quetame, an orange shade indicates a 

"High" hazard of landslide (Fig. 23-A). Further along, between the areas of Quetame and 

Guayabetal, small areas with red shading are identified, indicating a "Very High" hazard of 

landslides (Fig. 23-A). Similarly, in sheet 5-14, encompassing the municipalities of Guayabetal 

and Villavicencio, the entire area shows a red shade, suggesting a "Very High" hazard (Fig. 23-

B). 

 

Fig. 23. Maps of Relative Hazard for mass movements, obtained from INGEOMINAS and IDEAM (2010). 

(A) Sheet 5-09, scale 1:500,000. (B) Sheet 5-14, scale 1:500,000. 
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In 2011, Sánchez and Urrego presented in their Civil Engineering thesis the hazard area in a 

section of the "Vía al Llano" highway, using rainfall intensity values and relying on a terrain 

susceptibility map (Fig. 24-C). The latter was obtained by them through a heuristic method that 

combines various terrain variables such as slope, deposit characteristics, land cover type, and 

distance to faults. As a result, two hazard maps for deep and shallow landslides were generated 

in the study area (Fig. 24-A and B), along with a terrain susceptibility map (Fig. 24-C). This study 

area covers the stretch between kilometers 50 and 63. 

 

Fig. 24. Maps of Hazard for landslides and Susceptibility terrain, obtained from Sanchez & Urrego 

(2011). (A) Hazard map of shallow landslides. (B) Hazard map of deep landslides. (C) Susceptibility 

Terrain Map. 

Ramírez (2012) carried out a compilation and analysis of geotechnical research conducted at 

the National University of Colombia. Among these investigations, two of 192 were distinguished 

because they focus on the area of the "Vía al Llano". The first, conducted by Rodríguez, (2001) 

is focuses on evaluating the stability of certain landslides located in the Municipality of Cáqueza 

along the "Vía al Llano". In this study, a probabilistic analysis was carried out to evaluate the 

resistance and seismic acceleration of each sector. Subsequently, Díaz (2002) conducts a hazard 

study of mass movements in the initial section of the "Vía al Llano" road. In this work, different 

types of landslides were identified, including landslides and rotational slides. It is noted that, in 

most of the slopes studied, there is a medium hazard of mass movements. The results of these 

investigations were not available on the web. 

Ruiz et al. (2018), carried out a study as part of the agreement between the "Servicio Geológico 

Colombiano (SGC)" and the "Instituto Geográfico Agustín Codazzi (IGAC)", resulting in the 

creation of a landslide hazard map at a scale of 1:25,000 in an area belonging to the municipality 

of Villavicencio (Fig. 25). Additionally, maps of surface geological units, geomorphological 

subunits, and land cover and land use were generated. To determine the zoning of landslide 

susceptibility, the bivariate method was employed, considering triggering variables such as 

rainfall and seismicity, along with other geo-environmental variables. This study identified 646 

landslides, with rotational slides and flows being the most predominant. Furthermore, a hazard 

map was generated for the area from Pipiral to Servita (old road of Via al Llano), providing 

valuable information for our study. This map belongs to sheet 266-II-A (Fig. 25). 
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Fig. 25. Landslide hazard map at a scale of 1:25,000, sheet 266-II-A, from SGC and IGAC (2018). 

Navarro et al. (2019) produced geological, geomorphological, and geological hazard maps at a 

scale of 1:100,000 for the affected area around kilometer 58 on the “Via al Llano”. This was done 

to support decision-making processes of state entities facing this impact. They include 

information on seismicity, tectonic analysis of the area, landslide inventory available in SIMMA, 

as well as hydrodynamic modeling of the Rio Negro and maps of flash flood hazards in the Rio 

Negro River basins. In this work, they concluded that hazard maps for mass movements across 

the entire area had already been generated in 2016, and the area has a high level of 

susceptibility to landslides. Furthermore, it was identified that the slope at kilometer 58 is an 

old terrace with low cementation. They recommended to assess the causes leading to its 
destabilization, especially the increase in water or moisture within it. 

 

Fig. 26. (A) Landslide hazard map at a scale of 1:100,000, sheet 266. (B) Landslide Susceptibility map at 

a scale of 1:100,000, sheet 266. Taken from Navarro et al. (2019). 
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In her engineering thesis conducted in 2019, Pineda focused on the hazard area in the Servita 

sector (old road to Llano), located within the municipality of Villavicencio. This thesis proposes 

engineering solutions to address the effects of a debris flow that affected both the road and the 

population in 2017. Additionally, the thesis concluded that the triggering factor of this landslide 

was the increase in precipitation during that year. The author also emphasized that ground 

vibrations caused by vehicular traffic and constructions in the area are significant conditioning 

factors to consider. Furthermore, Pineda (2019) determined that 80% of the study area is 
affected by soil creep and that there is a high threat in the zone (Fig. 27). 

 

Fig. 27. The landslide classification in the area of Servitá, from Pineda (2019). 

Chaparro et al. (2020) carried out a heuristic analysis of landslide inventories located in Mocoa, 

Cajamarca, Villavicencio, and Popayán, relating them to four predictor variables: lithology, 

slope, relief, and frequency-area distribution. In the Villavicencio area, they primarily focused 

on the zone affected by the Servitá Fault. Although this area is not well-defined, it covers 

approximately 294.6 km2. During the analysis, 334 "slide" type landslides were identified. 

Additionally, they observed that most of these landslides commonly occur in residual soils.  

Calderón-Guevara et al. (2022) conducted a landslide susceptibility study using statistical and 

machine learning methods. This work was carried out on the southeastern side of 

Cundinamarca department and the northwestern side of Meta department, encompassing the 

entire area of the "Via al Llano". The authors utilized geological, topographic, hydrological, 

anthropic, and soil cover factors as variables, and performed modeling using the Weight of 

Evidence (WOE), Artificial Neural Networks (ANN), Gradient Boosted Regression Trees (GBRT), 

and Random Forest (RF) methods. While generally distinguishing landslides between soil 

translational, rock wedge, and soil rotational slide, all of these were collectively selected for 

prediction in the area. The quality of the four methods was compared, and Random Forest 

emerged as the most effective method due to its higher prediction accuracy with an ROC value 

of 93.73%, followed by Artificial Neural Network. The latter was effective using both categorical 

and continuous variables, while the other three remaining models performed better using only 

continuous variables. The landslide susceptibility map obtained with Random Forest is shown 

in Fig. 28. 
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Fig. 28. Landslide susceptibility map from Calderón-Guevara et al., (2022). 

Herrera-Coy et al. (2023) conducted a landslide susceptibility model focusing on the area 

encompassing the Bogota-Villavicencio Highway or Via al Llano. To develop this model, they 

first obtained an inventory of 2506 landslides, differentiating them into 5 typologies: "debris 

avalanches", "debris flows", "slides", "earth flows", and "soil creep". They distinguished that 

debris flows and debris avalanches mainly occur in metamorphic materials, areas with sparse 

vegetation, steep slopes, and the lower sections of hillsides. Meanwhile, "slides", "earth flows", 

and "soil creep" primarily occur in Cretaceous mudstones, cultivated lands/pastures, medium 

to low slopes, and lower and middle sections of hillsides. The modeling methods used were 

discriminant analysis, random forest, neural networks, and matrix. They concluded that 

modeling obtained with machine learning, specifically random forest, was the most appropriate 

due the prediction accuracy exceeding 90%. They generated two landslide susceptibility maps: 

one for shallow movements, which corresponds to debris flows and debris avalanches (Fig. 29-

a), and the other for deeper movements, corresponding to slides, earth flows, and creep 

processes (Fig. 29-b). The resulting maps in the area revealed a strong geological influence on 

susceptibility estimation. 
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Fig. 29. (a) Landslide susceptibility maps of shallow movements. (b) Landslide susceptibility maps of 

deeper movements. Taken from Herrera-Coy et al. (2023). 

 

 

 

2.6. Pluviosity 
In 2017, IDEAM released a compilation of meteorological data for Colombia, based on historical 

information covering from 1981 to 2010. This Climatological Atlas describes each 

meteorological variable spatially and temporally across the Colombian territory. The majority 

of the "Via al Llano Highway" is in the department of Cundinamarca, passing through the 

municipalities of Chipaque, Cáqueza, Quetame, and Guayabetal, and only entering the 

department of Meta in the municipality of Villavicencio in its final kilometers. Therefore, the 

meteorological information for this area encompasses parts of both departments. 

 

It is important to note that the "Via al Llano," starting in the municipality of Chipaque at an 

approximate altitude of 2,500 meters above sea level, and gradually descends to an altitude of 

approximately 500 meters above sea level in the municipality of Villavicencio (Fig. 2). Being in 

the equatorial zone, Colombia receives nearly the same amount of solar energy throughout the 

year, resulting in uniform temperatures with little variation. The temperature fluctuates within 

a range of 1 to 3°C, with the average temperature being mainly influenced by the altitude of the 

site above sea level, among other related factors (IDEAM, 2017). Accordingly, the municipality 

of Chipaque experiences temperatures ranging between 8-12°C in its western part and 12-16°C 

in the eastern part (Fig. 30-A). Subsequently, the municipalities of Cáqueza and Quetame 

present a temperature range between 16-20°C (Fig. 30-A). Then, in Guayabetal, the 

temperature range increases to 20-22°C, and in Villavicencio, the area reaches temperatures 

between 22-24°C (Fig. 30-B). 
 



34 
 

 
Fig. 30. (A) Annual average temperature in °C of the Cundinamarca department. (B) Annual average 

temperature in °C of Meta department. Taken from IDEAM (2017). 

 

In Colombia, climate classification is based on humidity and temperature characteristics, 

according to the Caldas-Lang classification, one of the most widely used due to its simplicity, 

which divides climates into 25 types (IDEAM, 2017). According to this classification, the area 

traversed by the "Via al Llano" begins in the Chipaque area with a very cold and humid climate 

in the western part, transitioning to a semi-humid cold climate in the eastern part (Fig. 31-A). 

This climate persists in the high parts of the municipality of Cáqueza, while in the valley, a 

temperate desert climate predominates (Fig. 31-A). Then, in the municipality of Quetame, the 

valley transitions to a humid and super-humid temperate climate, which extends into 

Guayabetal, while the high parts of these two municipalities experience a super-humid cold 

climate (Fig. 31-A). Similarly, the municipality of Villavicencio maintains a humid and super-

humid temperate climate (Fig. 31-B). 
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Fig. 31. (A) Caldas-Lang climatic classification of the Cundinamarca department. (B) Caldas-Lang 

climatic classification of Meta department. Taken from IDEAM (2017). 

 

Precipitation, like temperature, altitude, and climate, exhibits significant variation from 

Chipaque to Villavicencio. According to the annual precipitation map of the Cundinamarca 

department, the municipalities of Chipaque and Cáqueza experience a range between 1000 to 

1500 mm/year, while Quetame ranges from 1500 to 2500 mm/year (Fig. 32-A). In Guayabetal, 

the range varies from 2500 to 4000 mm/year, and in the Villavicencio region, the annual 

precipitation range is from 4000 to 5000 mm (Fig. 32-B). The precipitation regime is 

predominantly unimodal, with peak precipitation in the middle of the year (highest 

accumulations in May, June, and July), and minimum precipitation at the beginning of the year 

(lowest accumulations in December, January, and February). However, the slight increase in 

precipitation in the months of October and November suggests a bimodal regime (Fig. 33). 
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Fig. 32. (A) Total annual precipitation in mm for the Cundinamarca department. (B) Total annual 

precipitation in mm for Meta department. Taken from IDEAM (2017). 

 
Fig. 33. Bar chart showing monthly precipitation and annual average, maximum, and minimum 

temperatures  (A) Municipality of Ubaque, located north of Chipaque and Cáqueza. (B) Municipality of 

Villavicencio. Taken from IDEAM (2017). 
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CHAPTER 3. LANDSLIDES, REMOTE SENSING AND SOFTWARE  
 

Landslides are processes that result in the displacement of materials such as rock, debris, or 

soil down a slope, under the influence of gravity (Cruden & Varnes, 1996). This phenomenon 

involves an initial deformation, followed by rupture, and results in displacement (Hungr et al., 

2014). These events can occur both on land surfaces and in submerged underwater areas. 

Additionally, phenomena such as intense or prolonged rainfall, earthquakes, rapid thawing, 
volcanic activity, and various human actions can trigger landslides (Guzzetti et al., 2012). 

 

3.1. Landslides classification 
 

Mass movements can be classified in multiple ways, according to the relevant characteristics to 

emphasize or the specific purpose (Varnes, 1978). Some attributes that have been used for their 

classification include the type of movement, type of material, rate of movement, geometry of 

the displacement area, and shape of the deposit. Other criteria encompass the age of the 

movement, its causes, the degree of distortion of the displaced mass, the relationship or lack of 

relationship between the sliding geometry and geological structure, the degree of development, 

geographic location, and the state of activity (Varnes, 1978). 

The classification proposed by Cruden & Varnes (1996) has gained widespread global adoption. 

It distinguishes between the type of movement and the type of material. Movements are 

categorized into five fundamental classes: falls, topples, slides, spreads, and flows; while 

materials are classified as rock, debris, and soil (Cruden & Varnes, 1996; Varnes, 1978). 

Landslides encompass the following types of motion distinguished by their kinematic style. 

Falls occur when there is a detachment of rock or soil on inclined surfaces, descending mostly 

through the air. Topple involves the forward rotation of a mass out of an inclined surface, 

primarily in resistant consolidated materials such as rocks. Slides entail a shearing effort that 

displaces a mass on surfaces, subdividing into rotational and translational types. Spread result 

from the liquefaction of soft material beneath a coherent mass. Flows, characterized by 

continuous movements, occur in unconsolidated materials, sharing similarities with viscous 

liquids in terms of speed. Lastly, slope deformation are large-scale gravitational movements on 

steep slopes exhibit scarps, cracks, and bulges without a well-defined rupture surface, with 

extremely slow movement rates and no documented record (Cruden & Varnes, 1996; Hungr et 

al., 2014; Varnes, 1978). 

Subsequently, Hungr et al. (2014) introduced modifications to the classification, grouping 

materials into two main classes: rock and soil. These encompass geologically defined rocks, and 

unconsolidated materials, respectively. Additionally, they define the classification into 32 types 

of movements. The mechanisms governing the motion, conditioning factors, triggering factors, 

and other important data for each of these 32 types of landslides are explained in Fig. 34 to 44. 

These figures maintain the same numbering scheme for the landslides classified by Hungr et al. 
(2014). 

 



38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

 

 

 

 

 

 

 

 

 



40 
 

 



41 
 

 

 

 

 

 

 

 

 

 



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 

 

 

 

 

 

 



44 
 

 



45 
 

 

 

 

 

 

 

 

 

 



46 
 

 

 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 



49 
 

3.2. Landslides susceptibility maps  
 

Landslides play a crucial role in shaping the landscape and they are particularly prevalent in 

mountainous regions worldwide. This inherent characteristic makes them one of the most 

significant natural hazards, resulting in numerous fatalities, infrastructure damage, and 

substantial economic consequences (Lima et al., 2021; Petley, 2012). In contrast to random 

events, landslides are governed by the interplay of physical processes and mechanical laws 

dictating slope stability or failure (Guzzetti et al., 2012). Therefore, accurately predicting their 

spatial distribution is essential to mitigate adverse impacts. To achieve this, the development 

of models capable of identifying areas prone to landslides is crucial for effective spatial planning 

and policy formulation, particularly in mountainous terrain (Lima et al., 2021). The primary 

aim of landslide susceptibility models is to forecast the likely locations of landslides or specific 

types by analyzing local terrain characteristics (Guzzetti, 2005). 

Various approaches have been utilized to evaluate landslide susceptibility in spatial terms. 

These methodologies generally fall into two categories: qualitative and quantitative methods 

(Corominas et al. 2014, Lima et al., 2021, Shano et al. 2020). Qualitative methods, also known 

as knowledge-driven or heuristic methods, rely on expert judgment, where experts assign 

values or weights to predisposing factors based on their understanding of geomorphological 

processes. Such heuristic methods are subjective, as they are based on expert opinions 

regarding terrain characteristics that may contribute to instability (Lima et al., 2021; Shano et 
al., 2020). 

Within quantitative methods, physically-based models often involve spatial infinite slope 

models that are frequently coupled with geo-hydrological modules, typically described by 

complex algorithms (Lima et al., 2021, Soeters and van Westen 1996). In contrast, statistically 

based and machine learning predictive models, known as Data-driven Landslide Susceptibility 

Models (DdLSM), utilize empirical relationships between observations and underlying ground 

features (e.g., lithological or land cover layers) rather than the intricate physical relationships 

required in physically-based models (Brenning, 2005, Lima et al., 2021, Magliulo 2008, Regmi 

2014, Vorpahl et al., 2012). In recent years, data-driven landslide susceptibility models, have 

gained popularity for estimating the relative spatial probability of landslide occurrence 

(Conoscenti et al., 2015, Lima et al., 2021, Martinello et al., 2022, Mercurio et al., 2021, 
Rotigliano et al., 2019).  

The standard process of Data-driven Landslide Susceptibility Models (DdLSM) typically 

involves the following steps: (i) compilation of landslide inventory data, which includes 

identifying both landslide and non-landslide sampling points, followed by partitioning the 

dataset into test and training sets. (ii) identification and collection of relevant 

geoenvironmental factors influencing slope stability. (iii) selection and implementation of a 

suitable classification method (statistical-based or machine learning). (iv) evaluation of the 

models' performance quality, (v) production of a map indicating areas susceptible to landslides 
(Conoscenti et al., 2015, Lima et al., 2021, Mercurio et al., 2022).  
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3.3. Landslides inventory  
 

A 'landslide inventory' typically comprises location data, movement type, and potentially the 

occurrence date (Lima et al., 2021). This inventory may be compiled using multi-temporal 
(historical), event-based, or seasonal approaches (Guzzetti et al., 2012; Lima et al., 2021). 

A historical inventory reflects the cumulative impact of numerous landslide events over 

decades, centuries, or millennia, drawing from literature or archival sources (Guzzetti et al., 

2012). Age differentiation in historical inventories is often limited to broad categories such as 

recent, old, or very old, and they encompass landslides triggered by multiple events spanning 
years to decades (Guzzetti et al., 2012). 

An event inventory, as described by Lima et al.  (2021), are landslides triggered by singular 

events like earthquakes, rainfall, or snowmelt, with the landslide date aligning with the 

triggering event date. 

A seasonal inventory, outlined by Fiorucci et al. (2011) and Guzzetti et al. (2012), captures 

landslides triggered during one or more seasons. In these inventories, landslide dates are 

attributed based on the triggering event date and the timing of imagery or field surveys used 

for compilation. Seasonal landslide maps are crucial in areas prone to recurring landslides, 

facilitating erosion studies, and temporal landslide analysis, integral components of 
probabilistic landslide hazard and risk assessments. 

Lima et al. (2021) found that event-based inventories are more commonly used than multi-

temporal inventories. This is because traditional mapping techniques for producing seasonal 

and multi-temporal landslide maps are both time-consuming and resource-intensive (Guzzetti 

et al., 2012). Additionally, the production of seasonal and multi-temporal inventories requires 

the ability to recognize landslides (or portions of landslides) that leave faint, subtle 
topographical or land cover changes (Guzzetti et al., 2012). 

 

3.4. Mapping units  
 

A mapping unit, also known as a modelling unit, refers to a delineated portion of terrain with 

clear boundaries, capturing internal homogeneity within its confines while exhibiting external 

heterogeneity in comparison to adjacent units (Alvioli et al., 2016). These units encapsulate 

varied geo-environmental conditions from neighboring areas (Carrara et al., 1999) and may 

represent categorical, binary, or continuous variables (Lima et al., 2021). They play a crucial 

role in both predicting model performance and generating output results, exerting significant 

influence on the design of landslide susceptibility maps (Martinello et al., 2021). 

Modeling units typically fall into two categories: (i) pixel or grid cell-based units, and (ii) 

polygon-based units, such as slope units, unique condition units, and terrain units (Alvioli et al., 

2016; Guzzetti, 2005; Lima et al., 2021). The literature on pixel-based units discusses various 

landslide sampling strategies, including: (a) sampling multiple points throughout the entire 

landslide body, (b) selecting multiple points within the landslide scarp, (c) placing a single point 

at the scarp centroid, (d) positioning a single point at the landslide centroid, and (e) distributing 
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multiple points in the vicinity of the landslide to mimic the original landslide conditions, also 

known as seed cells (Lima et al., 2021). 

In Lima et al. (2021) survey, 88% of the studies utilize pixel-based units as the standard 

modeling approach, while 10% utilize polygon-based units. The remaining percentage accounts 

for studies where the modeling unit used was unclear. Typically, pixel-based are derived 

directly from Digital Elevation Models (DEMs), with predictor variables assumed to have the 

same resolution as the DEM grid cells. Pixel-based partitioning is efficient and generally yields 

high modeling performance (Martinello et al., 2021). However, pixel-based units may be too 

localized to effectively represent unstable conditions, especially when predicting larger 

landslide events, and may present difficulties for interpretation, particularly for land use 
planners (Lima et al., 2021).  

Alternatively, slope-units (SLUs), defined as slope sectors delineated by drainage and water 

divide lines, are favored because it is assumed that the entire landslide kinematics (initiation, 

propagation, and accumulation) occur within them (Martinello et al., 2021). Although polygon-

based modeling units, given their generally larger size, may prompt discussions regarding the 

heterogeneity of large internal features. Therefore, some contributors (e.g., Camilo et al., 2017; 

Jacobs et al., 2020) suggested to utilize multiple summarizing values to represent predictors 

within the slope units (e.g., mean, median, standard deviation, among others) (Lima et al., 

2021). Subsequently, the most effective metrics can be selected based on their mathematical 

significance in describing the phenomena (Lima et al., 2021).  

Ideally, a complete, accurate and unbiased inventory is essential to build a robust relationship 

between the landslides and the geo-environmental predictors (Steger et al., 2017). Some 

publications advocate for the use of multiple points per landslide feature, highlighting a positive 

impact on prediction outcomes (Lima et al., 2021). However, this approach may lead to an 

overrepresentation of large landslides compared to small ones, as demonstrated by (Steger et 

al., 2017) through the artificial simulation of systematic scarcity (undersampling bias). On the 

other hand, in cases with a low number of landslide samples, confidence and reliability in 

predictions may be reduced, according with Hussin et al., (2016), who demonstrate that the 

validation of a model is not substantially influenced by undersampling (e.g., reducing the 

number of samples by half), but Petschko et al., (2014) argue that the lower number of landslide 

samples can influence the appearance of the map output and, consequently, its interpretation. 

Considering the advantages and disadvantages of each strategy, the representation of 

landslides should take into account: (i) the characteristics of the available inventory (e.g., point-

based or polygon-based) and (ii) the resolution (i.e., pixel size) of the landslide predictors; since 

high-resolution predictors associated with inaccurate inventories could lead to uncertain 

predictions. When the use of such inaccurate inventories is unavoidable, adopting a slightly 

larger modeling unit is recommended to limit the spread of uncertainty (Lima et al., 2021). 
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3.5. Remote sensing techniques  
 

Landslide inventories can be obtained through a variety of techniques, depending on the 

specific purpose, the size of the study area, and the resources available (Guzzetti et al., 2012; 

Lima et al., 2021). Among the most employed methods are field mapping, remote sensing 

techniques, interpretation of aerial photographs, incident reports, bibliographic analysis, and 

semi-automatic extraction from high-resolution Digital Terrain Models (DTMs) (Lima et al., 

2021). 

Traditionally, the compilation of landslide inventories relied on visual interpretation of 

stereoscopic aerial photography, which enabled the recognition of landslides and related 

surface processes due to its three-dimensional effect, supplemented by field surveys. However, 

these methods are both time-consuming and resource-intensive, compounded by the irregular 

availability of aerial photographs (Guzzetti et al., 2012). 

3.5.1. Digital Terrain Models (DTMs) 
Currently, digital elevation models (DEMs) have replaced aerial photography due to their 

advantages as accurate 3D representations of an area. This provides interpreters with a unified, 

comprehensive view of the study area, enabling them to map both small and large landslides as 

well as other geological features (such as fault lines and traces of bedding planes) without the 

need to alter viewpoints or switch between pairs of aerial photographs. This enhances 

efficiency for the interpretation task and accelerates the acquisition of geomorphological 
information (Guzzetti et al., 2012).  

Moreover, DEMs facilitate the derivation of terrain characteristics such as slope, curvature, and 

topographic roughness. These digital representations of the topographic surface can be derived 

from various sources, including LiDAR surveys, stereoscopic or pseudo-stereoscopic images 

captured by satellite sensors (e.g., ASTER, SPOT-5, Cartosat-1/2 satellites), and SAR satellite 

sensors. Very High-Resolution (VHR) LiDAR terrain models are preferred due to their ease of 

use and precision in preparing geomorphological landslide inventories and extracting contour 

maps covering large areas. However, obtaining VHR LiDAR digital models remains a challenge 

due to the costs associated with data acquisition and processing time. Therefore, exploring the 

use of elevation data captured by SAR sensors as an alternative should be considered (Guzzetti 
et al., 2012). 

3.5.2. Optical images 
Additional information that cannot be obtained from aerial photographs, LiDAR, or DEM data, 

which can be utilized to recognize landslides, comes from multispectral information acquired 

by optical satellite sensors. An important advantage of optical images is that they include 

reflectance or radiance values in specific (narrow to very narrow) portions of the spectral 

range, typically ranging from the blue to near-infrared wavelengths, especially for Very High-

Resolution (VHR) sensors (e.g., from 450 to 510 μm to 780–920 μm for GeoEye). Optical images 

allow for the measurement of variations in the spectral signature of the land surface, which is 

useful for landslide detection through: (i) the creation of derivative images and maps (e.g., maps 

of the Normalized Difference Vegetation Index, NDVI), and (ii) the semi-automatic classification 

(segmentation) of satellite images into landslide (failed) and stable (not failed) areas, exploiting 

their different radiometric signatures (Guzzetti et al., 2012). 
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In semi-automatic detection and mapping of landslides using radiometric information from 

optical satellite sensors, careful attention to preliminary image processing steps is crucial. Pre-

processing of raw satellite images, such as pansharpening, orthorectification, image co-

registration, atmospheric and radiometric correction, is often overlooked by landslide 

investigators. However, these steps require external information, specific software, skills, and 

experience. Neglecting the pre-processing phase can lead to changes in the original image, 

impacting the interpretation and resulting landslide map (Guzzetti et al., 2012). 

3.5.3. Radar images 
While optical satellite images provide high-quality data, they can be affected by the absence of 

daylight since they rely on passive sensors. Additionally, cloud cover during and after a 

landslide event entails an additional challenge as it obstructs visibility and impedes the 

accurate assessment of affected areas. (Mondini et al., 2021). Immediate response to natural 

hazard events is crucial for assessing damage and saving lives (Handwerger et al., 2022). 

Moreover, numerous response efforts face challenges due to a lack of recent and detailed 

information on the condition or location of damaged areas (Handwerger et al., 2022). 

Therefore, to overcome these problems, a viable alternative is the use of radar sensors, which 

do not rely on sunlight for illumination and can penetrate through clouds (Aukema et al., 2019).  

Synthetic Aperture Radar (SAR) sensors, operating in the microwave spectral range– between 

0.23 GHz (130 cm, P-band) and 40 GHz (0.65 cm, Ka-band), are equipped with side-looking 

antennas that illuminate the ground surface using single-band pulses (Aukema et al., 2019). 

These platforms are capable of measuring surface deformations and constructing time series of 

surface movements using Differential Synthetic Aperture Radar Interferometry (DInSAR), with 

centimeter to millimeter accuracy. The enhanced capabilities of modern SAR sensors methods 

are expected to improve mapping of event landslides particularly where the slope failures 

result in land cover changes e.g., from forest to bare soil or rock (Guzzetti et al., 2012). 

SAR sensors have the unique ability to illuminate areas during the night and through cloud 

cover, making them valuable for detecting fresh landslides during or immediately after a 

triggering event. However, limitations in ground resolution, acquisition geometry, and data 

processing hinder the detection and mapping of small to medium-sized landslides in rugged 

terrain. Nevertheless, SAR data can still provide valuable and timely information for post-event 
relief efforts and erosion studies (Guzzetti et al., 2012). 
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3.6. Predictors 
 

The prediction of Spatial Data-driven Landslide Susceptibility Models (DdLSM) is based on the 

empirical relationship between the response variable (in this case, landslide observations) and 

the landslide predictors. These predictors are also commonly referred to as "conditioning," 

"environmental," or "predisposing" factors, and they are used to describe typical terrain 

conditions that influence slope instability for landslide occurrence. The selection of a predictor 

is not only related to data availability at the appropriate scale but should also adequately 

describe landslide occurrence (Lima et al., 2021). The inclusion of biased or irrelevant 

predictors, as well as the omission of appropriate ones, may significantly interfere with the 
prediction accuracy of the assessment (Lima et al., 2021; Steger et al., 2016). 

Landslide predictors can be categorized into several types: (i) thematic variables, (ii) 

topographical factors, (iii) climatic elements, (iv) hydrological aspects, and (v) proximity 

variables. According to a survey by (Lima et al., 2021), thematic variables such as lithological 

layers, land cover, soil type, and the Normalized Difference Vegetation Index (NDVI) were most 

frequently utilized. Among topographical variables, slope angle, aspect, curvature, elevation, 

and soil thickness were commonly employed. The Topographic Wetness Index (TWI) emerged 

as the predominant hydrological factor, followed by the Stream Power Index (SPI) and Drainage 

Density (DDe). Proximity-related variables like Distance to Drainage (DDr), Distance to Faults 

(DF), Distance to Roads (DRo), and Distance to Lineaments (LB) were frequently utilized. 

Additionally, some studies incorporated various measurements of rainfall (R) to analyze their 

relationship with landslide occurrences (Lima et al., 2021). 

In the study conducted by Lima et al., (2021) of research studies on DdLSM, it was found that, 

on average, seven variables were used as predictors. Some studies used only one or two 

predictors, while others utilized up to twenty. Thematic and topographical variables were 
identified as the most employed. 

 

3.7. Modeling techniques  
 

The modeling approach encompasses a variety of predictive techniques, including both 

mathematically oriented methods (such as statistical approaches) and adaptable strategies 

(like machine learning methods) known for their proficient pattern recognition. While there 

are numerous options for selecting classifiers to delineate landslide susceptibility, standardized 

criteria for choosing a specific one are lacking. The choice of modeling approach depends on 

factors such as the scale of the study area and the availability and quality of data necessary for 

the analysis (Lima et al., 2021). 

Historically, simpler yet effective classifiers like the weight of evidence have been widely used. 

However, in recent years, there has been a surge in the popularity of typical machine learning 

algorithms, such as random forest, neural networks, decision trees, support vector machines, 

and artificial neural networks, as well as Generalized Additive Models. Common choices for 

statistical methods include logistic regression, discriminant analysis, splines, generalized linear 

models (GLM), and generalized additive models (GAM). These classifiers estimate relative 

probabilities of landslide occurrence, typically ranging from 0 to 1, based on the relationships 
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between observations and predictors. To obtain an unbiased assessment of the predictive 

capability of the model, it is essential to test them using a separate set of observations (test 
sample), distinct from the data used to train the model (training sample) (Brenning, 2005; Chung 

& Fabbri, 2003). 

The selection of a sampling partitioning strategy plays a crucial role in the validation process 

of DdLSM. Typically, testing and training samples are chosen using three primary strategies: 

random, temporal, and spatial partitioning (Chung & Fabbri, 2003). Random sampling was 

identified as the most prevalent method according to the survey of Lima et al. (2021). It involves 

an exclusive division of the inventory into training and test samples (e.g., 70% for training and 
30% for testing) (Chung & Fabbri, 2003). Temporal partitioning entails testing a model with 

observations occurring under different conditions than those used for training the model, often 

involving distinct triggering events (Brenning, 2005; Chung & Fabbri, 2003). Spatial partitioning 

utilizes landslides within specific area(s) as training samples and the remaining landslides as 

test samples (Chung & Fabbri, 2003). Utilizing multiple partitioning algorithms (e.g., spatial and 

non-spatial cross-validation) for training/test partitioning is preferable (Lima et al., 2021). 

According to the survey of Lima et al. (2021), the Receiver Operating Characteristic (ROC) curve 

is mostly used as performance evaluator for most DdLSM, alongside other evaluation 

techniques including the R2 coefficient, confusion matrix interpretation, and Cohen Kappa 

coefficient-based methods. ROC curves are constructed by analyzing multiple confusion 

matrices, which examine the classification of samples into true positives, false positives, true 

negatives, and false negatives (Beguería, 2006). Sensitivity, measured by the true positives to 

false negatives ratio, and specificity, measured by the true negatives to false positives ratio, 

determine the values within the 0-1 range that form the basis of the ROC curve. This range 

typically indicates the model's ability to predict landslide occurrences (Lima et al., 2021). 

For the development of these prediction and evaluation techniques, the use of modern 

statistical software and related programming languages (especially open-source ones like R 

and Python) is essential. These tools provide an abundance of online resources, packages, and 

scripts for landslide susceptibility modeling (Lima et al., 2021). 

 

3.8. Software 
 

3.8.1. R and RStudio 

R is a system for statistical computation that provides a programming language, high-level 

graphics, interfaces to other languages, and tools for identifying and fixing errors (R Core Team, 

2024). The R language, developed in the 1980s by Rick Becker, John Chambers, and Allan Wilks 

at Bell Laboratories, is a dialect of S and has since been widely used in the statistical community 

(R Core Team, 2024). Furthermore, the R environment is an integrated suite for data 

manipulation, calculation, and graphical display. It is a fully planned and coherent system that 

has undergone rapid development and expansion, facilitated by a large collection of packages 
(Venables et al., 2024).  

On the other hand, RStudio is an integrated development environment (IDE) designed to 

support multiple languages, including both R and Python. It is available as open-source 
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software and includes a console, a syntax-highlighting editor that supports direct code 

execution, and a variety of robust tools for plotting. Additionally, it allows users to manage their 

workspace efficiently by providing features such as viewing history, debugging data, and 

managing the code console (Posit, 2024). 

3.8.2. QGIS 

QGIS, or Quantum GIS, is an open-source software platform that provides a map server (WMS), 

a feature server (WFS), an implementation of OGC API for Features 1.0 (WFS3), and a coverage 

server (WCS). Developed as a FastCGI/CGI application written in C++, QGIS Server operates in 

conjunction with web servers such as Apache or Nginx. QGIS platform offers support for Python 

plugins, enabling rapid and efficient development and deployment of new features (QGIS 
Community, 2024). 

QGIS Server uses QGIS as a back end for GIS logic and map rendering. Additionally, it makes use 

of the Qt library for graphics and platform-independent C++ programming. Unlike other map 

server software, QGIS Server uses cartographic rules as a configuration language, both for 

server configuration and user-defined cartographic rules (QGIS Community, 2024). 

3.8.3. SAGA GIS 

The System for Automated Geoscientific Analyses (SAGA) is an open-source geographic 

information system (GIS), predominantly licensed under the GNU General Public License. 

Programmed in C++ with an object-oriented design, SAGA operates on various operating 
systems, including Windows and Linux (Conrad et al., 2015).  

SAGA was designed to be simple and efficient implementation of spatial algorithms, serving as 

a framework for developing and deploying geoscientific methods and models. Presently, this 

modularly organized GIS software offers over 600 methods, encompassing the entire range of 

contemporary GIS functionality, from file operations and referencing to topological and 

geometric analyses of raster and vector data, and comprehensive modeling applications across 
diverse geoscientific domains (Conrad et al., 2015). 

3.8.4. Google Earth Engine (GEE)  

GEE is a free academic and research computing platform that allows users to run geospatial 

analysis in Google infrastructure. This platform boasts a catalog of multi-petabyte satellite 

imagery and provides libraries of JavaScript code for performing planetary-scale analysis. 

Users can leverage the power of JavaScript within the Earth Engine Code Editor, a web-based 

Integrated Development Environment (IDE), to develop custom scripts for processing and 
analyzing geospatial data (Google Earth Engine, n.d.). 

GEE enables users to perform advanced spatial analysis, such as detecting changes in land use, 

monitoring deforestation, and predicting environmental phenomena, utilizing predefined 

algorithms and models or by developing their own JavaScript scripts. Additionally, GEE 

provides access to an active community of users and learning resources to facilitate the 

development and collaboration in geospatial projects (Google Earth Engine, n.d.). 
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CHAPTER 4. METHODOLOGY  
4.1. Geomorphology Mapping 
Geomorphology explores landforms on the surface as well as the continuous natural and 

anthropic processes that shape them. Moreover, the essential tool for representing them is 

Geomorphological mapping. This method provides accurate and scaled representations of 

landform shapes and associated deposits using specific symbols (morphography) (ISPRA et al., 

2021).  

The Geomorphological map provides valuable information about the geometric characteristics 

of landforms (morphometry), their origin and evolution in relation to past and ongoing genetic 

agents and processes (morphogenesis), their age (morphochronology), and their state of 

activity. It enables the distinction between landforms in evolution and those that are no longer 

active (morphodynamics). Additionally, the map reveals details about the nature of associated 

surface deposits and the lithotypes belonging to substrate formations (ISPRA et al., 2021). 

Observing the limited amount of symbology on the current geomorphological maps of the area, 

published by the Geological Service in 2018 (Servicio Geologico Colombiano & Universidad 

Pedagogica y Tecnologica de Colombia, 2018a, 2018b), an effort is made to enhance them using 

the "Geomorphological Maps Guide of Italy," known as "Cuaderno 13." This guide is the official 

reference for the accurate representation of landforms on geomorphological maps of Italy at a 
1:50,000 scale, developed by the Italian Geological Service (ISPRA et al., 2021). 

Firstly, the guide emphasizes the importance of indicating the substrate, the lithology, on which 

the landforms develop. This substrate should be represented by a uniform color established in 

the guide (Table 7), without reference to geochronology. Additionally, the process of 

degradation, erosion, deformation, or rupture can be indicated through the color tone. In other 

words, darker tones indicate less erodible lithotypes, while lighter tones indicate lithotypes 
more prone to erosion or with degradation processes (ISPRA et al., 2021). 

Table 7. The category in which lithotypes are grouped with their respective colors for cartographic 

representation. Modified from ISPRA et al., (2021). 

Lithotypes Color Hexadecimal 
code 

Predominantly calcareous rocks, anhydrite, and gypsum Brown #71431D 
Predominantly dolomitic rocks Pink #D2655E 
Predominantly siliceous rocks Green #00A15E 
Marl, marl-pelitic, and pelitic rocks Gray #808080 
Rocks consisting of alternations.  
(e.g., arenitic-pelitic and pelitic-arenitic, marly arenitic, etc.). 

Sky blue #0063A0 

Predominantly sandstone rocks (Arenites and sands). Yellow #FFD100 
Rudite rocks (gravel and conglomerates) Ochre #F47321 
Effusive and volcaniclastic rocks Orange #FFA500 
Massive intrusive and metamorphic rocks Bordeaux #8B2635 
Schistose metamorphic rocks. Purple #745399 

Respect to the landforms and deposits, it is necessary to delineate them with continuous or 

discontinuous lines (in the case of uncertain or buried boundaries). Likewise, they should use 

a color corresponding to the morphogenetic process that generated them (Table 8), employing 

areal, linear, or point symbols. Shapes characterized by their own configuration will be 

represented on a white background, such as cones, debris cones, landslide bodies, and rock 
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glaciers. Additionally, to indicate the morpho-evolution of the landform, two categories are 

distinguished: active or relict. In this regard, active processes should be represented with more 

intense or darker colors, while relict forms should have lighter or clearer tones (ISPRA et al., 

2021). 

Surface deposits are represented by symbols selected based on the predominant particle size 

and their degree of cementation. Table 9 provides basic symbology (patterns) to represent 

various grain size classes. In the case of deposits composed of mixed grain size classes, they 

should be represented by combining the symbols mentioned above. Similar to landforms, the 

color of the symbols indicates the predominant morphogenetic process that generated the 

deposits and their level of activity (ISPRA et al., 2021). 

Following the division by municipalities (Chipaque, Caqueza, Quetame, Guayabetal, and 

Villavicencio) in the study area, geomorphological mapping will be carried out at a scale of 

1:100,000 for each of them. Consequently, symbols provided by the 'Cuaderno 13' guide will be 

used to represent those landforms with lengths greater than 100 meters, indicating point 

features, as well as linear features for those with lengths greater than 500 meters, and areal 

features larger than 250,000 m2 or 0.25 km2. This ensures that these identified features can be 

easily distinguishable on the map. 

Table 8. Landforms grouped based on the morphogenetic process that generated them and their 

corresponding colors employed in cartographic representation. Modified from ISPRA et al., (2021). 

    
Morphogenesis Type of forms Color 

hexadecimal 
color 

NATURAL 

Forms related to 
endogenous 

dynamics 

Tectonic forms   Dark brown #462810 

Volcanic forms 
destruction 

Light brown #9F8047 
costruction 

Forms related to 
exogenous dynamics 

Litho-structural forms   Ochre #CC8E35 

Gravitational forms 

erosion 

Red #FF0000 accumulation 

deformation 

Fluvial, fluvio-glacial 
due to runoff forms  

erosion 
Green #008000 

accumulation 

Karstic forms 
erosion 

Orange #FFA500 
accumulation 

Elements of current 
glacialism and nivation   Turquoise 

#40E0D0 

Glacial forms 
erosion 

Purple #800080 
accumulation 

Periglacial and nival 
forms 

erosion 

Blue #0000FF accumulation 

deformation 

Coastal forms 

emerged and 
submerged erosion Azure #007FFF 

accumulation 

  Eolic forms 
erosion 

Yellow #FFFF00 
accumulation 

  Forms of other origin   Fuchsia #FF00FF 

  
Anthropic forms 

erosion 
Black #000000 

ANTHROPOGENIC accumulation 
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Table 9. Symbolism of the prevalent grain size of deposits. Modified from ISPRA et al., (2021). 

 

 

4.3. Pluviosity  
The precipitation is the process by which water falls to the land surface in the form of rainfall, 

snowfall, hail, and sleet. This process requires the condensation of water molecules, which are 

usually attracted to particles of dust in the air (Chow et al.,1971). 

To measure precipitation at a specific station (point in space), a variety of instruments or 

gauges are used. Generally, there are two types: non-recording (storage) gauges and recording 

gauges. Point-precipitation is typically expressed in depth units (volume divided by collector 

cross-sectional area) (Hornberger et al., 2014). The typical funnel used for precipitation 

measurement represents depth units in millimeters (mm), where 1 millimeter of precipitation 

is equal to one liter of water per square meter of area. 

The average annual precipitation on the land surface of the Earth is about 800 mm, but there 

are some places with great variability, such as Arica in Chile with an annual average of 0.5 mm 

and Mt. Waialeale in Hawaii, which receives 11,680 mm per year on average (Chow et al.,1971). 

In each catchment area, we aim to determine the average precipitation. However, in most cases, 

there is only one rain gauge within the catchment of interest. Consequently, there is no option 

but to assume that a single point of measurement represents the mean value over the 

catchment. Another option is to increase the coverage area to include more station points. 

In our pluviometric analysis was included rainfall-data from 19 station points provided by the 

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (Fig. 45). However, only 

three pluviometric stations- Las Casas, Monterredondo, and Susumuco- are located within the 

study area limits (Fig. 45). To fully understand the rainfall behavior in the study area, we also 

incorporated pluviometric data from stations surrounding the study area limits, including: 

Acueducto la Esmeralda, Australia, Bolsa La, Buenavista, Choachi 40, Choachi 80, Cisaca, El 

Calvario, Fomeque, Gutierrez, Juan Rey, Llano Largo, Monfort, Parrados de San Isidro, Servita, 

Une (Fig. 45). 
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Fig. 45. Pluviometric stations inside and surronunding the study area. 

At each station, monthly precipitation data were extracted for the period from 2007 to 2022, 

providing a dataset spanning 15 years. This statistical technique known as frequency analysis 

allows us to describe the temporal characteristics of precipitation at a particular station 

(Hornberger et al., 2014).  

During this statistical analysis and data refinement process, the monthly average for each 

month over a 15-year period is calculated, resulting in 12 values per station known as "multi-

year monthly mean precipitation". Additionally, the "mean total annual precipitation" is 

determined by averaging the rainfall across all months of the year. It is important to note that 

if any year lacked data for a particular month, it was not possible to calculate the annual average 

for that year. Subsequently, the average of the years is calculated from the annual averages, 

thus yielding a final data point of annual precipitation per station. The summary information of 
the 19 pluviometric station is in the Table 10. 

To estimate the true distribution of precipitation over an area, the isohyetal method is 

recommended to be applied (Chow et al.,1971). Isohyets are contour lines that represent 

constant rainfall, identifying areas with equal precipitation levels. This method involves 

interpolating pluviometric data between adjacent stations (Hornberger et al., 2014). Typically, 

it is performed through automated interpolation techniques such as Inverse Distance 

Weighting (IDW) or Kriging.  

The isohyets of monthly mean precipitation and mean total annual precipitation in the study 

area are derived using the Inverse Distance Weighting (IDW) method. This approach 

estimates values between points with known (measured) values, assigning weights to each 

measurement based on its distance from the analyzed point. Closer points to the stations are 

given greater weight (Hartkamp et al., 1994; Hennemuth et al., 2013). 
 



  
 
Table 10. Multi-year monthly mean precipitation (Jan. to Dec.) and the mean total annual precipitation (Mean Year) across19 pluviometric station. 

 

  Name Station ID 
Station 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 
Year 

1 Acueducto La 
Esmeralda  

35030040 69.74 88.85 297 548.71 720.47 589.81 503.89 474.42 381.64 496.68 464.59 236.25 4915.18 

2 Australia  21201300 30.18 38.22 76.92 134.52 167.48 169.5 174.89 129.86 90.4 100.81 101.42 40.58 1254.76 

3 Bolsa La  35025060 38.48 60.27 105.12 164.69 168.11 157.69 153.04 120.7 86.97 138.49 163.72 55.06 1419.46 

4 Buenavista 35030090 178.71 163 457.98 866.99 1025.15 961.99 925.47 700.48 623.59 778.55 800.61 480.88 7997.19 

5 Choachi   35020240 21.58 38.62 90.5 181.32 167.1 177.12 141.52 118.4 63.32 110.97 124.45 51.88 1213.67 

6 Choachi  35020280 16.86 28.56 61.81 121.19 145.06 127.04 117.4 97.64 71.08 78.36 85.97 34.26 997.77 

7 Cisaca  21200850 11.95 38.95 48.1 88.72 68.47 117.78 74.9 69.9 31.3 63.48 29.48 38.92 681.95 

8 El Calvario 35030010 33.9 53.34 148.2 280.75 373.54 418.33 429.36 376.76 279.98 191.92 142.86 80.46 2809.4 

9 Fomeque  35020290 19.76 39.38 81.99 139.06 180.66 158.17 156.41 122.43 82.88 110.14 96.57 41.97 1216.08 

10 Gutierrez  35020300 47.6 79.3 118.56 188.04 249.59 275.09 286 206.66 123.54 123.79 129.86 64.22 1890.47 

11 Juan Rey   21202040 36.7 63.96 80.54 125.98 122.86 122.15 114.72 93.45 53.52 118.47 136.32 90.17 1083.78 

12 Las Casas  35030080 12.23 26.91 65.95 122.77 142.02 131.09 122.44 115.47 73.18 72.95 77.28 31.98 972.67 

13 Llano Largo  35025050 27.8 49.51 105.2 157.56 180.68 201.04 195.88 157.35 82.17 114.11 142.94 67.73 1527.74 

14 Monfort  35030020 108.29 131.31 293.06 607.27 861.88 766.38 759.75 641.13 635 535 372.36 218.6 5975.36 

15 Monterredondo  35020010 42.81 61.19 144.06 251.94 367.88 367.27 426 381.06 252.5 184.25 133.5 87.93 2739.21 

16 Parrados San Isidro   35030230 29.28 50.38 119.38 197.38 238.45 337.15 284.15 245.25 178.25 152.07 170.1 85.7 2087.52 

17 Servita  35030290 123.15 120.36 407.95 756.19 953.65 834.58 760.34 629.91 556.64 616.96 676.62 370.25 6806.59 

18 Susumuco  35020020 86.45 86.92 261.11 489.98 696.5 654.21 693.58 585.42 474.75 342.18 294.47 193.59 4923.31 

19 Une   35020420 11.72 33.08 67.7 137.98 133.28 156.3 128.85 105.2 66.95 71.65 74.7 49.08 1036.47 
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4.4. Landslides inventory 
In the study area, there is a variety of landslides triggered by multiple events occurring on dates 

that are unknown or not recorded. Consequently, the inventory within the study area of “Via al 

Llano” will be a multi-temporal inventory, reflecting the cumulative landslide events over the 

years. However, there are some challenges in creating the inventory due the presence of recent, 

old, or very old mass movements, as well as the challenge of identifying landslides (or portions 
thereof) that exhibit faint, subtle changes in topography or land cover (Guzzetti et al., 2012). 

4.4.1.  Google Earth 

Through images available on Google Earth, which have very high resolution from MAXAR 

technologies, the visual inventory within the study area was created. The inventory consists of 

vector polygons that include the landslide source area, main pathway and depositional zone of 

each landslide. Mass movements were identified using the criteria as outlined in Rabby & Li, 

(2019), which include factors such as changes in vegetation (absence in subsequent images 

compared to prior ones), morphological features (concave and plate areas), elevation, slope 

characteristics, and the presence of deposits at the base of suspected areas. The absence of 

vegetation was considered the most important indicator of landslides, contrasting with stable 

slopes covered by vegetation. This assessment was further supported by the analysis of the 3D 

model provided by Google Earth, enabling a comprehensive view of slope morphology, 

elevation, and steepness.  

4.4.2.  Google Earth Engine 

To overcome the time-consuming limitations of identifying each landslide on Google Earth, we 

created an inventory using optical and radar images available in Google Earth Engine (GEE). 

This platform allows us to write code that can analyze and process a large quantity of images, 

in less than 1-2 minutes, a key advantage compared to traditional download process.  

To identify areas affected by landslides, we rely on the principle that commonly landslides leave 

a scar without vegetation with the exposed substrate (Guzzetti et al., 2012). To achieve this, we 

use optical images in which we apply the Normalized Difference Vegetation Index (NDVI). This 

index is based on the relationship between the reflectance of vegetation in the near-infrared 

(NIR) and red bands, allowing us to identify areas with and without vegetation in a range from 

-1 to 1 (Equation 1; Rouse et al. 1974). Additionally, we leverage radar images in the cross-

polarization VH band, which helps us detect the backscattering of rough and vegetated areas, 

identified by high values, and areas with low backscattering, indicating flat or smooth areas 

with little or no vegetation (Handwerger et al., 2022). 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
                           Equation 1 

 

To compare the results of the inventory crated on Google Earth with those created by GEE, we 

must define a period of a landslide event. However, as this is a multi-temporal inventory, since 

there is no single event that has created the mass removal phenomena in the area, it has been 

decided to provide a range as the period when the landslides have formed. "Firstly, the date of 

the image available in Google Earth indicates a date following the event where landslides were 

created. Therefore, mass movements occurred in the months leading up to that date. 
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Consequently, to differentiate the characteristics of the terrain before and after the landslide 

on GEE, we defined a pre-event and post-event period. The pre-event period begins with the 

data available since Sentinel 2 images are available (2017) until one year before the image date 

in Google Earth. The post-event period begins with the data of the Google Earth image until the 
beginning of the rainy season in the area, which means until May of each year (Table 11). 

 

Table 11. Date and range period of images used to create the landslide inventory.   

DATASET CHIPAQUE CAQUEZA QUETAME GUAYABETAL VILLAVICENCIO 
Date Google 
Earth Image 

Nov.2021 Dec.2022  Jan.2020 Feb.2021 Dec.2020 

Pre-Event Range Jan. 2017-
Dec.2020 

Jan. 2017-
Dec.2021 

Jan. 2017-
Jan.2019 

Jan. 2017-
Jan.2020 

Jan. 2017-
Dec.2019 

Post-Event Range Nov. 2021-
Apr.2022 

Dec.2022-
Apr.2023 

Jan.2020-
Apr.2020 

Feb.2021-
Apr.2021 

Dec.2020-
Apr.2021 

 

On GEE, we selected the optical images from Sentinel 2 that are useful for the inventory, 

applying filters for the time period (pre-event and post-event) and a cloud cover filter 

indicating a maximum of ten percent. Additionally, we applied a cloud mask to hide these cloud 

values. Then, from each selected image, the red band (“B4”) and the NIR band (“B8”) were 

extracted to calculate the NDVI.  Following the procedure outlined by Scheip et al. (2021), the 

NDVI image of each period stack was generated using the maximum NDVI value per pixel. 

Subsequently, the relative difference of NDVI (rdNDVI) was calculated using NDVIpre and 

NDVIpost to express the gain or loss of NDVI in a normalized manner as a percentage (Equation 

2). This procedure helps mitigate biases arising from seasonal variations. Finally, the negative 

values of rdNDVI represent vegetation loss, and the more negative the value, the more 
significant the loss. 

𝑟𝑑𝑁𝐷𝑉𝐼 = (
𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡−𝑁𝐷𝑉𝐼𝑝𝑟𝑒

√𝑁𝐷𝑉𝐼𝑝𝑟𝑒+𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡
) × 100                                      Equation 2 

 

On the other hand, with SAR radar images from Sentinel 1, were applied filters to select cross-

polarization band (vertical/horizontal “VH”) and to filter images for the specific time period 

(pre-event and post-event). The VH band are sensitive to forest biomass structure and 

roughness surfaces (Le Toan et al., 1992), therefore is useful to identifying landslides in 

vegetated areas. We followed the procedure outlined by Handwerger et al. (2022) to detect 

potential landslides, which involved calculating the difference in backscattering between pre- 

and post-event conditions using the mean of the periods stack. The coefficient of backscattering 

in dB, which is the intensity, can range from positive and negative values. Hight intensity 

backscattering represented by less negative values indicate areas with forest biomass and 

rough surfaces. Therefore, when landslide occur, the intensity of backscattering decreases to 

highly negative values because the surface becomes smoother. In line with this, when the 

difference between the mean of the pre- and post-event images is calculated, positive values 

correspond to a decrease in SAR backscattering intensity post-event (Handwerger et al., 2022). 

Ground surface change due to flooding, agriculture, mining, deforestation, and more, can also 

be detected in the previous procedures, which could result in false positives (Handwerger et 

al., 2022). Therefore, to address this challenge Handwerger et al. (2022) and Scheip et al. 
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(2021), removed some areas that unlikely to correspond to landslides, such as those with low 

slope, by employing threshold-base masks of slope and curvature derived from topographic 

data from SRTM DEM available on GEE. In our study area, a slope mask was applied to cover 

areas with slope values below 10°, along with flat and convex areas.  

4.5. Confusion Matrix 
In remote sensing classification studies, the confusion or error matrix is widely used to assess 

classification accuracy. The class labels observed in the map and those in the reference dataset 

yield a basic 2×2 or binary confusion matrix (Foody, 2020). In each case (e.g., an image pixel), 

it either exhibits (+) a specific trait or does not (-), for example representing the presence or 

absence of a certain feature. For instance, in our scenario, it is denoted as landslides and non-

landslides. The inventory obtained by GEE will be assessed using the confusion matrix, with the 
inventory generated on Google Earth serving as the reference. 

 

Fig. 46. Confusion matrix for a binary classification. 

The binary confusion matrix consists of four elements that summarize every possible scenario 

of class labeling. "A" or true positives represent the cases classified as landslide presence in 

both image classification and reference data. "D" or true negatives represent the cases classified 

as non-landslide or landslide absence in both image classification and reference data. Thus, the 

cases lying in elements of the main diagonal, A and D, represent those that have been correctly 

classified. All the cases that have been incorrectly classified lie in the off-diagonal elements of 

the matrix B and C. "B" or false positives are those cases that have been classified as landslides 

but are not actually landslides. Such cases represent commission errors, or type I errors. "C" or 

false negatives have landslide presence according to the reference data but were classified as 

non-landslides; these cases represent omission errors, or type II errors (Foody, 2020; Stehman, 

1997). 

From this information, it is possible to obtain certain metrics or measures to evaluate accuracy, 

which include the following (Gu et al., 2009; Valero-Carreras et al., 2023): 

• Sensitivity reflects the ability to classify positive cases (landslides). It is calculated as the 

proportion of truly positive cases relative to the total number of actual positive cases. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                               Equation 3 

• Specificity is the capability to classify negative cases (non-landslides). It is the 

proportion between truly negative cases and the set of all the negative predictions. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                               Equation 4 
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• Precision is a measure used to evaluate landslide classification among the correctly 

classified as landslides. It is calculated as the proportion between truly positive 

classification and the set of all the real positive values. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                               Equation 5 

• Accuracy (ACC) is the proportion of correctly classification. It measures how well a 

classify the landslides. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
                                               Equation 6 

• The kappa coefficient, κ, proposed by Cohen (1960), is a statistic that measures the 

agreement or disagreement between two classifiers. To do this, the probability of 

agreements that are not given by chance (ACC -Pc) and the probability of disagreement 
by chance (1-Pc) are calculated (Valero-Carreras et al., 2023):  

𝑃𝑐 =
(𝑇𝑃+𝐹𝑁) ∗(𝑇𝑃+𝐹𝑃)+(𝑇𝑁+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)

𝑁2                                   Equation 7 

κ =
𝐴𝐶𝐶+𝑃𝑐

1−𝑃𝑐
                                                                                      Equation 8 

The magnitude of κ lies on a scale from −1 to +1 but interest is typically focused on only on 

positive values because negative values indicate a level of agreement less than that due to 

chance and can be difficult to interpret (Fig.47) (Foody, 2020; Sim and Wright, 2005). The 

maximum value of κ = +1 occurs when there is perfect agreement and a value of κ = 0 arises 

when the observed agreement equals that due to chance (Cohen, 1960; Foody, 2020). However, 

there are different scales for interpreting the kappa coefficient, as summarized by Foody, 2020, 

based on Czaplewski, 1994 (Fig.47). 

 

Fig. 47. Scales for interpreting the kappa coefficient (A) Landis & Koch scale (1977). (B) Fleiss et al., 

scale (2013). (C) Monserud & Leemans scale (1992). Modified from Foody (2020). 
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In addition, to evaluate whether there is a tendency of type I or type II error, or if the difference 

between them is due to chance, the McNemar test can help us identify it. This statistical test 

allows us to determine if there is a significant difference between the values of the two 

discordant cells (Fig.46, B and C), based on the null hypothesis that both types of discordance 
are equally probable (Pembury Smith & Ruxton, 2020). 

4.6. Independent variables  
Stochastic methods employed in landslide susceptibility mapping involve the selection of a set 

of independent variables used to predict the landslide occurrence (usually represented as a 

binary variable). These predictors are carefully chosen from a collection of geo-environmental 

variables that act as proxies for the factors believed to influence the primary mechanism of 

slope failure, as evidenced by prior research (e.g., Conoscenti et al., 2015; Costanzo et al., 2014; 

Rotigliano et al., 2019, and reference therein). Consequently, these statistical methods enable 

investigators to assess the probability of future mass movement by defining quantitative 

relationships between the spatial distribution of the independent and dependent variables 

(Conoscenti et al., 2015).  

The geo-environmental variables associated with topographic attributes were derived from a 

12.5m cell digital elevation model (DEM), from Also-Palsar taken in 2011. These variables were 

extracted using the open-source GIS software SAGA (Conrad et al., 2015). In total 11 variables 

were extracted from the DEM, and a summary of these variables is provided in Table 1.  

Additionally, lithological units obtained by (INGEOMINAS, 1998, 2011), the mean total annual 

precipitation generated by the data precipitation of IDEAM and the NDVI obtained from 

Sentinel 2 images were included as predictor variables.     

4.6.1. The elevation (ELE) 

Altitude data above sea level is represented in the Digital Elevation Model (DEM) as the value 

of each pixel. However, there are some pixels that are inconsistent, as they are surrounded 

by cells with higher elevation, meaning they are depressed cells known as sink. These 

depressions in the DEM can be natural features of the terrain or suspicious artifacts, but they 

can also represent imperfections in the DEM due to errors during its generation. In our work, 

we have used the 'fill sinks' method by Wang and Liu (2006), which considers the 

relationship of depressed pixels with the flow pattern in the basin, in order to fill those sinks 
found in the study area.  

 

4.6.2. The slope (SLO) 

It is the maximal rate of change of elevation values, which indicates the angle between the 

horizontal plane and the one tangential to the surface (Zevenbergen & Thorne, 1987). 
Defined as:  

SLOPE=𝑎𝑟𝑐 𝑡𝑎𝑛(|(𝑝, 𝑞)|)                                         Equation 9 

𝑝 =
𝜕𝑧

𝜕𝑥
    𝑞 =

𝜕𝑧

𝜕𝑦
                                                           Equation 10 

 

 



67 
 

4.6.3. The aspect (ASP)  

It indicates the flow-line direction. It is a circular land-surface parameter and describes the 
same slope direction (Zevenbergen & Thorne, 1987). Defined as: 

ASPECT = 180 − arctan (
𝑞

𝑝
) + 90 ∗ 

𝑝

|𝑝|
                                    Equation 11 

The Northness (N) and Eastness (E) are derived from the cosine and sine of the aspect (ASP) 

information. 

 

4.6.4. Plan Curvature (PCV)  

It is the second partial derivative of elevation. It is a normal section of a smooth surface and 

is known as the curvature of the contour line, so the flow lines can converge or diverge if the 

plane curvature is concave or convex, respectively (Dikau, 1988). Defined as:  

𝑟 =
𝜕2𝑧

𝜕𝑥2 , 𝑠 =
𝜕2𝑧

𝜕𝑥𝜕𝑦
, 𝑡 =

𝜕2𝑧

𝜕𝑦2                                                                    Equation 12 

PLANC =  −
𝑞2⋅𝑟−2𝑝⋅𝑞⋅𝑠+𝑝2⋅𝑡

√(1+𝑝2+𝑞2)3
                                                                  Equation 13 

 

4.6.5. Profile curvature (PRC) 

It is the second partial derivative of elevation. The profile (or vertical) curvature can be used 

to distinguish (locally) convex and concave shapes. It describes the relative 
deceleration/acceleration of flow (Shary, 1995). Defined as: 

𝑃𝑅𝑂𝐹𝐶 = −
𝑝2⋅𝑟+2⋅𝑝⋅𝑞⋅𝑟⋅𝑠+𝑞2+𝑡

(𝑝2+𝑞2)⋅√(1+𝑝2+𝑞2)3
                                                Equation 14 

 

4.6.6. Convergence Index (CI)  

It gives much smoother results of plan curvature, so it calculates an index of 

convergence/divergence to overland flow according to the slope gradient of surrounding 

cells. The result is given as a percentage. Convergent has negative values and divergent 
positive values (Köthe et al., 1996; Watkins, 2019).  

 

4.6.7. LS Factor (LSF)  

It determined the slope length by the slope gradient and the slope length factor (RUSLE 

equation) for a specific cell. On last, is taken in account the unit contributing area at the inlet 

and outlet grid cell. High values are related with the steepest slopes (Desmet & Govers, 

1996). Is used to know the transport capacity and erosional forces. 
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4.6.8. Stream Power Index (SPI)  

It describes the potential of flow erosion. Stream power and potential erosion increase by 

the steepness increase, that means the amount of water contributed by the upslope area and 

velocity of water flow is high (Gruber & Peckham, 2009). Is defined as: 

SPI = A ・ tan(S)                             Equation 15 

Where A is the catchment area and S the slope. 

 

4.6.9. Topographic Position Index (TPI)  

It compares the elevation of each cell in a DEM to the mean elevation of a specified 

neighborhood around that cell. Positive TPI values represent locations that are higher than 

the average of their surroundings (ridge), and negative TPI values represent locations that 

are lower than their surroundings (valleys). TPI values near zero are either flat areas (slope 

near zero) or areas of constant slope. TPI values are an inherently scale-dependent 

phenomenon, according to the radio of the surrounding (Weiss, 2001). 

𝑇𝑃𝐼 = 𝑖𝑛𝑡((𝑑𝑒𝑚 − 𝑓𝑜𝑐𝑎𝑙𝑚𝑒𝑎𝑛(𝑑𝑒𝑚, 𝑎𝑛𝑛𝑢𝑙𝑢𝑠, 𝑖𝑟𝑎𝑑, 𝑜𝑟𝑎𝑑)) + 0.5)                                Equation 16 

Scalefactor= outer radius in map units 

Irad= inner radius of annulus in cells 

Orad = outer radius of annulus in cells 

Taking in account Slope Position, landscapes can be classified into discrete slope position classes.  

 

4.6.10. Topographic Wetness Index (TWI)  

Describe the tendency of a cell to accumulate water. Defined as: 𝑙𝑛[𝐴 tan 𝛽⁄ ],where A is the 

specific catchment area and β is the local slope angle (Quinn et al., 1995). 

 

4.6.11. Vertical Distance to Channel Network (VDCN)  

It is obtained by an interpolation method, that does an iterative aggregation of values of the 

cells, (the number of steps depends on the size of the grid data set). The interpolation is 

between the position of the grid cells with channel lines (that had got z-values), and in each 

interpolation a z-value is assigned. The result is a grid data set that constitutes a theoretical 

surface regarding to the channel lines (“base level”). The VDCN is the result of the subtraction 
between the DEM and the base level (Bock & Köthe, 2008).  
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4.7. Data sampling 
To explore the spatial connections between predictor variables and the geographical position 

of the landslides, we selected a mapping unit consisting of a grid with 12.5meter cells, 

corresponding to the resolution of the available DEM.  

Additionally, our sampling strategy entailed partitioning the landslide area into three distinct 

datasets: SUP, INF, and BODY (Fig. 48). This division aims to assess the predictive capacity 

differences for various parts of the landslide (source area, entire area, and deposition zone) 
within each dataset, as explained below:   

• SUP and INF: These datasets contain the highest and the lowest 10% of cells within each 

landslide area, respectively. SUP aims at representing the conditions of the main source 

area while INF cells are expected to characterize the accumulation area. 

• BODY: This dataset encompasses random cells within the landslide polygons, providing 

a comprehensive view of the entire landslide area. 

 

Fig. 48. Representation of data sampling strategy on landslides.  (a) Random pixels from the highest 

10% landslide area. (b) Random pixels from the lowest 10% landslide area. (c) Random pixels from all 

landslide areas.  

Furthermore, during the sampling process, each mapped landslide was assigned a distinct and 

unique identification (ID). This distinction is crucial to avoid selecting cells during the testing 

phase from the same landslides used in the training process.  mages. 

 

 

 

 

 

 



70 
 

4.8. Statistical modeling  
The probability of landslides in the study area was estimated by generating models using the 

Multivariate Adaptive Regression Splines (MARS) algorithm. MARS is a non-parametrically 

methodology for estimating general functions from high-dimensional data (independent 

variables) (Friedman, 1991). This approach extends traditional linear models by creating 

multiple basis functions or regression models, through a two-step strategy involving forward 

and backward procedures.  

 

In the forward step, many basic functions are generated intentionally to capture the nuances in 

the data, sometimes resulting in overfitting (Friedman, 1991). Subsequently, the most suitable 

basis function is selected as candidate “variables” in the backward step. To connect these 

separate regression lines, the algorithm identifies optimal breakpoints, known as knots. This 

results in a piecewise linear response with breaks at the knots, or regression splines across 

neighboring subsets, yielding a smooth response curve (Vorpahl et al., 2012).  

The primary utility of MARS lies in its ability to derive a predictive relationship between a 

“response” variable and numerous concurrently measured “predictor” variables. It 

accomplishes this task using only the values of the predictor variables (training data) to 

establish a rule for estimating (missing) response values in future observations (Friedman, 

1991).  

The models were created using the “Earth” package in the open-source statistical programming 

language “R” (R Core Team, 2021). In our application, we integrated both categorical and 

continuous variables to construct distinct models. To ensure the credibility of our results, we 

generated ten calibrations, and ten validation samples for each model. 

4.9. Validation strategy  
To assess the performance of the model, we conduct 10 random repetitions. This strategy helps 

prevent overfitting or underfitting with the training dataset (Chung and Fabbri 2003). In this 

study, for each dataset, 75% of the data was utilized for model training, while the remaining 

25% was reserved for testing. During this process, data was randomly sampled to ensure a 

representative and unbiased selection. Additionally, the predicted binary variable, which in this 

study signifies the presence or absence of landslides, was kept at a 1:1 ratio. 

We evaluated the accuracy of the models obtained for each dataset, by generating receiver 

operating characteristic (ROC) curves and calculating the corresponding area under the ROC 

curve (AUC) for training and testing sample. The ROC curve is a graphical representation that 

relies on Sensitivity (true positive rate, TPR) and the associated value of 1-Specificity (false 

positive rate, FPR) at various cut-off thresholds (Tien Bui et al., 2016). The AUC is utilized to 

compare the overall performance of the models. It can be interpreted as the probability that the 

classifier will correctly rank a randomly selected pixel as either a landslide or non-landslide, 

where an AUC value of 1 indicates a model with exceptional discrimination between areas of 
high and low landslide probability (Tien Bui et al., 2016).  

In this experiment, we classified the accuracy of the models as either acceptable, excellent, or 

outstanding based on the AUC values. Models were considered acceptable with AUC values 

greater than 0.7, excellent with values exceeding 0.8, and outstanding with values surpassing 

0.9 (Vargas-Cuervo et al., 2019).



  
 

CHAPTER 5. RESULTS  
 

5.1. Geomorphology Map 
In the study area, the identification of both natural and anthropogenic landforms was carried 

out using the methodology of the "Geomorphological Maps Guide of Italy," known as "Cuaderno 

13” (ISPRA et al., 2021). In the 'Vía al Llano' area, the main morphogenetic process corresponds 

to the lito-structural, characterized by cuesta and trench resulting from selective erosion, as 

well as structural slopes, some of which also exhibit tectonic landforms. The second principal 

morphogenetic process identified is the fluvial, as mentioned, the study area comprises basins 

whose waters flow into the Negro and Guayuriba rivers, along which the road runs almost 

parallelly. Lastly, it is important to highlight the presence of gravitational landforms on all 

slopes of the mountainous area. 

In the area of Chipaque (Fig. 49), we find a significant presence of lito-structural landforms with 

slopes whose main dip is towards the northeast. Additionally, selective erosion in the form of 

trenches and knickpoints is observed. In some slopes next to the cuesta dip, a sub-horizontal 

surface can be identified. Regarding fluvial landforms, the presence of V-shaped valleys and 

relict alluvial fans stands out, with no other significant fluvial landforms, as the Rio Negro runs 

along the southern boundary of the area. On the other hand, gravitational processes are evident 

with slow movements present in the western and northern parts of the area. The highway 

passes over these areas at the beginning from the west. Furthermore, there is an anthropogenic 

landform represented by the quarry to the west, at the beginning of the road. Finally, the 

Chipaque area is strongly dominated by a lithology alternating between mudstones and 

sandstones (blue in color) from Chipaque Formation., where selective erosion is observed (Fig. 

49). 

 

Fig. 49. Geomorphological map of Chipaque. 
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In general, the region of the municipality of Cáqueza is predominantly controlled by structural 

landforms (Fig. 50). There is a widespread presence of cuesta, whose dip orientation is not 

uniform throughout the area, with a southern orientation in the central part and an eastern 

orientation in the southern part of the area, after crossing the boundaries of some faults. In 

some areas, it is also possible to observe tectonically controlled sub-horizontal surfaces, as well 

as stepped slopes and crests of selective erosion. Additionally, in the southern part, there is a 

hill where the presence of "Hogsback" (those where lines gather) is observed (Fig. 50). 

Regarding fluvial landforms, a flat area intersected by some watercourses is observed in the 

northern part of the area, where alluvial terraces can be distinguished, as well as an alluvial 

cone. Then it is possible to identify the floodplain area of the Negro River, which begins on the 

west side and remains significant in the central and final part of the area. However, the road 

follows the southern edge of this floodplain throughout its route in the Cáqueza area. It is 

important to highlight that within one of these fluvial landforms, specifically one of the terraces 

on the southern side, the urban area of Cáqueza is located, an area that has been influenced by 
mass movements over the years (Fig. 50). 

In the area, there is the presence of fault facet landforms associated with faults, which align 

with the Cáqueza Fault whose strike is east-west. However, these are the only tectonic 

landforms that were identified. As for gravitational landforms, slow movements were identified 

on the northern slope facing the triangular facet of the Cáqueza fault, due to the presence of 

lobes and non-uniform surfaces. Finally, we see once again a prevalence in rocks alternating 

between shales and sandstones (blue in color), this time belonging to the Lutitas de Macanal 

Formation (Fig. 50). 

 

Fig. 50. Geomorphological map of Cáqueza. 
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Firstly, in this area, we observe a significant change in lithology. Although rocks with 

alternation persist, metamorphic schist rocks predominantly prevail. This change is also 

reflected in the landforms, as gravitational landforms predominate here. In the northern part, 

within the alternating lithology (blue color), slow movements are still observed, while debris 

flow channels prevail in the southern part of the area. Additionally, on other slopes, there are 

bodies of rotational and translational movements, along with their scarps, specifically in the 

Monterredondo area. Significant-sized debris cones and scree slopes are also found in the 
central part (Fig. 51). 

As for fluvial landforms, alluvial terraces have been identified in the northern and central parts 

of the area, with one of these terraces, specifically in the central part, housing the urban area of 

Quetame. Fluvial erosion facet due to fluvial erosion are found in other areas. Moreover, 

floodplain areas of the Negro River have been identified in both the central and southern parts 

of the area. An alluvial fan is also identified in this southern part, precisely where the urban 

area of Guayabetal is located (Fig. 51). 

Lastly, within the lito-structural landforms, the presence of some flat slopes with inclinations 

is observed, possibly associated with structural planes. Additionally, in the highest parts of the 

mountainous landscape, crests and trenches associated with differential erosion within the 

metamorphic body are found (Fig. 51). 

 

 

Fig. 51. Geomorphological map of Quetame. 
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In the area, metamorphic schist rocks are prevalent in the northern part, while arenitic rocks 

predominate in the south. For this reason, gravitational landforms continue to prevail in the 

area, especially in the northern area, where the presence of several debris flows and landslide 

bodies, as well as stripped surfaces, is observed. Additionally, debris cones were identified 
along with scree slopes both to the north and south of the area (Fig. 52). 

Near the Rio Negro, fluvial landforms such as terraces and floodplains are observed. At the 

beginning of the road entrance into the area, on the west side, an anthropogenic terraced area 

is observed next to an alluvial fan, as the road passes over these. Additionally, there are two 

facets of fluvial erosion, where both the highway and the Rio Negro runs between them. 

However, there are debris flow channels on these slopes (Fig. 52). Finally, in relation to 

structural areas, some crests of selective erosion were identified in both the northern and 

southern areas, as well as structural surfaces (Fig. 52). 

 

Fig. 52. Geomorphological map of Guayabetal. 

In the area of Villavicencio, several geological formations converge, within which three are 

grouped in lithologies of rocks constituted by alternations. These are the Lutitas de Pipiral 

Formation, the Lutitas de Macanal Formation, and the Capas Rojas del Guatiquia Formation. 

Then, a band of arenitic rocks belonging to the Gutiérrez Sandstone Formation passes through 

the alternation rocks. Finally, in the eastern part, the lithotype related to conglomerates (ruditic 
rocks), known as the Buenavista Breccia Formation, is identified (Fig. 53). 

Although gravitational processes had previously been related to metamorphic schist rocks, 

here, in both alternating rocks and sandstones, we observe the presence of debris flows, along 

with colluvial deposits such as scree slopes and debris cones. Additionally, within the ruditic 

rocks (conglomerates), we observe the initiation of two large debris flows (Fig. 53). 
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Regarding fluvial landforms, at the end of the road, we see the beginning of the Guayuriba River, 

where fluvial deposits, terrace landforms and the floodplain area of the river are present. 

Additionally, the highway crosses gravitational deposits and some fluvial landforms, located on 

the west side of the area. Lastly, concerning structural landforms, some crests of selective 
erosion and areas of structural planes were identified (Fig. 53). 

 

Fig. 53. Geomorphological map of Villavicencio. 

5.2. Pluviosity maps 
As a result of interpolating the annual averages from each station, the map of the annual average 

precipitation in the area was obtained (Fig. 56). This reveals values ranging from 500mm to 

7000mm per year in different areas of the study zone. Overall, precipitation increases towards 

the southeastern or final part of the road, near the city of Villavicencio. Meanwhile, the lowest 

amount of precipitation is observed near the city of Bogota. 

According to the data in Table 10 and the twelve-monthly maps obtained (Fig. 54 and 55), it is 

evident that the month with the highest precipitation is May. Based on the multi-year average 

monthly precipitation, there are two stations that reach the highest peaks of precipitation in 

the area in May, which are Servitá and Buenavista with 950mm and 1020mm, respectively. In 

these stations, during periods of lower precipitation such as January, the lowest average 

monthly precipitation has been 120mm. This value equals the monthly average of the wettest 

month (May) for the Juan Rey station in the northwest of the area. 
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Fig. 54. Multi-year Average Monthly Precipitation Maps from January (A), February (B), March (C), April 

(D), May (E), and July (F). 



77 
 

 

Fig. 55. Multi-year Average Monthly Precipitation Maps from June (A), August (B), September (C), 

October (D), November (E), and December (F). 

 

 

 

 



78 
 

 
Fig. 56. Annual Average Precipitation Map. 

 

5.3. Landslides inventory  
In the area, 2,363 landslides were identified through Google Earth images, of which 196 are in 

Chipaque, 652 in Caqueza, 1,076 in Quetame, 267 in Guayabetal, and 172 in Villavicencio (Fig. 

57A, 58A, 59A, 60A, 61A). Generally, debris flows, debris avalanches, rotational, and 
translational slides predominated, according to the classification of Hungr et al. (2014). 

On the other hand, attempts were made to obtain the inventory of each area automatically using 

optical and radar images on the Google Earth Engine (GEE) platform. The inventory obtained 

with NDVI difference with optical images, creates small points, and polygons (Fig. 57C, 58C, 

59C, 60C, 61C). In contrast, the inventory with radar images, resulting just in the random 
distribution of pixels (Fig. 57B, 58B, 59B, 60B, 61B). 

Additionally, it is important to note that landslides identified in Chipaque occurred after 

November 2021, in Caqueza after December 2022, in Quetame after January 2022, in 

Guayabetal after February 2021, and in Villavicencio after December 2020. The procedure 
carried out to identify the landslides in each study area with GEE is presented below. 

Chipaque: https://code.earthengine.google.com/429600d2af8dfd1d6e184b42a84a5959 

Caqueza: https://code.earthengine.google.com/13b0b6ec53ada51f1fa2852218202447 

Quetame: https://code.earthengine.google.com/795317fc103181768819faf63b987ba8 

Guayabetal: https://code.earthengine.google.com/8f05eecb381f8099d83d68c1853011f7 

Villavicencio: https://code.earthengine.google.com/6f9610d55124d6024473e1bab824893a 

https://code.earthengine.google.com/429600d2af8dfd1d6e184b42a84a5959
https://code.earthengine.google.com/13b0b6ec53ada51f1fa2852218202447
https://code.earthengine.google.com/795317fc103181768819faf63b987ba8
https://code.earthengine.google.com/8f05eecb381f8099d83d68c1853011f7
https://code.earthengine.google.com/6f9610d55124d6024473e1bab824893a
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Fig. 57. Inventory of landslides in Chipaque area identified visually (A), automatically using SAR (B), 

and automatically using NDVI (C).  

 

Fig. 58. Inventory of landslides in Caqueza area identified visually (A), automatically using SAR (B), 

and automatically using NDVI (C). 

 

Fig. 59. Inventory of landslides in Quetame area identified visually (A), automatically using SAR (B), 

and automatically using NDVI (C). 
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Fig. 60. Inventory of landslides in Guayabetal area identified visually (A), automatically using SAR (B), 

and automatically using NDVI (C). 

 

Fig. 61. Inventory of landslides in Villavicencio area identified visually (A), automatically using SAR 

(B), and automatically using NDVI (C). 

To assess the identification capability of landslides using both optical and radar images, 

confusion matrices were generated using as reference the inventory generated visually by the 
expert. These results are represented in Table 12. 

Table 12. Evaluation metrics of landslide identification based on visual reference, to assess the results 

of the inventory created with NDVI and SAR. 

    *TP *FP *TN *FN *N Sensitivity  Specificity Precision Accuracy kappa 
McNemar 

test 

Chip. 
NDVI 203 22344 472277 1705 496529 0.1064 0.9548 0.0090 0.9516 0.0096 2.00E-16 

SAR 39 13533 481088 1869 496529 0.0204 0.9726 0.0029 0.9690 -0.0017 2.00E-16 

Caque. 
NDVI 539 43372 553828 5972 603711 0.0828 0.9274 0.0123 0.9183 0.0026 2.00E-16 

SAR 26 2879 594321 6485 603711 0.0040 0.9952 0.0090 0.9845 -0.0011 2.00E-16 

Quet. 
NDVI 5428 67470 972997 22678 1068573 0.1931 0.9352 0.0745 0.9156 0.0723 2.00E-16 

SAR 2140 12095 1028372 25966 1068573 0.0761 0.9884 0.1503 0.9644 0.0849 2.00E-16 

Guay. 
NDVI 2778 6916 630032 20046 659772 0.1217 0.9891 0.2866 0.9591 0.1534 2.00E-16 

SAR 1623 5388 631560 21201 659772 0.0711 0.9915 0.2315 0.9597 0.0941 2.00E-16 

Villao. 
NDVI 1209 2623 322890 15418 342140 0.0727 0.9919 0.3155 0.9473 0.1018 2.00E-16 

SAR 593 1411 324102 16034 342140 0.0357 0.9957 0.2959 0.9490 0.0538 2.00E-16 

*TP:True positive, FP: False positive, TN: True negative, FN:False negative, N: total number of predictions. 

 



81 
 

In general, there is a lower number of true positives compared to false positives, while the 

number of true negatives is higher than the number of false negatives. For this reason, 

sensitivity, which indicates if the images have the ability to detect real landslides, is less than 

10%, while specificity is very good at identifying areas where there are no landslides, with a 

percentage above 90%. This situation is also reflected in precision, which shows high erroneous 

predictions in identifying landslide areas. Additionally, accuracy has a high value, as this 

method has high precision in identifying areas without landslides, although it is not good at 
identifying areas with landslides.  

When observing the kappa value, which allows to determine if there is agreement between the 

classification with GEE and the visual, we see values close to zero and even some negative ones, 

indicating that the prediction does not match the real predictions, that is, it has poor predictive 

ability. Finally, with the McNemar test, we see that the value is very small, which rejects the null 

hypothesis that there is no difference between types of errors. We thus conclude that there are 

more type 1 errors than type 2 errors, meaning that these images tend to produce more false 
positives than false negatives. 

When comparing the metrics of both NDVI and SAR, it can be observed that the kappa value of 

NDVI is slightly better than the kappa values of SAR, except for the Quetame area, where the 

latter had a better prediction. Lastly, when evaluating the 5 areas, those with the worst 

predictions were Chipaque and Caqueza, while the best prediction was achieved in Guayabetal 

with NDVI, given the highest kappa value of 0.1534. Despite being the highest kappa value 

among the data obtained, it remains a poor model for identifying landslides in a historical 

inventory. 

 

5.4. Importance of predictor variables  
Within the predictor variables used to predict landslides, a categorical variable corresponding 

to lithology is included. This variable varies from one area to another, meaning that some of 

these categories may be present or absent in the five different municipalities (Table 13). 

Additionally, 15 continuous variables summarized in Table 14 were used. 

Table 13. Categorical variable 

Variable name Abbreviation ID Model ID Description  

Lithology LITO 1 LTL1 Arenisca Dura Fm. 

2 LTL2 Chipaque Fm. 

3 LTL3 Une Fm. 

4 LTL4 Fomeque Fm. 

5 LTL5 Areniscas de Caqueza Fm. 

6 LTL6 Lutitas de Macanal Fm. 

7 LTL7 Capas Rojas del Guatiquia Fm. 

8 LTL8 Brechas de Buenavista Fm. 

9 LTL9 Lutitas de Pipiral Fm 

10 LTL10 Areniscas de Gutierrez Fm. 

11 LTL11 Quetame Group 

12 LTL12 Rhyodacite 

13 LTL13 Deposits 
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Table 14. Continues variables of topographic attributes. 

Variable name Abbreviation Description  

Elevation ELE Altitude in meters 

Slope SLO 
Maximal rate of change of elevation values between horizontal and 

tangential planes (Zevenbergen & Thorne, 1987). 

Plan curvature  PCV 
Convergence and divergence of a normal section on the surface (Dikau, 

1988). 

Profile curvature  PRC 
Relative deceleration or acceleration of flow according to a profile plane 

which cuts the surface (Shary, 1995).  

Convergence index  CVI Smoother plan curvature outcomes. (Köthe et al., 1996; Watkins, 2019). 

LS Factor  LSF 
Slope length using the slope gradient and the slope length factor (RUSLE 

equation) (Desmet & Govers, 1996). 

Stream power index SPI 

Flow erosion potential, considering the amount of water contributed by 

the upslope area and the velocity of water flow. (Gruber & Peckham, 

2009). 

Topographic position index TPI Classification of the landscapes into slope position classes. (Weiss, 2001). 

Topographic wetness index TWI 
Water accumulation tendency based on specific catchment area and the 

local slope angle (Quinn et al., 1995).  

Vertical distance to channel 

network 
VDCN 

It constitutes a theoretical surface regarding the channel lines (“base 

level”) (Bock & Köthe, 2008). 

Northness N Cosine of slope direction 

Eastness E Sine of slope direction  

Pluviosity PLV Mean total annual precipitation 

Normalized Difference 

Vegetation Index 
NDVI Index of vegetation health and density (Rouse, et al., 1974). 

 

After splitting the landslide inventory into calibration and validation groups, comprising 75% 

and 25% of the landslides, respectively, we applied the Multivariate Adaptive Regression 

Splines (MARS) model. This statistical method was conducted on the ten-training dataset of 

each subset (SUP, INF, and BODY) for each municipality, including the same number of 

presences and absences, the latter randomly selected from stable slopes. 

The importance of each variable in the models was determined based on the mean Residual 

Sum of Squares (RSS) across the ten repetitions (Fig.62 to 66). RSS measures the variability in 

a dataset by summing the squares of the differences between observed and model-estimated 

values (Milborrow, 2021). Following the Earth code notes (Milborrow, 2021), the criterion 

involved calculating the decrease in RSS for each subset compared to the previous one. These 

subset decreases were then summed and normalized, with the largest decrease set to 100. 

Consequently, variables causing the greatest net decreases in RSS were considered more 
important. 
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Fig. 62. Importance variables on each model (INF, SUP, and BODY) for Chipaque, after applying MARS 

modeling. 

According to the RSS values, in the Chipaque area, the most important variables for predicting 

the deposit areas (INF) and the entire landslide (BODY) are LSF and PLV. Conversely, for 

predicting detachment areas (SUP), the most important variables are SLO, PLV, and LTL3 (Fig. 

62). In this area, we can observe that precipitation data (PLV) plays an important role in 

predicting landslides, along with the LS Factor (LSF) and slope (SLO). 

In the Caqueza area, the most significant variables for predicting INF and BODY are LSF and 

NDVI. Instead, for predicting SUP, the most crucial variables are SLO, NDVI, and PLV LTL3 (Fig. 

63). In this region, we observe a similarity with Chipaque, but with NDVI replacing PLV. 
However, PLV maintains its significance as the third most important variable in SUP and BODY. 

The variable importance for predicting the initial movement locations (SUP) in Quetame, 

Guayabetal, and Villavicencio highlights NDVI, SLO, and ELE as the most crucial variables. In 

Quetame, NDVI and ELE take precedence (Fig. 64), while in Guayabetal and Villavicencio, it is 
NDVI and SLO that are most significant (Fig. 65 and 66). 

For predicting INF and BODY areas in Quetame, the most important variables remain the same 

for both: TPI, NDVI, and ELE (Fig. 64). In contrast, in Guayabetal and Villavicencio, TPI and 

VDCN are the primary predictors for deposit areas (INF), respectively. However, NDVI still 

holds significance as the second most important variable (Fig. 65 and 66). 

When predicting the entire area (BODY) in Guayabetal and Villavicencio, NDVI emerges as the 

most crucial variable. Following this, ELE and LSF are significant in Guayabetal (Fig. 65), while 
LSF and VDNC are crucial in Villavicencio (Fig. 66). 
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Fig. 63. Importance variables on each model (INF, SUP, and BODY) for Caqueza, after applying MARS 

modeling. 

 

Fig. 64. Importance variables on each model (INF, SUP, and BODY) for Quetame, after applying MARS 

modeling. 
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Fig. 65. Importance variables on each model (INF, SUP, and BODY)  for Guayabetal, after applying MARS 

modeling. 

 

Fig. 66. Importance variables on each model (INF, SUP, and BODY) for Villavicencio, after applying 

MARS modeling. 
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5.5. Validation of the models  
The predictive skill of the models of each subset was assessed using the validation subsets of 

landslides, which correspond to the 25% of each data set. This process is comparable to 

predicting potential future landslides in the area. Through this evaluation, we aim to measure 
the accuracy of the models in predicting each area prone to mass movements.  

According to the assessment of the models in Chipaque, the INF model demonstrates the best 

predictive performance for determining the entire landslide area (BODY), with an average AUC 

of 0.74. However, it exhibits a relatively high standard deviation of 0.06 compared to standard 

deviations of other models (Fig. 67 and Table 15). Overall, the BODY, INF, and SUP models 

provide significantly better predictions for the entire landslide area (BODY) compared to the 

deposit areas (INF) and landslide initiation (SUP) areas. Moreover, they are the only ones 

deemed acceptable for landslide prediction in the area, as they exceed the 0.70 AUC threshold. 

In conclusion, these three models are only reliable for predicting the landslide area (BODY), as 
they are not reliable to predict the INF and SUP areas. 

Fig. 67. Boxplot of the AUC for each model applied to the BODY, INF, and SUP test datasets of Chipaque. 

Table 15. Mean and standard deviation (SD) of the AUC from 10 repetitions of each model applied to 

every database in Chipaque. 

  AUC_Test_database Chipaque AUC_Train_database Chipaque 

Dataset  BODY INF SUP BODY INF SUP 

Model BODY 
Mean 0.689 0.653 0.654 0.765 0.660 0.660 

SD 0.025 0.034 0.032 0.016 0.027 0.013 

Model INF Mean 0.740 0.668 0.658 0.740 0.784 0.644 

SD 0.060 0.048 0.062 0.039 0.040 0.040 

Model SUP Mean 0.701 0.645 0.640 0.705 0.632 0.787 

SD 0.046 0.048 0.032 0.031 0.030 0.035 
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In the case of Caqueza, it is again observed that the INF model has a better performance, 

specifically for predicting the entire landslide area (BODY), with an average of 0.754 AUC. 

However, the BODY model has an average of 0.748, with a lower standard deviation of 0.016 

compared to that of the INF model, which is 0.023 (Fig. 67 and Table 15). Overall, it is observed 

that the BODY model has an acceptable capacity to predict all three landslide areas (INF, SUP, 

and BODY), while the INF model is only acceptable for predicting the BODY and INF areas, and 

the SUP model is acceptable only for predicting the BODY and SUP areas. Nonetheless, it is seen 

that the best overall values are obtained for predicting the entire landslide area (BODY). 

 

Fig. 68. Boxplot of the AUC for each model applied to the BODY, INF, and SUP test datasets of Caqueza. 

Table 16. Mean and standard deviation (SD) of the AUC from 10 repetitions of each model applied to 

every database in Caqueza. 

  AUC_Test_database Caqueza AUC_Train_database Caqueza 

Dataset  BODY INF SUP BODY INF SUP 

Model BODY 
Mean 0.748 0.732 0.726 0.7713 0.726 0.7225 

SD 0.016 0.015 0.019 0.0059 0.0053 0.0105 

Model INF Mean 0.754 0.724 0.688 0.7562 0.7885 0.6996 

SD 0.023 0.024 0.038 0.0104 0.0102 0.0164 

Model SUP Mean 0.736 0.679 0.725 0.7357 0.694 0.7738 

SD 0.023 0.037 0.028 0.0136 0.0168 0.0096 
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In the Quetame area, the models demonstrate a superior predictive capacity, with mean AUC 

values exceeding 0.8. The INF model exhibits the highest AUC values for predicting both the 

entire landslide (BODY) and deposit areas (INF), with means of 0.833. As for the BODY model, 

its highest mean AUC of 0.8 is observed for predicting the BODY area, while mean AUC values 

for predicting INF and SUP are similar, at 0.779 and 0.778, respectively. However, the SUP 

model falls below 0.75 in predicting any landslide area. Therefore, for a more reliable prediction 

of detachment areas (SUP), it is preferable to use the BODY model. 

Fig. 69. Boxplot of the AUC for each model applied to the BODY, INF, and SUP test datasets of Quetame. 

Table 17. Mean and standard deviation (SD) of the AUC from 10 repetitions of each model applied to 

every database in Quetame. 

  AUC_Test_database Quetame AUC_Train_database Quetame 

Dataset  BODY INF SUP BODY INF SUP 

Model BODY 
Mean 0.800 0.779 0.778 0.805 0.776 0.772 

SD 0.016 0.020 0.016 0.005 0.004 0.011 

Model INF Mean 0.833 0.833 0.759 0.823 0.845 0.757 

SD 0.018 0.015 0.028 0.009 0.008 0.026 

Model SUP Mean 0.741 0.692 0.745 0.757 0.703 0.783 

SD 0.011 0.019 0.014 0.011 0.012 0.013 
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In the case of Guayabetal, we observe a behavior similar to that of the Quetame models, where 

the INF model achieves the highest AUC values for predicting both the entire landslide area 

(BODY) and deposit areas (INF). However, when predicting the detachment area of landslides 

(SUP), it is ideal to use the SUP model, as it has a better mean value than the BODY model. 

Nonetheless, the BODY model exhibits a lower standard deviation (0.013) compared to the SUP 

model (0.027) for predicting SUP. 

Fig. 70. Boxplot of the AUC for each model applied to the BODY, INF, and SUP test datasets of Guayabetal. 

Table 18. Mean and standard deviation (SD) of the AUC from 10 repetitions of each model applied to 

every database in Guayabetal. 

  AUC_Test_database Guayabetal AUC_Train_database Guayabetal 

Dataset  BODY INF SUP BODY INF SUP 

Model BODY 
Mean 0.788 0.764 0.741 0.8127 0.7553 0.7343 

SD 0.011 0.012 0.013 0.0038 0.0117 0.0207 

Model INF 
Mean 0.826 0.823 0.659 0.8185 0.8722 0.6371 

SD 0.025 0.031 0.072 0.014 0.0065 0.0369 

Model SUP 
Mean 0.730 0.616 0.747 0.7339 0.6305 0.8042 

SD 0.034 0.036 0.027 0.0139 0.0216 0.0132 
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For the Villavicencio area, the best prediction averages, with values exceeding 0.8 of AUC, are 

from the INF model for predicting both the entire landslide area (BODY) and deposit areas 

(INF). Therefore, it would be the most recommended model for predicting these areas. In the 

case of predicting the landslide initiation areas (SUP), the BODY model, with a mean of 0.716, 

is the one that has the best predictive ability. Additionally, we observe that the SUP model has 

the lowest overall AUC values, as well as higher standard deviations compared to the other 

models. 

Fig. 71. Boxplot of the AUC for each model applied to the BODY, INF, and SUP test datasets of 

Villavicencio. 

Table 19. Mean and standard deviation (SD) of the AUC from 10 repetitions of each model applied to 

every database in Villavicencio. 

  AUC_Test_database Villavicencio AUC_Train_database Villavicencio 

Dataset  BODY INF SUP BODY INF SUP 

Model BODY 
Mean 0.762 0.744 0.716 0.818 0.748 0.702 

SD 0.025 0.031 0.024 0.013 0.015 0.025 

Model INF Mean 0.807 0.806 0.580 0.820 0.885 0.602 

SD 0.021 0.025 0.032 0.013 0.008 0.028 

Model SUP Mean 0.720 0.625 0.695 0.735 0.632 0.819 

SD 0.037 0.035 0.036 0.018 0.023 0.015 
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5.6. Landslide susceptibility maps  
The following susceptibility maps represent the entire landslide area in each of the 

municipalities. This is because, according to the models obtained, predicting the entire 

landslide area (BODY) showed a better predictive value using the INF model. 

 

Fig. 72. Susceptibility map of landslides area in Chipaque municipality using the INF model. 

 

Fig. 73. Susceptibility map of landslides area in Caqueza municipality using the INF model. 
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Fig. 74. Susceptibility map of landslides area in Quetame municipality using the INF model. 

 

Fig. 75. Susceptibility map of landslides area in Guayabetal municipality using the INF model. 
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Fig. 76. Susceptibility map of landslides area in Villavicencio municipality using the INF model. 

 

Fig. 77. Susceptibility map of landslides area in Via al Llano area using the INF model. 
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CHAPTER 6. DISCUSSION 
6.1. Geomorphology Mapping 
Comparing the geomorphological maps from both the Colombian Geological Survey (SGC) (Fig. 

78A) and the one elaborated in this study (Fig. 78B), a clear difference in symbology is observed 

in terms of shape (polygons, lines, points) as well as color (specific to each type of 

morphogenesis), which can either facilitate or hinder their reading, interpretation, and 

analysis. Comparing the maps for the Chipaque area, the presence of lito-structural or 

structural morphogenetic processes (SGC) is evident. In the central part, we have indicated the 

presence of cuestas (Fig. 78B), while the SGC has indicated the entire area as a structural slope 

(Fig. 78A). However, in this is not possible to differentiate in which direction this slope is 

dipping, which is instead facilitated in the linear slope symbology with triangles and lines, as 

provided by the ISPRA et al. (2021) guide. On this same central area, we have indicated the 

presence of gravitational processes, which were not identified by the SGC. The gravitational 

processes indicated are soil creep (Fig. 44). However, in the "Cuaderno 13" guide from ISPRA 

et al. (2021), this type of movement is not included in the symbology, so the closest to this type 

of slow movement would be solifluction. Although according to the classification of Hungr, et 

al., (2014), solifluction is related to the slow movement of soil due to permafrost thawing. 

However, the study area is located in the tropics, near the equator and at an altitude of 2,500 to 

3,000 m.a.s.l., which does not have permafrost. For this reason, it was preferred to indicate the 

area as a slow flow of Earth/mud, as present in the ISPRA et al. (2021) guide. 

 

Fig. 78. Comparison of the geomorphological maps of Chipaque created by(A) Servicio Geologico 

Colombiano et al., (2012) and (B) based on guidance from “Cuaderno 13” of ISPRA et al., (2021). 
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In Caqueza, both maps agree on the presence of lito-structural, fluvial, and gravitational 

landforms. From this process, we have identified a scree slope (Fig. 79B) at south of the area. 

However, on the SGC map (Fig.79A), this has been indicated as a “Colluvial cone and lobe of 

solifluction”. The inclusion of the word "solifluction" in the nomenclature of the gravitational 

deposit shape specifically relates to the type of mass movement. Likewise, this nomenclature 

groups both cone and lobe deposit forms, which in the ISPRA et al., (2014) guide are classified 

separately. Therefore, the SGC nomenclature is quite general for this type of landform. On the 

other hand, within the lito-structural landforms that are also significant in this area, the 

presence of cuesta is observed, indicated by the SGC as counter-slope and structural-slope 

polygons, identified at south of the area. However, this is clear when there is a large aerial 

distance between them. Nevertheless, the large number of intercalated cuesta makes their 

polygonal delineation difficult, so it would be more advisable to identify them linearly. Another 

area that matches is the hogback area, which for the SGC encompasses the entire ridge, but for 

us, it mainly occurs at the end of it. Regarding fluvial landforms, the Floodplain area matches in 

both maps. However, the fluvial terraces that we recognized in this study were not identified 

by the SGC. Identify these potential terraces, especially where the urban area of Caqueza is 

located, is of vital importance for the management of the territorial planning of the area. 

 

Fig. 79. Comparison of the geomorphological maps of Caqueza created by(A) Servicio Geologico 

Colombiano et al., (2012) and (B) based on guidance from “Cuaderno 13” of ISPRA et al., (2021). 
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In the Quetame area, the lithological change is not reflected in the geomorphological map of the 

SGC. Specifically in the central part, as a metamorphic body outcrop there. In this case, the same 

litho-structural symbology used within the sedimentary lithoid bodies is also used in the 

metamorphic one (Fig. 80A). The guide provided by ISPRA et al. (2014) allows for the 

differentiation ridges and trenches between lithology based, with 'a' representing the stratum, 

'b' for the dike, and 'c' for different lithoid bodies. In this case, we utilized LS6c to represent 

these ridges in the Quetame Group area (Fig. 80B). On the southeastern side of the area, both 

maps agree on the presence of gravitational landforms. However, they are not classified as the 

same type of landform due to the difference between the guides. Conversely, some fluvial 

landforms do not match, as we have identified alluvial terraces in the center of the area, while 

according to the SGC map, the presence of terraces is located to the south of the area. Finally, 

we have identified a wide variety of gravitational landforms than litho-structural landforms. 

However, in the geomorphological map of SGC, there is a greater variety of litho-structural and 
fluvial landforms than gravitational ones.  

 

Fig. 80. Comparison of the geomorphological maps of Quetame created by(A) Servicio Geologico 

Colombiano et al., (2012) and (B) based on guidance from “Cuaderno 13” of ISPRA et al., (2021). 
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In the geomorphological map of Guayabetal by the SGC, we see more landforms classified as 

denudational, which are related with gravitational process. One of them is the "denuded ridge," 

which, according to the SGC guide, represents areas of long, concave, and convex slopes with 

high gradient, generally related to igneous and metamorphic lithologies (Table1) (Fig. 82A). 

However, this area within our analysis were identified ridges and trenches, but they are not 

overly pronounced (Fig. 80B). Additionally, in this same area, specifically where the highway 

passes through, we have identified two facets of fluvial erosion, which could also be fault facets. 

However, the limitation of verifying the landforms in the field does not allow us to be certain 

that they are fault facets. As for gravitational landforms, we have identified a wide variety on 

the northern side of the area, with significant dimensions, something that was not identified in 

the geomorphological map of SGC. This is possibly due to the difference in the dates of map 

creation. The geomorphological map of SGC was published in 2018, while the geomorphological 

maps presented here are published in 2023-2024, using satellite images from 2020 and 2021. 

 

Fig. 81. Comparison of the geomorphological maps of Guayabetal created by(A) Servicio Geologico 

Colombiano et al., (2012) and (B) based on guidance from “Cuaderno 13” of ISPRA et al., (2021). 
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Finally, in the Villavicencio area, several landforms, both litho-structural and gravitational, 

match with those indicated on the SGC map. However, variations in the type of landform are 

observed, perhaps due to differences in nomenclature. In the geomorphological map presented, 

a greater number of gravitational landforms have been identified, possibly due to differences 

in the timing of their creation. Additionally, almost all fluvial landforms, such as terraces and 

floodplains, align between both maps (Fig. 82). 

 

Fig. 82. Comparison of the geomorphological maps of Villavicencio created by(A) Servicio Geologico 

Colombiano et al., (2012) and (B) based on guidance from “Cuaderno 13” of ISPRA et al., (2021). 
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In general, when comparing the two methodologies used for geomorphological mapping, there 

are two clear differences. The methodology used by the Colombian Geological Service (SGC) 

limits the landforms to polygons, which means that linear and even point-like forms are not 

included. Similarly, the arrangement of colors without internal symbology makes it difficult to 

differentiate between different landforms of the same geomorphological process. On the other 

hand, the underlying lithology required by the "Cuaderno 13" guide is useful to correlate the 

landforms and morphogenesis, a detail that is lost in the SGC map. Additionally, the ISPRA et al. 

(2021) guide includes other information that could be important to show on the 

geomorphological maps, such as lithological forms (ST050), soil (ST051), anthropic forms 

(ST053), other symbols (ST055), and deposits (ST055), in addition to morphogenetic 

landforms (ST052), which further facilitates the visual relationship between them. 

Furthermore, each geomorphological map must specify the date of creation as certain 

landforms may be deformed, eliminated, or created over time. 

On the other hand, the geomorphological maps created in this study were the result of 

visualizing high-resolution images and relief available from Google Earth. However, it is vital to 

confirm these landforms in field with the respective deposits associated. Furthermore, it is 

recommended to generate geomorphological maps at a scale of at least 1:50,000 to include 

more morphogenetic processes that are important for correlating with the Via al Llano Highway 
and the urban towns located around it.  

6.2. Pluviosity 
Two areas that have experienced frequent mass movements reported through public media are 

located at km 64 and km 58 along the Via al Llano Highway. In May 2017, debris material began 

to obstruct the highway due to a debris slide process in the km 64. Then, in mid-June 2017 and 

early July 2017, the sliding area expanded, once again obstructing the road. Then, this landslide 

was reactivated at the end of August and the beginning of September 2018, depositing debris 

material onto the road, as seen in Fig. 83. This movement has classified by its form as debris 

flow. 

Later, in mid-April 2019, one of the most significant landslides recently recorded along the 

highway occurred at km 58. During that month, debris material occupied a section of the road 

as depicted in Fig. 84A. Then, in mid-May 2019, the debris slide became more evident, and the 

number of debris and rock material transported increased, completely covering the road (see 

Fig. 84B). In June, the debris slide extended laterally, forming a debris avalanche (see Fig. 84C), 

and in July, the landslide was reactivated, expanding both laterally and uphill (see Fig. 84D). 

These two landslide sites are located, one to the south of the Quetame area (km 58) and the 

other in the center of the Guayabetal area (km 64). Coincidentally, two pluviometric stations, 

Monterredondo and Susumuco (Fig. 45), are situated in the vicinity of these two landslides. 

To analyze the relationship between the previously mentioned landslides and rainfall, Table 20 

summarizes the monthly precipitation from April to August, which are the rainiest months in 

the study area. This table includes the average monthly values over 15 years from both stations 

(Table 10), the average range of these values in the monthly mean maps created in this study 

(Fig. 54D to F, and 55A and B), as well as the monthly average values for the year 2017, 

associated with the initiation of the landslide event at km 64, and the monthly average values 
for the year 2019, associated with the initiation of the landslide at km 58. 
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Fig. 83. Debris flow at km 64. (Castañeda & Charrupí, 2018). 

 

Fig. 84. Debris avalanche at km 58.  A. May-2019 (Volando en Drone, 2019).  B. June-2019 (Valora 

Analitik, 2019). C. July 2019 (Moreno, 2019). D. July 2019 (Blue radio, 2019). 
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Table 20. Monthly precipitation analysis from April to August in Monterredondo and Susumuco 

pluviometric stations.  
Monterredondo Susumuco  

 
Monthly 
average 

Monthly map 
2017 2019 

Monthly 
average 

Monthly 
map 2017 2019 

April 252 mm 250-300 mm 190 mm 144 mm 490 mm 450-500 mm 395 mm 364 mm 

May 368 mm 300-400 mm 478 mm 386 mm 697 mm 600-700 mm 1075 mm 623 mm 

June 367 mm 300-400 mm 422 mm 523 mm 654 mm 600-700 mm 857 mm 795 mm 

July 426 mm 400-500 mm 515 mm 570 mm 694 mm 600-700 mm 670 mm 1015 mm 

August 381 mm 300-500 mm 272 mm 390 mm 585 mm 500-600 mm 575 mm 507 mm 

 

When analyzing the year 2017 in the Table 20, it is noted that in April the value is below the 

average. However, in May, both in Monterredondo and Susumuco, precipitation significantly 

exceeds the average. Then, in the months of June and July, precipitation remains just a few units 

above their average, and in August, precipitation values decrease significantly. This indicates 

that the months of May, June, and July experienced precipitation above the average, coinciding 

with the beginning of the landslide at km 64 in May 2017, which continued to transport material 

constantly until July 2017. Additionally, it is observed that in August 2017, there were no 

reports of material transport for this landslide. 

Analyzing the year 2019, we again observe that the month of April presents values below its 

monthly average. Then, in May, the monthly precipitation means are within the expected range. 

"However, in June and July of 2019, the amount of precipitation exceeded both the monthly 

average and the range generated on the maps, although it did not reach the level recorded in 

May 2017. Then, in August 2019, the monthly rainfall returned to within the expected range. 

In the case of the landslide at km 58, it began moving in mid-April, a period when rainfall had 

not yet reached its monthly average. It is possible that some precipitation event occurred within 

24 hours, greater than expected, but due to the lack of data, we cannot be certain. Subsequently, 

this area increased its material transport with the arrival of the rainiest months of the year, 
which in 2019 surpassed their monthly averages (June and July). 

Therefore, we can conclude that in this case, where we have information on both the 

development of the landslide and the monthly data precipitation, we can establish a direct 

approximate relationship between the initiation of these events and the increase in rainfall 

during the months of May to July, occurring in the years 2017 and 2019. However, to obtain 

precise data on the average precipitation that can trigger landslides in an area, it is necessary 

to have data on intensity, duration, and frequency of precipitation events, along with the date 

of initiation of the landslides. This implies the presence of more pluviometric stations within 

the study area, as well as a monitoring network of mass movements in the area. 
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6.3. Automatic landslide inventory 
Reviewing the results from Table 12, which display the metrics of the confusion matrices of the 

automatic inventory generated with GEE, it is evident that the images have a good capability to 

identify areas where there is no landslide, as indicated by the excellent values of specificity and 

accuracy. However, the objective is to assess the capability to identify landslide areas, and the 

presence of these non-landslide pixels may underestimate the results. 

Therefore, we conducted an analysis exclusively comparing the polygons of landslides 

identified visually with the polygons obtained from vegetation changes, generated in GEE using 

SAR and NDVI data (see Table 21). Firstly, it is observed that the number of polygons generated 

with SAR and NDVI is relatively similar, but significantly higher than those identified visually. 

This may be due to the automatic identification of individual pixels showing vegetation changes, 

but not directly related to landslides. These polygons could represent anthropogenic 

interventions or other kinds of natural changes, such as mining, construction, deforestation, 

agriculture, flooding, and changes in reservoir water levels (Handwerger et al., 2022, and 

Scheip et al., 2021). 
 

Table 21. Intersection polygons between the inventory created by SAR, NDVI, and Visual (expert). 

  
CHIPAQUE CAQUEZA QUETAME GUAYABETAL VILLAVICENCIO 

Number of SAR polygons 
2818 585 2950 1076 307 

Number of NDVI polygons 
2419 2677 2039 1004 491 

Number of visual polygons 
196 652 1076 267 172 

Number of polygons intersected 
by SAR and NDVI 

415 137 405 150 56 

Number of polygons intersected 
by SAR and NDVI with visual 

1 4 114 63 27 

Number of polygons intersected 
by SAR and visual 

7 7 231 127 88 

Number of polygons intersected 
by NDVI and visual 

31 70 449 188 147 

Percentage of polygons 
intersected by SAR out of the total 

SAR polygons. 
25% 1% 8% 12% 29% 

Percentage of polygons 
intersected by NDVI out of the 

total NDVI polygons. 
1% 3% 22% 19% 30% 

Percentage of polygons 
intersected by SAR and NDVI with 

visual out of the total SAR and 
NDVI polygons. 

0% 3% 28% 42% 48% 

 

When analyzing the percentage of polygons identified by SAR as potential landslides, only 30% 

of the generated polygons were confirmed to be landslides, particularly in Villavicencio and 

25% in Chipaque, as well as less than 15% in Guayabetal, Quetame, and Caqueza. Regarding 

NDVI, 30% of the generated polygons corresponded to landslide areas, specifically in 

Villavicencio, and 22% in Quetame. However, less than 20% of the polygons were identified as 

landslides in Guayabetal, Caqueza, and Chipaque. 

Therefore, the results cannot suggest that either the NDVI or SAR method was superior to the 

other, given their similar outcomes. Nevertheless, the potential combination of SAR and NDVI 

data can help confirm whether there was indeed a vegetation change in a specific location, as 

this change could be evidenced in both types of images. This intersection reproduces a 
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relatively low number of polygons compared to the visually identified ones (Table 21). The 

results demonstrate that almost half of these polygons represent landslides, reaching up to 48% 

in Villavicencio and 42% in Guayabetal. Therefore, the combination of information obtained 

from SAR and NDVI significantly enhances the development of the automatic inventory. 

An important consideration is the type of inventory. As mentioned in the study, the inventory 

for the Vía al Llano is historical or multitemporal, as the detachment date for almost 99% of the 

landslides in the area is unknown. Therefore, an exact date of landslides triggered cannot be 

defined. This means that when identifying them in the images, it is assumed they occurred after 

a certain period, which we have defined as the year prior to the image date. However, several 

of these landslides may have occurred in the pre-event period. As a result, when differentiating 

between rNDVI and SAR, these landslides are not identified as different, and therefore do not 

match the visually generated inventory through the images. 

The articles that utilized rdNDVI and SAR for landslide identification did not evaluate their 

performance using confusion matrices. For areas identified as landslides based on SAR images, 

landslide density heatmaps were generated and assessed using ROC curves to determine if the 

landslide density identified by SAR corresponded with landslides identified after the events. 

This analysis demonstrated that the level of agreement exceeded 70% in regions with a high 

concentration of landslides (Handwerger et al., 2022). These findings were significant as they 

helped identify the most vulnerable areas within a region within hours or days of the event, 

enabling swift intervention. 

In contrast, authors who utilized relative differences in NDVI (rdNDVI) for landslide 

identification did not provide a quantitative evaluation of the results obtained. This was 

because the outcomes were visually evident for landslide areas as well as other regions affected 

by wildfires, pyroclastic flows, and lava inundation (Scheip et al., 2021). Their primary objective 

was to establish a platform for promptly identifying certain natural phenomena without 

requiring high-performance devices, remote sensing knowledge, or coding skills, leveraging the 

capabilities of GEE. 

 

 

6.4. Variable importance analysis and comparative model results 
As mentioned in the results, the INF model demonstrated the best performance in identifying 

landslide-prone areas across the study municipalities. Considering the high-performance INF 

model for Quetame to identify potential landslide-susceptible locations, the optimal 

combination of variables includes Topographic Position Index (TPI), NDVI, elevation (ELE), 

precipitation (PLV), and lithology (LTL). This same relationship is replicated in Guayabetal, 
with a similarity in variable importance, but substituting PLV for slope (SLO). 

Although there is a greater variation in precipitation (PLV) levels towards the southern part of 

the study area, this variable did not prove to be a significant differentiator for landslides in the 

INF model within the Villavicencio area. However, the PLV variable was found to be significant 

for Chipaque and Quetame, which are in the northern and central parts of the area.  

In the case of the lithology variable, it was indispensable for Quetame and Guayabetal, but not 

for the regions of Chipaque, Caqueza, and Villavicencio. This variable may have contributed to 

better performance in Quetame and Guayabetal with values of 83% and 82%, respectively, as 
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landslide presence is significant in the Quetame group, which represents a metamorphic 

lithology. 

Generally, the most important variables for landslide detachment areas (SUP databases) are 

slope (SLO), elevation (ELE), and curvature, as demonstrated by studies conducted by 

Rotigliano et al. (2019), Mercurio et al. (2022), and Martinello et al. (2022). In the SUP models, 

the slope (SLO) variable proved more influential than elevation (ELE). However, in Guayabetal, 

these two variables, along with NDVI, were identified as the most crucial, resulting in the 

highest model reliability value (0.747 AUC) among the evaluated municipalities for predicting 
landslide initiation areas (SUP). 

On the other hand, the most representative variables for determining deposition areas are 

generally LS Factor (LSF), Topographic Position Index (TPI), as well as Topographic Wetness 

Index (TWI) and Stream Power Index (SPI), as demonstrated in the results of Vorpahl et al. 

(2012). These variables proved to be significant throughout the INF model analysis, with LSF, 
TPI, and TWI standing out. 

Finally, it was evident that the curvature variable, including both profile curvature (PRC) and 
plan curvature (PCV), was not significant in the development of the BODY, INF, and SUP models. 

In Herrera-Coy et al. (2023) study, the most important variables for the overall area were 

elevation (ELE), lithology (LTL), and land cover. However, notable variables also included 

Topographic Position Index (TPI), aspect (ASP), Topographic Roughness Index (TRI), 

Normalized Difference Vegetation Index (NDVI), as well as distance to rivers and distance to 

roads. Their models achieved a prediction probability of 0.87 and 0.83 for shallow and deep 

movements, respectively, using the random forest method. In our study, the three important 

variables for Herrera-Coy et al. (2023) did not have the same importance, but this did not result 

in a decrease in prediction accuracy. 

In Calderón-Guevara et al. (2022) study, the variables included for develop the models were 

distance to faults (DF), elevation (EL), flow accumulation (FA), land cover (LC), and profile 

curvature (PRC). In comparison with the variables used in our study, only elevation (EL) would 

be coincident. With these variables, a prediction of 93.7% was achieved in the area using both 
random forest and artificial neural network methods. 

Comparing the results of this study with those obtained in the same area by Herrera-Coy et al. 

(2023) and Calderón-Guevara et al. (2022) reveals some differences. In Fig. 85C, the area of 

high susceptibility is mainly limited to the central area where Quetame and Guayabetal are 

located, covering not only landslide-prone areas but also regions that may not be equally 

susceptible, as evidenced by Fig. 85A and Fig. 85B. In our models, we observe that the highest 

probability of landslides occurs amid the tributary streams of the Rio Negro, as indicated by the 

red color representing high susceptibility areas overlapping with drainage areas. Similar 

patterns are also observed in the maps of Herrera-Coy et al. (2023), both for shallow and deeper 

landslides. However, Herrera-Coy et al. (2023) maps encompass more susceptible areas both 

in the southern and northern parts of the area. In our case, susceptibility in the southern part 

is highly concentrated within the drainage, whereas in the northern part, it tends to be found 

in sections away from the drainage. Nonetheless, our models clearly distinguish areas that are 

truly not susceptible. However, in the maps by Calderón-Guevara et al. (2022), the southern 
and northern areas are generally not susceptible to landslide. 
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The maps in Fig. 85B and Fig. 85C fail to show their relationship with the road network. 

However, the map in Fig. 85A does consider this relationship, although it is difficult to precisely 

define the most susceptible areas along the road, due their scale. Therefore, municipality-based 

maps allow for increased resolution, enabling a better understanding of susceptibility in 
relation to the road network, as evidenced in Fig. 72 to Fig. 76. 

In the Chipaque area, the southern region where the road crosses the Une Formation and the 

alluvial fan, has a high probability of landslides. In the case of Caqueza, susceptibility is 

significantly higher in the central part where some cuesta converge and there is a presence of 

structurally controlled stepped slopes. Conversely, in Quetame, the most susceptible areas near 

the road are in the southern and northern parts, close to the floodplains. Both in Quetame and 

Guayabetal, there are drainage areas intersecting the road, which are the most susceptible 

points in both areas. In Villavicencio, susceptibility over the road decreases, although there are 

some intersections with susceptible areas, but with a lower tonality of less than 80%. 

 

Fig. 85. Landslide susceptibility maps of the Via al Llano area. A. Map from the present study. B. 
Shallow movement susceptibility map (a) and deep movement susceptibility map (b) from Herrera-

Coy et al. (2023). C. Landslide susceptibility map from Calderón-Guevara et al. (2022). 
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CHAPTER 7. CONCLUSIONS 
 

The methodology of geomorphological mapping from Colombian Geological Service (SGC) 

limits landforms to polygons, excluding linear and point-like forms. Additionally, the absence 

of internal symbology in color coding complicates differentiation between different landforms 

of the same geomorphological process. Furthermore, the lack of additional features like 

lithology or anthropic processes hinders map understanding. However, the "Cuaderno 13" 
guide has addressed these issues through ongoing development and updates. 

Improvements in geomorphological mapping using "Cuaderno 13" guide from ISPRA allow for 

correlating these maps with landslide susceptibility. However, generating maps at a scale of at 

least 1:50,000 is advised to capture significant morphogenetic processes impacting hazard and 

risk assessment along the Via al Llano area.  

The correlation of morphogenetic processes in the area, as determined through the creation of 

geomorphological maps, aided in recognizing their association with the occurrence of 

landslides in particular areas. For instance, the km64 landslide, situated between two river 

facets, facilitates gravitational processes owing to its morphogenesis and slope. 

In cases where we have information on both landslide development and monthly precipitation 

data, we could establish a direct relationship between the initiation of these events and 

increased rainfall during May to July in 2017 and 2019. However, precise data on average 

precipitation triggering landslides requires information on intensity, duration, frequency of 

precipitation events, and landslide initiation dates. This highlights the need for more 
pluviometric stations and a mass movement monitoring network within the study area. 

The automated identification of vegetation change areas using SAR and NDVI data in GEE to 

correlate with landslide occurrence revealed a significant number of false positives, with a 

maximum of 30% of these areas correctly classified. These inaccuracies may arise from various 

anthropogenic or natural factors. However, by combining SAR and NDVI results, the number of 

false positives decreases, resulting in nearly half of the common areas identified representing 
actual landslide occurrences in our study. 

An important aspect to consider in the results of the automatic inventory process is the nature 

of the study area, which involves a multitemporal inventory. This implies that some of the 

identified landslides may not correspond to the time of occurrence, leading to the presence of 

false positives. However, implementing this methodology for seasonal inventories holds the 

potential to yield more accurate results. 

The INF model outperformed the BODY and SUP models in identifying landslide-prone areas 

across the study municipalities, achieving AUC values of 0.74 in Chipaque, 0.75 in Caqueza, 0.83 

in Quetame, 0.82 in Guayabetal, and 0.81 in Villavicencio. This superior performance can be 

attributed to its optimal combination of key variables, including Topographic Position Index 

(TPI), Normalized Difference Vegetation Index (NDVI), elevation (ELE), precipitation (PLV), 
slope (SLO) and lithology (LTL). 

Although two susceptibility studies have been conducted in the area with capable prediction 

results from the models, the important variables in these studies are not of the same 
significance as those emphasized by the MARS model in our study. 
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In our models, we have noted that landslides are most probable around the tributary streams 

of the Rio Negro, matching findings from Herrera-Coy et al. (2023). However, discrepancies 

emerge with the map of Calderón-Guevara et al. (2022), where southern and northern areas 

show lower susceptibility, contrary to our findings. 

While the susceptibility maps from the two previous studies in the area do not clearly depict 

the relationship with the road network, our study aimed to address this aspect. However, 

limitations due to scale were encountered in our attempts. Therefore, municipality-based maps 

offer enhanced resolution, allowing for a better understanding of susceptibility concerning the 
road network. 

In summary, this area stands out as a unique "natural laboratory" located in Colombia. Within 

just 80 kilometers, there is a remarkable variation in thermal floors, ranging from 400 to over 

2300 meters, accompanied by contrasting climatic conditions. The region features all types of 

rocks of varying ages and highly abrupt morphologies. This exceptional combination of factors 
makes it an invaluable site for scientific study and observation. 
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