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Abstract

Stochastic population models are widely used to model phenomena in different areas such

as cyber-physical systems, chemical kinetics, collective animal behaviour, and beyond.

Quantitative analysis of stochastic population models easily becomes challenging due to

the combinatorial number of possible states of the population. Moreover, while the modeller

easily hypothesises the mechanistic aspects of the model, the quantitative parameters

associated to these mechanistic transitions are difficult or impossible to measure directly. In

this paper, we investigate how formal verification methods can aid parameter inference for

population discrete-time Markov chains in a scenario where only a limited sample of popula-

tion-level data measurements—sample distributions among terminal states—are available.

We first discuss the parameter identifiability and uncertainty quantification in this setup, as

well as how the existing techniques of formal parameter synthesis and Bayesian inference

apply. Then, we propose and implement four different methods, three of which incorporate

formal parameter synthesis as a pre-computation step. We empirically evaluate the perfor-

mance of the proposed methods over four representative case studies. We find that our pro-

posed methods incorporating formal parameter synthesis as a pre-computation step allow

us to significantly enhance the accuracy, precision, and scalability of inference. Specifically,

in the case of unidentifiable parameters, we accurately capture the subspace of parameters

which is data-compliant at a desired confidence level.

Introduction

Population models are widely used to model different phenomena: animal collectives such as

social insects, flocking birds, schooling fish, or humans within societies, as well as molecular

species inside a cell, or cells forming a tissue. Quantitative models of the underlying mecha-

nisms can directly serve important societal actions such as disaster response (for example, mit-

igating the spread of epidemics [1]), they can inspire the design of distributed algorithms (for

example, ant colony algorithm [2]), or aid robust design and engineering of collective, adaptive
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systems under given functionality and resources, which is recently gaining attention in vision

of smart cities [3, 4]. In practice, the qualitative aspects of population models—the existence of

connections between different population states—are usually easy to hypothesise, as they can

be inferred from the local interaction mechanisms between individual agents. However, pre-

cise analysis of the population model as a whole necessitates corresponding quantitative expla-

nations. To this end, computational modelling with population models easily becomes

challenging, because the model parameters are often uncertain or unknown, and measuring

them experimentally is difficult or impossible. At the same time, the available experimental

data typically measures aggregate, population-level quantities at chosen time instances or only

after the system’s dynamics has stabilised to a stationary regime [5].

In this paper, we tackle the problem of parameter inference for a wide class of stochastic

population models called discrete-time Markov chains (DTMCs), in a common scenario

where the measurements are made only once the system’s dynamics have stabilised to a sta-

tionary regime.Such steady-state experimental data are a wide-spread format of data in biology

for several reasons. First, the states reached after the system entered a stationary regime, often

called terminal states (or, more generally, set of terminal states or terminal components), do

not change after they are once reached; they can be reliably observed at any point of time after

the transient phase, hence avoiding uncertainties due to event delays and event synchronisa-

tion during the transient. It is worth mentioning that the methodology we propose in this

paper can be applied only if there exist multiple, different terminal components. Yet, numer-

ous phenomena relevant in practice exhibit such feature. For instance, in biological systems,

multiple terminal observations are pervasive, as they implement phenotypic diversity (think

of, for example, genetic switches in cell differentiation [6, 7], or multi-stability phenomena

observed in the immune response [8, 9], or cell cycle control [10, 11]). Moreover, beyond the

application context of modelling biological systems, different terminal states typically encode

different outputs in randomised algorithms (for instance, a typical example is a randomised

algorithm encoding a six-sided die, where each of the six outcomes is encoded through a dif-

ferent terminal state).

Here, we concretely consider a DTMC with multiple terminal states, with known structure

and a finite set of unknown parameters which influence the transition probabilities. More pre-

cisely, the formal object we work with is called a parametric Markov chain (pMC), in which

the transition probabilities of the chain can be any rational function over a finite set of

unknown parameters. Then, we assume a situation where we can make repeated data observa-

tions which of the multiple terminal states was reached after an extended period of time. Our

goal is to find the space of parameters of the chain which is viable with respect to such data. In

other words, we consider parameter inference for pMC, when only a sample distribution of

reaching different terminal states of the chain is available.

Parameter inference in the case of steady-state data is challenging because the data may not

provide enough information to identify the parameters of the chain [12]. We show that, if

there exist multiple, different terminal components, the variability of terminal outcomes may

suffice to identify some or all system parameters. Yet, even when all parameters are identifi-

able, inference involves various sources of uncertainty [13]. First, there is uncertainty due to a

limited sample size. Moreover, the likelihood function for steady-state observations in a

parametric Markov chain is typically not available in its analytical form and has to be approxi-

mated. Furthermore, the standard sampling-based Bayesian inference approaches involve

additional uncertainty with respect to the choice of prior distributions, number of perturba-

tion kernels, particles, and simulation length. As a result, while these traditional algorithms

often give informative results within an available time frame, optimising their performance is

difficult.
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To address these challenges, we propose to use formal methods for parameter synthesis to

aid parameter inference. Formal methods employ a variety of theoretical computer science

fundamentals and were originally developed for the design, analysis and verification of soft-

ware systems. Today, they also serve as a technique for the mathematically rigorous modelling

of, for example, cyber-physical and biological systems [14, 15]. We first employ formal meth-

ods to obtain the exact likelihood for given data in terms of rational functions over parameters

of the MC: we recast the data observations into a set of temporal properties and leverage the

parameter synthesis tools to obtain the rational functions that exactly characterise reachability

of respective terminal states (components). Then, we implement methods employing these

rational functions to:

• compute the viable space of parameters of the chain compliant with data in a traditional fre-

quentist interpretation of uncertainty,

• reduce uncertainty and boost scalability in an MCMC parameter inference scheme,

• efficiently infer parameter points closest to data observations (which is applicable only in the

case of identifiable parameters).

Results demonstrate that pre-computing the rational functions with formal methods allows

us to, in case of identifiable parameters, significantly enhance the accuracy, precision, and scal-

ability of inference with respect to the sampling-based, likelihood-free technique. Moreover, in

case of unidentifiable parameters, where the traditional techniques infer unreliable single-

point estimates from the available data, our method accurately captures the viable subspace of

parameters which are data-compliant at a desired confidence level.

The paper is organised as follows. In Section Preliminaries, we define preliminaries and dis-

cuss the parameter identifiability and uncertainty over a motivating example. In Section Meth-

ods, we propose how to compute exact likelihoods in the form of rational functions by

encoding the terminal states (components) as a reachability property and leveraging the gen-

eral-purpose tools for probabilistic model checking [16, 17]. Once symbolic forms of likeli-

hood functions are obtained, we propose three generic algorithms for inferring parameters of

pMC from steady-state data. Moreover, for the purpose of comparison, we introduce a likeli-

hood-free Bayesian inference algorithm combining sequential Monte Carlo and approximate

Bayesian computation idea s (SMC-ABC). In Section Case Studies, we report results over four

case studies: an artificial nested branching model, a honeybee mass-stinging study, the SIR

model, and the Zeroconf protocol.

Related works

There exists a substantial body of work on verification of discrete-time pMC, subject to tempo-

ral logic properties: symbolic computation of reachability properties through state elimination

in a parametric Markov chain [18, 19], lifting the parameters towards verifying a non-paramet-

ric Markov decision process (MDP) instead of the original pMC [20], candidate region genera-

tion and checking, helped by satisfiability modulo theories (SMT) solvers (see [21] and

references therein; SMT solvers are tools to determine whether a logical first-order formula is

satisfiable. Based on SAT solvers, SMT solvers were developed to support decision problems

with respect to different background theories). Specifying biological properties as temporal

logic formulae, and using such specifications for parameter synthesis, has already been applied

in biological modelling: in [22], the authors compute the robustness of evolving gene regula-

tory networks by first synthesising the viable space of parameters with constraint solvers. In a

related setup in [23–25], the authors express properties of general biochemical reaction

PLOS ONE Combining formal methods and Bayesian approach for stochastic models inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0291151 November 13, 2023 3 / 26

https://doi.org/10.1371/journal.pone.0291151


networks in continuous signalling logic (CSL), where they deal with the parameter synthesis

for continuous-time Markov chains. Recently, in [26], direct integration of data into Bayesian

verification of parametric chains has been proposed, designed to handle affine transition func-

tions in the pMC, while in [27], the authors propose a grey-box model-checking framework

for continuous-time chains (CTMCs), using likelihood-free parameter inference. In [5], the

authors study a bridging problem (inference under terminal constraints) for CTMCs. To the

best of our knowledge, the latter framework could not directly handle our case study, because

it is designed to handle affine transition functions in the pMC. The idea of encoding data

observations into reachability properties to obtain likelihood functions and subsequently apply

parameter synthesis with SMT solvers was first introduced in our preliminary works in [28]

and further elaborated towards shedding light on how honeybees adapt their defence in social

context [29]. We here extend our original idea by elucidating the parameter identifiability and

uncertainty propagation when only steady-state data are available, and investigating how

obtained rational functions can be coupled with Bayesian inference. In our computational

experiments, we considered using several tools which support parameter synthesis—PRISM

[16], Prophesy [30], and Storm [17]. Finally, we used PRISM as it supports a command line

input, helpful for the automatisation of the workflow.

Preliminaries

In this section, we briefly introduce the formal objects used throughout this paper. The set of

real numbers will be denoted byR.

Definition 1 (MC) A Markov Chain is a tuple M ¼ ðS; P; iinit;AP; LÞ over a countable,

nonempty set of states S, the transition probability function P : S × S! [0, 1] such that

∑s02S P(s, s0) = 1 for all s 2 S, the initial distribution ιinit : S! [0, 1] such that ∑s2Sιinit(s) = 1,

a set of atomic propositions AP, and a state-labelling function L : S! 2AP.

Given an MC M ¼ ðS; P; iinit ;AP; LÞ, the probability space is assigned in the standard

way, i.e. for any l� 0, the prefix set of traces σ = (s0, s1, . . ., sl) 2 Sl+1 is assigned the probabil-

ity measure PMðsÞ ¼ iinitðs0Þ
Ql� 1

i¼0
Pðsi; siþ1Þ. The property of reaching a terminal state (com-

ponent) in a Markov Chain can be written in the temporal logic PCTL (Probabilistic

Computational Tree Logic) [31]. We here consider a fragment of PCTL properties for persis-

tence (FG) properties. These are defined over the traces for MC M in a standard way by

state formulae induced by the grammar F :: = true | a | F |F1 ^ F2 | F1 _ F2 | PJ(ϕ), where

a 2 AP, ϕ is a path formula, and J� [0, 1] is an interval, and path formulae � ::¼ F1UF2,

where F1, F2 are state formulas, and U is the usual interpretation of an Until operator. We

will write PðM � �Þ ¼
P

s2SiinitðsÞPMðs � �Þ to denote the probability of satisfaction of

PCTL property ϕ in the MC M.

When the transition probabilities are not known, but rather are rational functions of some

parameters from the parameter set V, each over domain [0, 1], we work with a parametric

Markov Chain (pMC). We here restrict our attention to the case when the transition probabili-

ties are multivariate rational functions over the variables V, which we will denote by RatV . In

general, the reachability probabilities for a pMC can be expressed by rational functions; in case

studies shown in this paper, polynomials will suffice.

Definition 2 (pMC) A Parametric Markov Chain (pMC) is a tuple

MV ¼ ðS; PV; iinit;AP; L;VÞ, where PV : S� S! RatV defines the probability transition

matrix, and for each evaluation of parameters y 2 ½0; 1�
jVj

induces a well-defined Markov

chain MðyÞ ¼ ðS; Py; iinit;AP; LÞ, where Pθ denotes the instantiation of the expression PV , for

parameter evaluations given by a vector θ. Consequently, for any y 2 ½0; 1�
jVj

, for all s 2 S,

∑s02SPθ(s, s0) = 1.
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What we have previously referred to as terminal states (components) will now be formally

described and replaced by the term bottom strongly connected component (BSCC). Both

terms will be used interchangeably in the remainder of the paper.

Definition 3 (BSCC) A subset T of S is called strongly connected if for each pair (s, t) of

states in T there exists a path fragment s0s1. . .sn such that si 2 T for 0� i� n, s0 = s and sn = t,
and P(si, si+1)> 0 for all i = 0, . . ., n − 1. A strongly connected component (SCC) of M denotes

a strongly connected set of states such that no proper superset of T is strongly connected. A

bottom SCC (BSCC) of M is an SCC T from which no state outside T is reachable, i.e. for each

state t 2 T it holds that P(t, T) = 1.

We denote the steady-state distribution of a MC by μ : S! [0, 1] and the steady-state prob-

ability for a single state s 2 S by μs. Since almost surely (with probability 1) any finite Markov

Chain eventually reaches a BSCC and visits all its states infinitely often, the steady-state distrib-

utes the probability mass among its BSCCs, i.e.
P

T2BSCCðMÞ

P
s2Tms ¼ 1 [32].

We will use Bayesian approaches to estimate parameters agreeing with data.

Definition 4 (Bayes theorem) Let π(θ) denote the prior distribution over parameter(s),

P(Dobs|θ) the likelihood of data observations under given parameters, and
R
θP(Dobs|θ)π(θ)

dθ the marginal distribution of data. Then, the posterior distribution π(θ|Dobs) evaluates to

pðyjDobsÞ ¼
PðDobsjyÞpðyÞR

y
PðDobsjyÞpðyÞdy

:

Motivating example

For the purpose of illustrating our research problem over a motivating example, we first

assume that the measurement apparatus does not distinguish the states which belong to a same

terminal component (BSCC). Technically, the labels assigned to all states within one BSCC

will be the same. Moreover, we assume that the labels can be read out only after the system

runs for an extended period of time (long enough time to reach one of the BSCC’s). Data from

repeated experiments is then summarised into a histogram over BSCC’s (labels). We are inter-

ested in inferring model parameters from such data.

Non-identifiable parameters. In the left example in Fig 1a, the parametric Markov chain

has only one BSCC with three states, all labelled with label ‘a’. Hence, all measurements detect

label ‘a’, which contains no information about parameters. In the middle example in Fig 1b,

each execution will either end up with label ‘a’, or with ‘b’, so it is possible to infer the

Fig 1. Three examples of parametric Markov chains (pMC’s) defined over the set of parameters V ¼ fp; qg. a) The parameters cannot be identified

because all states have the same label (a); b) The parameters cannot be uniquely identified, only their product pq can be estimated from data. c) All

parameters can be identified from repeated measurements of end states with output labels ‘a’, ‘b’, or ‘c’.

https://doi.org/10.1371/journal.pone.0291151.g001
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probabilities of reaching the respective BSCCs. Yet, no matter how large the sample is, it is

only the value of product p � q that can be inferred.

Identifiable parameters. In the third example in Fig 1c, only two parameters and three

different labels (BSCCs) can be observed. Assuming that no measurement imprecision occurs

(i.e. labels are correctly read-out from final states), a large enough sample size allows statisti-

cally inferring all parameters at a desired level of confidence.

At this point, limited sample sizes will require a careful propagation of uncertainty. To illus-

trate, consider an experiment where N = 500 measurements from model executions are

observed to receive N = 500 samples of labels from the final state. We collect Na = 160 samples

which end up in a state labelled with a, and Nb = 74 in b (and remaining Nc = 266 samples in

c). Parameter inference may proceed with frequentist or Bayesian approach. In frequentist

manner, parameter p can be seen as a Bernoulli trial with success outcome a, and will be esti-

mated to 0.32, with a margin at confidence level 95% equal to 0.04 (using the standard normal

approximation of the binomial outcomes, more in Section Methods) hence p 2 C0 = [0.28,

0.36] = Ip. Regressing parameter q will give an estimate Nb/(N −Na), as it can be seen as Nb suc-

cesses out of all outcomes that did not end up in a. However, determining the accompanying

confidence interval for q will depend on the number of samples but should also account for

the randomness of outcome Na.

One way to tackle this is to estimate the confidence intervals for a ‘meta-parameter’ (1 − p) �

q and subsequently infer the margins for q. From two constraints: p 2 C0 and (1 − p) � q 2 C1 =

[0.117, 0.179], we may deduce that whenever p 2 Ip, and q�min(C1)/max(1 − Ip), and q�
max(C1)/min(1 − Ip), the parameter values will be consistent with the constraints read from

data, that is, p 2 C0 and (1 − p)q 2 C1. The resulting rectangle Ip × Iq is depicted with dashed

lines in Fig 2. Such result enjoys the standard interpretation of uncertainty in the frequentist

sense: at 90% confidence level, the resulting confidence interval (CI) Ip × Iq contains the true

parameter point (p, q). Notice that, while the CI for each of the meta-parameters is derived for

95% level, this only means that the chance of not containing the true parameter value in one of
the two created CI is at most 5%. The chances of missing to contain the true parameter value

in none of the two created CI will increase, yet remain bounded: by Boole’s inequality, P(p =2 Ip
_ q =2 Iq)� P(p =2 Ip) + P(q =2 Iq))� 10%. Generally, the CI for multiple parameters will require

a correction for simultaneous confidence intervals; we will use a conservative extension of

Bonferroni correction for testing multiple hypotheses [33]. In our example, to achieve an over-

all confidence of 95%, we would derive both parameters at 97.5% each.

A less conservative estimate of confidence region is possible through employing the third

constraint (1 − p)(1 − q) 2 C2, from the proportion of data ending up in state ‘4’. A characteri-

sation of the viable set of parameters (confidence set) respecting all three algebraic constraints

is shown as the green area in Fig 2 (left). The obtained result will not depend on prior knowl-

edge of parameters, and the Central Limit Theorem ensures that, given a sufficiently large sam-

ple size, the sample mean will provide a reliable estimate of the population mean, such that the

desired level of statistical accuracy can be achieved for the estimate. It is worth noticing that

one may analogously obtain the credible sets by inferring the introduced meta-parameters

with a Bayesian approach (by using multinomial-Dirichlet conjugation).

For any given Markov chain, the described back-propagation of CIs involves the computa-

tion of rational functions for reaching respective BSCCs (e.g. (1 − p)q for reaching ‘b’), which

easily becomes non-trivial with increasing the model size. In this work, we propose how to

obtain these rational functions for arbitrarily complex Markov chains by leveraging the exist-

ing verification tools. Then, we show how they can be used to improve parameter inference

procedures.
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• First, solving the obtained system of algebraic inequality constraints that are non-linear gen-

erally amounts to characterising a possibly non-convex space of parameters. To this end, we

propose and implement a parameter synthesis procedure based on automated counterexam-

ple-guided space refinement (RF-ref). For the simple example in Fig 1 (right), a characterisa-

tion of the viable set of parameters (confidence set) respecting all three algebraic constraints

through an approximation with hyper-rectangles is shown as the green area in Fig 2 (left).

• Second, in case of identifiable parameters, rational (likelihood) functions can be used to effi-

ciently obtain a single estimate point by optimisation.

Fig 2. Parameter synthesis and inference for the motivating example in Fig 1(right) with N = 500 samples: (a) Green area represents parameter values

agreeing with data at overall 95% level of confidence, obtained with parameter synthesis (RF-ref) for constraints p 2 C0, (1 − p)q 2 C1, (1 − p)(1 − q) 2

C2 (each constraint derived at 98.33% confidence level), with a space refinement algorithm (result shown in figure covering 99.99% of the domain).

Dashed lines: intervals obtained by naive propagation of minimum and maximum values through algebraic manipulations of the first two constraints.

(b) Results of Bayesian sampling-based inference performed with the exact likelihood function available (RF-MH). Values range from 0 (blue) to 175

(yellow) accepted points per bin. (c) Summary of parameter inference results for the two methods RF-alg, RF-MH, and a likelihood-free

implementation SMC-ABC (not visualized). The L2 distance with respect to the true parameter values is given together with the respective runtimes.

https://doi.org/10.1371/journal.pone.0291151.g002
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• Finally, in general, it is a challenge to achieve the scalability of parameter synthesis with

counter-example guided refinement, as the number of dimensions increases. Different to

parameter synthesis approaches based on the approximation of confidence (credible) sets with

hyper-rectangles, Bayesian inference schemes sequentially sample the chain parameters and

approximate their posterior distributions. In Fig 2 (right), we visualise the result of one such

scheme for the same example. It provides an empirical quantification of uncertainty with

respect to its closeness to data, however, the results generally depend on a number of hyper-

parameters used in the algorithm (e.g. the length of the simulation, choice of priors, choice of

perturbation kernels) that cannot be easily optimised or interpreted. As sampling-based Bayes-

ian schemes involve computing the likelihood of data observations for each sampled value,

two variants will be considered. First, when the likelihood is pre-computed as a rational func-

tion over the chain’s parameters (e.g. (1 − p) � q for reaching label ‘b’ in our example), and sec-

ond, the case when likelihood has to be approximated. The approach with the exact likelihood

is potentially more accurate since it uses the true likelihood function and reduces uncertainty.

Moreover, it is potentially more efficient, because evaluating rational functions is generally

faster than statistically sampling the chain many times for each sampled parameter value.

In summary, we propose and implement how to compute the exact likelihood for given

data in terms of rational functions over parameters of the MC, and how these rational func-

tions can be used to: (i) efficiently compute the parameter points through maximising data

likelihood (RF-opt method), (ii) compute the viable space of parameters complying with the

data in the sense of traditional interpretations of uncertainty at a desired confidence level (RF-

alg and RF-ref method), (iii) use rational functions to reduce uncertainty and boost scalability,

through invoking them within an MCMC parameter inference scheme. The performance of

these methods is compared with the likelihood-free Bayesian inference algorithm combining

sequential Monte Carlo and approximate Bayesian computation (SMC-ABC). The table in Fig

2 illustrates the different results obtained for the motivating example, confirming that the

approaches using the pre-computed rational functions provide more accuracy, precision and

efficiency. In addition, the refinement-based approaches (RF-ref and RF-alg) guarantee an

exact interpretation in terms of confidence intervals.

Methods

In Fig 3, we show a workflow implementing the proposed methods for parameter search for a

pMC with multiple BSCCs, where steady-state data observations are available. The methods

differ in terms of whether the rational functions characterising the satisfaction probability of

each among the multiple properties for reaching each of the BSCCs are available. In the imple-

mentations, we leverage existing tools PRISM [16] and Storm [17] to obtain the rational func-

tions. All methods presented in this paper that use rational functions (RF-opt, RF-ref, and

RF-MH) are implemented in the tool DiPS [34] (https://github.com/xhajnal/DiPS). The ratio-

nal functions can be used for three different methods:

(i) confidence level (RF-alg, RF-ref): The (experimental) data are used as thresholds for con-

straining the rational functions for desired confidence intervals, resulting in a set of alge-

braic constraints. The resulting algebraic constraints are then employed to explore the

parameter space for which the chain behaviour agrees with the observations. The algebraic

constraints are finally resolved either with region generation and refinement with the help

of theorem provers (RF-ref) (recall Fig 2 (left) from the motivating example).

(ii) optimisation (RF-opt): The values of parameters are found, such that the rational functions

are closest to the data observation (in terms of least squares distance (L2)).
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(iii) Sampling-based inference with exact likelihood (RF-MH): Model parameters are sampled

in a Metropolis-Hastings scheme, and the rational functions are used to evaluate the exact

likelihood for each sampled parametrisation.

Finally, for the purpose of comparison, we also implement an approach where the rational

functions are not employed, and the likelihoods are instead approximated by statistical

sampling:

(iv) Likelihood-free MCMC (SMC-ABC): The parameters are sampled with sequential Monte

Carlo (SMC) scheme, and the likelihood is approximated with the Approximate Bayesian

Computation (ABC) algorithm.

Rational functions as symbolic expressions for measured properties

In the motivating example, the distribution among the BSCCs as polynomial expressions over

model parameters is captured by the polynomials, p, (1 − p)q and (1 − p)(1 − q), respectively.

Fig 3. Three classes of methods for parameter inference for DTMCs with steady-state data measurements (explained in Section Methods).

https://doi.org/10.1371/journal.pone.0291151.g003
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In general,

let FkðVÞ 2 RatðVÞ be such that

for all y 2 RjVj; FkðyÞ ¼ PðMðyÞ � FGðBkÞÞ;

that is, FkðVÞ is a rational function over variables V, exactly characterising the reachability

(expressed as the PCTL property Finally Globally) of a BSCC uniquely labelled with Bk in a

Markov chain MV . We omit subscript V when clear from the context. Notice that the formula

does not involve the information obtained from data—it refers to the probability of eventually

reaching a BSCC Bk, as a function of parameters of the chain.

Data

We assume N experiments of sufficient length in which we can observe which BSCC has been

reached. Denote by Xi 2 [0, n] the outcome in experiment i = 1, . . ., N describing which BSCC

has finally been reached by the system. The uncertainty can be quantified through margins in

different ways: (i) confidence intervals, thus providing an interpretation in a frequentist man-

ner, and (ii) credible sets utilising the multinomial-Dirichlet conjugate priors. In the first

approach, we estimate the probability of reaching each of the BSCCs in a standard way: at con-

fidence level (1 − αk) for all Bk 2 BSCCðMÞ;PMðVÞðFGðBkÞÞ 2 x̂k �mk; where x̂k :¼
Xk
N is the

point estimate for the probability of eventually reaching BSCC Bk, and mk the corresponding

margin of the confidence interval at level (1 − αk). As pointed out in the motivating example,

in order to claim an overall confidence level 1 − α, the CI for multiple parameters will require

a correction for simultaneous confidence intervals; we will use a conservative extension of

Bonferroni correction for testing multiple hypotheses [33], and hence choose αk := α/(n + 1),

for k = 0; 1,. . ., n, which we explain in Lemma 1 below. Improvements are possible with differ-

ent corrections tailored to the multinomial proportions [35]. As we have Binomial proportion

data with large sample size, we use the Agresti-Coull method for confidence intervals [36] in

the experiments instead of the standard Wald method, that frequently fails to achieve the nom-

inal coverage level [37]. For other conditions, e.g. Wilson [36], Jeffreys [36], Clopper-Pearson

[36], or Rule of three [38] method can be used. Bayesian estimation of credible sets is possible

through updating the prior Dirða1; . . . ; anÞ to the posterior is Dirða1 þ x1; . . . ; an þ xnÞ, where

xi = Xi/N, however, the obtained credible set will not be unique, as the choice of prior will affect

the posterior.

Lemma 1 (Correction for inferring multiple CI’s) Let fyig
n
i¼1

be the true parameters of a

multinomial distribution, faig
n
i¼1

be such that αi 2 (0, 1) and ∑i αi = α 2 (0, 1), fIig
n
i¼1

a

family of intervals on [0, 1]. Then, if each interval satisfies P(θi 2 Ii) � 1 − αi, it also holds

that P(
T

i θi 2 Ii) � 1 − α.

The proof follows by bounding the probability of the complementary event via Boole’s

inequality. For simultaneous confidence intervals for multinomials, the presented Bonferroni

correction is often conservative, especially as the number of bins (classes) grows, due to corre-

lated outcomes. Improvements are possible with different corrections tailored to the multino-

mial proportions [35].

Methods using rational functions

Parameter synthesis with space refinement (RF-ref). Inferring the parameters at a

desired confidence level can be obtained by solving the conjunction of algebraic inequalities

PLOS ONE Combining formal methods and Bayesian approach for stochastic models inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0291151 November 13, 2023 10 / 26

https://doi.org/10.1371/journal.pone.0291151


for parameters of the chain:

n̂

k¼0

ðFkðVÞ 2 ½x̂l; x̂u�ðk j dataÞÞ; ð1Þ

expressing that each of the BSCCs is reached with a probability within a confidence interval

obtained from data. Every parameter evaluation y 2 ½0; 1�
jVj

such that the constraints hold,

belongs to our goal viable set Θ, and vice versa. A single point estimate may be satisfactory in

some cases, and the method of optimisation refers to finding the point in parameter space clos-

est to the data observations (corresponding to the maximum likelihood estimate). However, to

account for the uncertainties in the inference process, we wish to characterise the points com-

plying with the derived confidence intervals as closely as possible (i.e. the green region in Fig 2

left). Sampling-based techniques allow exploring the parameter space for a finite number of

points, hence providing no global guarantees. On the other hand, in our implementation, we

perform a global search of the parameter space: we pass a query 9y 2 ðV 7! ½0; 1�jVjÞ, such that
Vn

k¼0
FðkÞðVÞ 2 ½x̂ l; x̂u�ðk j dataÞ to an SMT solver, such as Z3 [39] or dReal [40], or to an

interval arithmetics solver such as Python mpmath library. Then, depending on the outcome,

we further refine the parameter space in CEGAR-like (counterexample-guided abstraction-

refinement) fashion into

• Θgreen, safe or “green” regions, where the constraints are met,

• Θred, unsafe or “red” regions, where the constraints are not met,

• Θwhite, unknown or “white” regions, where the constraints may hold or not,

the idea of which is also used by existing tools, such as Prophesy [30]. For each parameter

evaluation in a safe region, the formula holds because the negation of the constraints is not sat-

isfiable. For each parameter evaluation in the unsafe region, the constraints are not satisfiable.

The unknown region is not refined yet or it contains both, parameters for which the formula

holds and for which it does not hold. In our implementation, we use a naive splitting into two

halves along the dimension with the largest range. This split occurs when the given region is

proven to be neither safe nor unsafe. As the main stopping criterion, we introduce the parame-

ter coverage, such that the fraction of the explored parameter space and the whole parameter

space is larger than coverage: Θgreen + Θred> coverage.

For the evaluation, we are using the sampling-guided version, which samples rectangles

before refinement to avoid expensive solver calls, z3 as the solver, parallel version with six

cores—able to solve up to six rectangles simultaneously, and alg2 (DiPS setting), which

encodes simple splitting without passing examples/counterexamples of satisfaction.

Sampling-based inference with exact likelihood (RF-MH). In our problem setup, the

analytical form of the posterior distribution for parameters of the chain (e.g. p and q in the

motivating example) is generally not available and hence different additional assumptions

and/or approximations must be used to approximate the posterior with Bayesian inference.

We implement a basic Metropolis-Hastings scheme [41], a Markov chain Monte Carlo

algorithm, where we employ the knowledge of precomputed rational functions to evaluate the

likelihood in each newly sampled parameter point. Starting in a selected initial point θinit,
Metropolis-Hastings walks in the parameter space for a selected number of iterations. In each

iteration, a transition function picks a new point θ0 in the parameter space by perturbing the

current point θ with an adjustable variation value. Next, likelihoods of these two points, θ and

θ0, are compared (we consider non-informative uniform distribution and the evidence strikes

out—see Definition 4), and if the likelihood of the new point is larger P(Dobs|θ0)> P(Dobs|θ),

PLOS ONE Combining formal methods and Bayesian approach for stochastic models inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0291151 November 13, 2023 11 / 26

https://doi.org/10.1371/journal.pone.0291151


we accept the proposed point and move in the parameter space. If the likelihood is smaller,

there is a small probability of accepting the new point, θ0, anyway—this helps to avoid local

optima. Lastly, if the proposed point is rejected, we select the current point, θ, for the next itera-

tion. The set of accepted points is used to approximate the posterior distribution. In the one-

or two-dimensional case, the space is rectangularised into a selected number of bins, and

each bin is visualised with a colour grade based on the number of the accepted point s within

the bin—see Fig 2 (right). For more dimensions, a scatter-line plot showing each of the

accepted points is created—see Figs 4c and 5c.

Likelihood-free sampling-based inference

We combine the Sequential Monte Carlo sampling and the Approximate Bayesian Computa-

tion (ABC) algorithm to implement a likelihood-free inference scheme to be compared to

other proposed methods (SMC-ABC). SMC, firstly proposed by Del [42], addresses the issues

of Metropolis-Hastings, by being easily parallelisable and less likely to fall into a local maxi-

mum or minimum. The ground idea is to, instead of having one particle moving in its parame-

ter space, use a number of particles moving independently. In each iteration, it then mutates

parameter candidates through a series of perturbation kernels and selects parameter candidates

for the next iteration, taking into account their weights.

The Approximate Bayesian Computation (ABC) method [43] is a widely used likelihood-

free method for approximating posterior distribution, useful in scenarios in which the likeli-

hood has no analytical form, or the analytical form is expensive to be evaluated. In the context

of the problem considered in this paper, it applies when rational functions are not obtainable

due to the large size of the Markov chain or when they are too expensive to evaluate numeri-

cally. Instead of estimating the likelihood P(D|θ) directly, we define a distance measure δ(D1,

D2) where D1 and D2 denote observable data. Given a parameter candidate ŷ that specifies a

model My, the ABC algorithm accepts ŷ if a simulation run on My delivers observable data

Dobs such that δ(Dobs, Dsim)< �, where � 2 R�0 is the distance threshold. ABC algorithm can

be used together with Markov chain Monte Carlo algorithms (ABC-MCMC [44, 45]), or with

Sequential Monte Carlo sampling algorithms (ABC-SMC [46, 47]). We implement the latter.

We select uniform distribution as the prior because it is less likely to propagate false beliefs to

the subsequent Bayesian inference [26]. The perturbation kernel is the component-wise uni-
form kernel [48]. At each perturbation, we use a uniform distribution with boundaries adjusted

by the previously sampled parameter values. For multi-dimensional parameters, each parame-

ter component has an independently adjusted uniform kernel. In this paper, we use a popula-

tion of 500 parameter values to estimate the posterior. The SMC algorithm then mutates the

population through 5 perturbation kernels. We visualise the results by showing the found

parameter point and a 95% highest posterior density (HPD) interval around it for each dimen-

sion (Figs 4c and 5c).

Case studies

In this section we present four case studies: nested branching, honeybee collective stinging

response, SIR model, and Zeroconf protocol. We have obtained synthetic data showing the

reachability distribution among the BSCCs by simulating the Markov Chain using a selected

true parametrisation. Finally, we compare the results for different methods: using rational

functions (RF-opt, RF-MH, RF-alg) and without using them (SMC-ABC). The evaluation was

run on a tower PC Skadi—64bit Ubuntu 20.04.2, i9-9900K CPU, 32GB RAM, SSD disk. Run-

time comparison of the methods is provided in Table 1. The software used for the analysis and

plotting is publicly available on GitHub at the repository https://github.com/xhajnal/DiPS. All

PLOS ONE Combining formal methods and Bayesian approach for stochastic models inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0291151 November 13, 2023 12 / 26

https://github.com/xhajnal/DiPS
https://doi.org/10.1371/journal.pone.0291151


the input and output files are publicly available at the Zenodo repository https://zenodo.org/

record/7900258#.ZFzbIexBwqs.

Nested branching

Model description. We expand the motivating example with identifiable parameters,

shown in Fig 1c, to a general pMC with n parameters and n + 2 BSCCs, shown in Fig 4a. The

model describes a branching process in which there are 2 possibilities at each step: either a

BSCC is reached, or the next branching is reached. Here, we consider a branching process

with n + 1 = 9 parameters and n + 2 = 11 BSCCs. The data for the experiments are generated

by simulating the pMC with previously chosen true parameters, shown in Fig 4b.

Results. Notice that the number of parameters in the model is equivalent to the number

of BSCCs. Moreover, due to the specific structure of the chain, all parameters are identifi-

able from the steady-state data. Still, there is a challenging propagation of uncertainty to

handle, because reaching some BSCCs requires making multiple transitions in the chain,

each of which involves at least one parameter. In Fig 4c, we visualise the true parameter val-

ues used to synthesise data, the best parameter estimates achieved with different algorithms,

Fig 4. a) Nested branching pMC for 10 parameters and 11 BSCC’s (n = 9). b) Data histogram of reaching the respective BSCCs as a result of 1000

simulations with true parameter values visualised below. c) Visualisation of inference results obtained by different methods, x-axis representing the

index of parameter, (i) 95% confidence intervals obtained by the interval propagation (RF-alg, black error bars), (ii) accepted parameter points obtained

by sampling-based inference using exact likelihood (RF-MH, one colour displays one accepted point). We visualise a set of accepted points as a result of

12,114,821 iterations, sample size = 1000, trimming first 25% of 477 accepted points, obtained in 1h processor time using Skadi, (iii) HPD estimate at

95% confidence level (dashed error bars), obtained by SMC-ABC in 1h45min using Skadi. 95% HPD credible sets, obtained by likelihood-free sampling

based inference (SMC-ABC, dashed error bars) in 1h45min processor time using Skadi.

https://doi.org/10.1371/journal.pone.0291151.g004
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as well as the respective confidence intervals. Runtimes are reported in Table 1. RF-ref is not

shown in Fig 4c as it reached the coverage of 0.99946 within 158s and discovered no safe

rectangles (obtained using Skadi, sampling-guided refinement with z3 solver, 6 parallel

cores).

Fig 5. a) Honeybees pMC for population n = 3. Notice that the distribution among possible final states (BSCC’s) is a list of 2n-degree multivariate

polynomials over model parameters, e.g. the probability of reaching state (0, 1, 1) is 3p2
0
ð1 � p0Þð1 � p2Þ þ 3p0ð1 � p0Þ

2
ðp1ð1 � p2Þ þ ð1 � p1Þp1Þ. b)

Data histogram of reaching the respective BSCCs (number of stinging bees) obtained from 10,000 simulations using true parameter values visualised in

c). c) Visualisation of inference results obtained by different methods, x-axis representing the index of a parameter (p0, p1, . . ., p9): (i) accepted

parameter points obtained by sampling-based inference using exact likelihood (RF-MH, one colour displays one accepted point). We visualise a set of

accepted points as a result of 216,616 iterations, sample size = 1000, trimming first 25% of 25 accepted points, obtained in 3 hours processor time using

PC Skadi, (ii) 95% HPD credible sets, obtained by likelihood-free sampling based inference (SMC-ABC, dashed error bars) in 3h45min processor time

using Skadi.

https://doi.org/10.1371/journal.pone.0291151.g005

Table 1. Runtimes of used methods with Skadi given in interations per second. RF-ref time to reach standard coverage 0.95 using alg2, z3 solver, with 6 parallel cores.

RF-alg runtimes are not shown as they are not implemented for the general case. Solving a system of nonlinear inequality constraints is beyond the scope of this manu-

script. Timeout (TO) 1 hour.

RF-opt RF-ref RF-MH SMC-ABC

nested branching n = 2 0.0101s 0.28s 14,261.3 iter/s 333 iter/min

nested branching n = 10 0.0228s 0.76s 21.7 iter/s 49.8 iter/min

honeybees n = 10 3.4023s TO 20.1 iter/s 1.25 iter/min

zeroconf n = 4 0.0096s 1.85s 13,320 iter/s 660.06 iter/min

SIR n = 5 0.0144s 18.59s 3,572.7 iter/s 247.52 iter/min

https://doi.org/10.1371/journal.pone.0291151.t001
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Discussion. All methods using the pre-computed rational functions provide better accu-

racy with respect to the SMC-ABC implementation. Moreover, the RF-MH method improves

the precision for parameters p4, . . ., p9. Notice that the uncertainty increases for increasing the

index of parameters, that is, the margins for the parameters with larger indices become larger.

In particular, the parameter p0 is inferred with lowest uncertainty, and parameter p9 with larg-

est uncertainty. This is because less samples end up in the ‘later’ BSCCs (Fig 4b), and, conse-

quently, the sample size for inferring ‘later’ parameters is smaller. For instance, while only the

data for ending up in the last two BSCCs S9 and S0
9

tells us something about parameter p9, all
other outcomes inform us about parameter p0. In Fig 4c, we see that the estimates obtained

with SMC-ABC are far from the true points and have large credible sets. This is because

SMC-ABC explores all parameters at once and treats them equally, rather than taking into

account that uncertainty is higher for later parameters. Enriching the SMC-ABC method with

a preliminary uncertainty analysis would allow us to explore the parameters in a more efficient

way; such analysis is beyond the scope of this paper which we leave to future work.

Reproducibility. The sampled data and the PRISM model are available in Zenodo

together with the text file including the analysed PCTL properties (see branching_model_
10_data_1000_samples.txt, branching_model_10.pm, branching_model_
10.pctl).

Social feedback in honeybee colonies

We present a case study modelling a real-world phenomenon of social feedback mechanism in

honeybee colonies. The presented model, which is similar to the nested branching model, was

first introduced in [28], and its adapted variant was validated with respect to experimental data

in [29].

In the field of biology, experts often excel at describing the qualitative aspects of a phenome-

non well and speculate about their underlying mechanisms. However, precise statements are

hindered by the lack of corresponding quantitative explanations. This compelling case study

demonstrates how our method enabled researchers to not only model the qualitative aspects of

decision-making as a Markov Chain, but also quantitatively the underlying mechanisms using

data.

Model description. After observing a threat in the environment, a bee in the colony may

sting and consequently die. Each stinging bee releases an alarm pheromone, hence recruiting

more and more bees to sting. However, if the aggressiveness keeps increasing with the amount

of pheromone present, the colony may be extinct. The mechanism as to how precisely the

trade-off between efficient defence and maintaining workers’ force is established is not known

to date [49].

Consider a colony of n bees and an experiment ending with a number of stinging bees rang-

ing from 0 to n. Following [28], the colony is modelled with a parametric discrete-time Markov

Chain with (n + 1) BSCCs encoding the population (number of stinging bees) at the end of the

experiment. Each agent commits an action (stinging) with a certain probability, leading to its

immediate death. Each individual bee is encoded by an integer representing its state, with the

following encoding:

0: never stings,

1: stings and dies,

2: it does not sting without additional stimuli but may be recruited when the alarm pheromone

is present.
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Parameter pi alters the stinging probability based on the amount of alarm pheromone. For

example, for a colony of n = 3 bees—see Fig 5a, the following pMC is constructed: a bee stings

without any pheromone present with probability p0, with one unit of pheromone available

with probability p1, and with two units of pheromone with probability p2. Here we consider a

semi-synchronous version of the model, where the first event of stinging (before sensing the

alarm pheromone) is made synchronously (all of the bees decide at the same time), and all

other stinging events are asynchronous (only one bee can sting in one time-step). We analyse a

model of n = 10 bees and hence 11 BSCCs.

Results. Notice that, similarly to the model of nested branching, the number of parame-

ters in the model is equivalent to the number of BSCCs. Moreover, due to the specific structure

of the chain, all parameters are identifiable from the steady-state data. Yet, the model exhibits

a challenging propagation of uncertainty, because reaching some BSCCs requires making mul-

tiple transitions in the chain, each of which involves at least one parameter.

Synthetic data obtained by 10000 simulations of the MC is shown in Fig 5b. As the underly-

ing chain counts 69 states and rational functions are non-linear multivariate polynomials of

order 21, the back-propagation of the algebraic constraints from confidence intervals for

meta-parameters to the parameter of the chain (RF-alg) is not performed for this case study.

Moreover, the counterexample-guided refinement (RF-ref) timed out at 1 hour. In Fig 5c, we

visualise the results obtained with different methods together with the true parameter points.

Discussion. Our results confirm that the methods using the pre-computed rational func-

tions (RF-opt and RF-MH) provide more accuracy with respect to the SMC-ABC implementa-

tion. Respective runtimes are reported in Table 1, indicating a significantly slower single

iteration in the likelihood-free SMC-ABC implementation with respect to RF-MH. We explain

this by the fact that SMC-ABC repeatedly simulates a chain of 69 states, each with at least 10

steps until reaching a BSCC in each iteration, while the RF-MH method evaluates the rational

functions instead. Moreover, similarly to the nested branching example, we here again observe

larger uncertainty for the last two parameters due to the small number of samples ending up in

the respective BSCCs where p8 and p9 occur in the chain.

Reproducibility. The sampled data and the PRISM model are available in Zenodo

together with the text file including the analysed PCTL properties (see bees_10_data_
10000_samples.txt, bees_10.pm, bees_10.pctl).

SIR

Model description. The Susceptible Infected Recovered (SIR) model is the most common

stochastic model for predicting disease spread [50]. Each agent in a homogeneous, well-mixed

population can be in one of three states: S, I, or R. The dynamics of the system are described

by two reactions, where we denote the infection rate when meeting an infected individual by

α, and the recovery rate by β:

R1 : Sþ I!a 2I
R2 : I!

b
R

The stochastic dynamics is captured by a continuous-time Markov chain (CTMC), where

each state enumerates the number of each of the agent types, as shown in Fig 6a. Since the sta-

tionary distribution of a CTMC is equivalent to that of its uniformised DTMC [51], we can

apply our proposed workflow to the respective uniformised DTMC. While intuitively,

uniquely identifying two parameters from more than two data points (BSCCs) can be possible,

this case study will showcase a situation where only a linear subspace of parameters can be

identified from steady-state data.
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Fig 6. a) The pMC (continous-time) for a SIR model with n = 4 agents. b) Data histogram of reaching the respective BSCCs

obtained by 10,000 simulations using true parameter values, in a SIR model with n = 5 agents. c) Visualisation of RF-ref results,

where the green area shows parameters for which the rational functions fall within the intervals created from the data. The true point

is shown as a blue dot, the result of RF-opt shown as a cyan dot, and the result of SMC-ABC shown as a yellow point. d) Visualisation

of RF-MH results after 12,861,593 iterations, while trimming the first 25% of 228,240 accepted points obtained in 1 hour processor

time using PC Skadi. The true point is shown as a white dot, the result of RF-opt shown as a purple dot, and the result of SMC-ABC

shown as a red point. In both figures, c) and d), the red rectangle shows the 95% HPD credible set, obtained by SMC-ABC.

https://doi.org/10.1371/journal.pone.0291151.g006
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See Fig 6a for an example of a CTMC for n = 4 agents. In further analysis, we showcase a

model of n = 5 agents. Since all rates in the CTMC for the SIR model are scalings of parameters

α and β (therefore, of form kα or kβ for some integer number k� 0), for simplicity, we choose

a uniformisation rate to be the sum of the two possibly largest rates (which, for n = 4 agents

amounts to 4β + 4α, and for n = 5 agents is 9α + 6β). Synthetic data is obtained by simulating

the chain 10,000 times with parameters α, β = [0.034055, 0.087735], leading to the following

probability distribution of eventually reaching respectively 1, . . ., n infected agents: [0.2721,

0.1316, 0.0871, 0.0719, 0.1021, 0.3352].

Results. In Fig 6c, we visualise the results of RF-ref as a green area representing all possi-

ble parameter combinations of α and β for which the rational functions fall within the respec-

tive data intervals. Fig 6d shows the results of RF-MH as the number of accepted points for all

parameter combinations. In both visualisations, the true parameter point and the results of

RF-opt and SMC-ABC are shown as coloured dots.

Discussion. Intuitively, uniquely identifying two parameters from more than two data

points (BSCCs) may be possible. Yet, this example showcases a situation where parameters α
and β are not uniquely identifiable from the given steady-state data observations. In this case,

the traditional optimisation methods such as RF-opt, which provide only single-point esti-

mates, can be far from the true point, and it becomes important to obtain global information

of the space of parameters for which the model complies with the data (defined in Section

Methods and following Eq 1, viable set of parameters Θ). Note that in this example the single-

point estimate of SMC-ABC is close to the true point. This result is obtained by taking an

appropriate prior distribution, here uniform(0, 0.1), which already provides information about

the parameter ranges. The prior is chosen according to real-world applications of the SIR

model, where parameters α and β are reported to lie within this range [52].

In Fig 6c and 6d, we see that RF-ref and RF-MH methods both automatically capture the

correlation between α and β in the viable parameter space. The green region in Fig 6b visual-

ises the viable space Θ as defined in Section Methods (following Eq 1), and the heat-map in Fig

6c shows its weighted version. Both the green area (method RF-ref), but also the heat-map

(method RF-MH) suggest that data consistency is invariant with respect to linear scaling of

parameters α and β. Moreover, we observe a widening of the green region for increasing values

of α and β. Mathematically, whenever θ = (α, β) instantiates a CTMC with the distribution

among the BSCCs p 2 ½0; 1�
jBSCCðMÞj

, so will any scaling θc = (cα, cβ), for any c 2 Rþ; this is a

direct consequence of the fact that scaling all rates of a CTMC with the scalar c preserves the

transient distribution until the corresponding scaling of the time units. Furthermore, the viable

parameter subspace Θ is closed upon linear scaling: whenever θ 2 Θ complies with the sample

distribution p̂ at a desired confidence level, so will any scaling cθ, for any c 2 Rþ. We support

both these observations with the following lemma.

Lemma 2 (Invariant steady-state distribution upon linear scaling of model parameters) Let

My be a parametric CTMC such that its transition rates are linear combinations of a parame-

ter vector y 2 RjVj, that is, they are of the form qj = ∑i xi,j � θi, with xi;j 2 R denoting a linear

coefficient of the i-th parameter θi in the j-th transition. Then, for any c 2 Rþ, the CTMC My�c

obtained by scaling all parameters in θ with a factor c, is such that the transient probability dis-

tribution of My at time t is exactly the same as of My�c at time tc−1, i.e. Pθ(t) = Pθ�c(tc−1). In par-

ticular, My�c has the same steady-state distribution as the base model My.

Proof 1 Scaling the parameters with c gives the new transitions ∑xi,j � c�θi = c � ∑xi,j � θi. There-
fore, the generator matrix in the new chain is Qθ�c = c � Qθ. Uniformisation of the base model
with r and the scaled model with rc = c � r results in the transition matrices Pθ and Pθ�c, such that
Py�c ¼ I þ 1

rc
Qy�c ¼ I þ 1

r�c c � Qy ¼ I þ 1

r Qy ¼ Py. Accordingly, the transient probability
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distributions are defined by PyðtÞ ¼
P1

n¼0
Pn
y
e� rt ðrtÞ

n

n!
and Py�cðtÞ ¼

P1

n¼0
Pn
y
e� c�rt ðc�rtÞ

n

n!
. It directly

follows that Py�cðtc� 1Þ ¼
P1

n¼0
Pn
y
e� c�rtc� 1 ðc�rtc� 1Þn

n!
¼
P1

n¼0
Pn
y
e� rt ðrtÞ

n

n!
¼ PyðtÞ, which shows the

equivalence of transient distributions of My and My�c at time points t and tc−1 respectively. It
further follows that in the long run, so for t!1, and thus also tc−1!1, Pθ(t) = Pθ�c(t). There-
fore, My and My�c have the same steady-state distribution.

Since the rates in the CTMC model of SIR spread are indeed linear combinations of param-

eters α and β, it follows that, for any c 2 Rþ, parametrisations θ = (α, β) and θc = (cα, cβ) will

induce two different CTMCs with exactly the same steady-state distribution s, hence explain-

ing the linear viable subspace. Another direct corollary of the above lemma is that the viable

parameter subspace Θ is closed upon linear scaling. It thus holds that, whenever a parameter

region Θ0 � Θ complies with sample distribution p̂ at a desired confidence level, so will any

scaling cΘ0, for any c 2 Rþ, hence explaining the widening of the green area along the axes

denoting α and β.

Reproducibility. The sampled data and the PRISM model are available in Zenodo

together with the text file including the analysed PCTL properties (see SIR_5_data.txt,

sir_5_1_0.pm, sir_5_1_0.pctl).

Zeroconf

Model description. We use Zeroconf, a model of a well-known computer network proto-

col, to demonstrate another scenario where parameters are not uniquely identifiable from the

steady-state measurements; more concretely, we show that our methodology allows to auto-

matically capture non-linear dependencies characterising the viable parameter space.

Zeroconf [53] is a computer network protocol built to provide a new device within the net-

work with an IP in a lossy environment without intervention from other network operators.

The device randomly selects an IP and sends n probes containing the message of the selected

IP to all network nodes to find out whether the selected IP is in use, which resets the protocol

with a different IP, or the IP is vacant and select it as its own. Parameter p describes the proba-

bility of a message to be lost (no reply and time out) while parameter q is the probability of the

selected IP being in use—this models network occupancy. In the model, state OK describes a

situation where a unique IP is selected, while state Failed indicates the selection of a non-

unique IP, which can only happen if all probes are lost.

We obtained synthetic data for a model with n = 4 probes, shown in Fig 7a, with the chosen

parameter point [p, q] = [0.105547, 0.449658]. After 10,000 simulations, we got the following

probabilities to reach the two states [OK, Failed] = [0.9999, 0.0001], see Fig 7b. While the gen-

erated data shows that for relatively high probability p a message will be lost, using 4 probes

induces the correct behaviour with high probability (99.99%). Our methodology allows one to

characterise the global set of parameters for which the correct behaviour is obtained with prob-

ability 99.99%. In practice, such analysis may inform the protocol design choice as to how

many probes to use when p and q change, or are given in ranges of possible values.

Results. In Fig 7c we visualise the results of RF-MH method, and in Fig 7d we visualise

the results of RF-ref, as a green area approximating the viable parameter space. In both visuali-

sations, the true parameter point and the results of RF-opt and SMC-ABC are shown. In addi-

tion, we show the 95% HPD credible sets obtained from SMC-ABC method. The sampled data

and the respective PRISM model are available in Zenodo together with the text file including

the analysed PCTL properties (see zeroconf_4_data.txt, Zeroconf_4.pm,

Zeroconf_4.pctl).

Discussion. In this example, parameters p and q are not uniquely identifiable. This is

expected, because only one data measurement is given (reaching one of the BSCCs, because
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Fig 7. a) Zeroconf pMC for n = 4 probes. b) Data histogram of reaching the respective BSCCs as a result of 10,000 simulations using true parameter

values. c) Visualisation of RF-MH results after 47,953,711 iterations, while trimming the first 25% of 10,086,444 accepted points obtained in 1 hour

processor time using PC Skadi. The true point is shown as a white dot, the result of RF-opt shown as a purple dot, and the result of SMC-ABC shown as

a red point. d) Visualisation of RF-ref results, where the green area (safe subspace) shows parameters which evaluate the rational functions within the

intervals created from data using the corrected confidence level, 0.975. The true point is shown as a blue dot, the result of RF-opt shown as a cyan dot,

and the result of SMC-ABC shown as a yellow point. In both figures, c) and d), the red rectangle shows the 95% HPD (highest posterior density)

credible set, obtained by SMC-ABC.

https://doi.org/10.1371/journal.pone.0291151.g007
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reaching the second BSCC is a complementary event). Both results of RF-ref and RF-MH indi-

cate a non-linear dependence of two parameters in the viable space of parameters. As in the

previous example, RF-opt and SMC-ABC produce only single point estimates. While the opti-

mised point of RF-opt is far from the true point but still in the possible parameter space, the

point of SMC-ABC is not even in this space. The 95% HPD credible set computed by the

SMC-ABC method provides on over-approximation of the viable parameter space computed

by other methods, yet, as it is a hyper-rectangle in two dimensions, it does not capture the non-

linear dependence seen by other methods.

We mathematically explain the dependency seen in the visualisations in Lemma 3.

Lemma 3 (parameters in Zeroconf example) Assume a Zeroconf model with n probes, such

that the probabilities of reaching state ‘OK’ and ‘Failed’ are μok and μf respectively. Then, the

model parameters p and q are correlated according to a non-linear function that depends on

two values: (i) a :¼
mok
mf

, the ratio of observations in ‘OK’ to ‘Failed’ (which determines the hori-

zontal scaling in the green area shown in Fig 7d), and (ii) the number of probes n (which deter-

mines the steepness of the function dividing green and red are as in Fig 7d).

See Fig 8 for a visual analysis of the influence of values α and n on the correlation between p
and q. The Python script to produce the visualizations is available in the Zenodo package

(Zeroconf_correlation.ipynb).

Proof 2 The long-run probability of ending up in BSCC OK is equal to

mok ¼
X1

i¼0

ð
Xn� 1

j¼0

qpjð1 � pÞÞi � ð1 � qÞ

¼
X1

i¼0

ð
Xn� 1

j¼0

qðpj � pjþ1ÞÞ
i
� ð1 � qÞ

¼
X1

i¼0

ðq
Xn� 1

j¼0

pj � pjþ1Þ
i
� ð1 � qÞ

¼
X1

i¼0

ðqð1 � pnÞÞ
i
� ð1 � qÞ

¼
1 � q

1 � qþ qpn

Fig 8. Visualisation of the correlation between model parameters p and q in the Zeroconf example. The correlation is based on a non-linear

function which depends on two values: α, the ratio of observations in ‘OK’ to ‘Failed’, and n, the number of probes. We varied α in each plot (green: α =

9999, red: α = 199, blue: α = 9) and n across plots (a: n = 2, b: n = 4, c: n = 6). The shaded areas represent the respective corrected 97.5% Agresti-Coull

confidence intervals.

https://doi.org/10.1371/journal.pone.0291151.g008
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Solving this equation for q results in q ¼ 1� mok
mokpn � mokþ1

. Since the probability of ending up in the
other BSCC Failed is μf = 1 − μok, we can write q ¼ 1

mok
mf

pnþ1
: The function for q therefore describes

the shape of the satisfaction area depending on p and is determined by two values, a ¼ mok
mf
and n

in the following way: (i) α describes the horizontal scaling—the function is closer to 0 for greater
α (note this corresponds to more observations ending up in OK than Failed); accordingly, α also
determines the ‘endpoint’, so the value for q at p = 1 equals q ¼ 1

aþ1
. (ii) On the other hand, n

describes the steepness of the function. Note that p� 1, and therefore q is close to 1 for small p
and large n. Consequently, the shape of the function is more convex at lower values of p and
drops to the endpoint of q at a greater value of p.

Conclusions and future work

In this paper, we investigated how the formal methods for parameter synthesis can aid parame-

ter inference for parametric DTMCs when only steady-state data is available. Unlike directly

running inference procedures that must approximate likelihood of data, we propose how to

first use formal methods to obtain the exact likelihood for given data in terms of rational func-

tions over parameters of the MC. Subsequently, we propose how these rational functions can

be used to:

(i) efficiently compute the parameter points through maximising data likelihood (RF-opt

method),

(ii) compute the viable space of parameters complying with the data in the sense of traditional

interpretations of uncertainty at a desired confidence level (RF-alg and RF-ref method),

(iii) use rational functions to reduce uncertainty and boost scalability, through invoking them

within a Bayesian MCMC parameter inference scheme.

The performance of these methods is compared with the likelihood-free Bayesian inference

algorithm combining sequential Monte Carlo and approximate Bayesian computation

(SMC-ABC). Results are reported over a motivating example with two parameters and four

case studies:

(i) two ten-dimensional models—an artificial nested branching model and a real-world model

representing honeybee mass-stinging where parameters are identifiable from steady-state

data, but with challenging uncertainty propagation, and

(ii) two two-dimensional models—SIR epidemiological model and zero-configuration net-

work protocol where parameters are not uniquely identifiable from steady-state data, and

hence a more global analysis of viable parameter space is necessitated.

We demonstrated that our proposed method with first pre-computing the rational func-

tions with formal methods brings a two-fold advantage. First, with the case studies of nested

branching and honeybee defence attack, we demonstrate that our methodology allows one to

significantly enhance the accuracy, precision and scalability of inference with respect to the

typically employed sampling-based, likelihood-free techniques. Second, with the case study of

SIR and Zeroconf protocol, we demonstrate that by inferring the whole viable parameter space

(instead of only single value estimates), our methodology provides accurate, well-informed

results of the correlation between parameters. Capturing the global viable parameter space in

case of unidentifiable parameters becomes especially important for more complex models,

where the shape of it quickly becomes non-trivial and unfeasible to derive mathematically by
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hand. Our presented methods do not only compute the correlation between parameters auto-

matically, but they also provide non-linear boundaries for the estimates.

A limitation of the proposed approach is that, for larger models (pMCs), the synthesis of

rational functions can become infeasible due to memory management issues. Moreover, evalu-

ating rational functions may become computationally expensive or subject to numerical errors.

In these cases, the alternative is employing suitable model-abstraction techniques or resorting

to statistical approximations which in turn necessitate instantiating the chain by statistical

sampling. Population models induced from a counting abstraction, as in the honeybee collec-

tive defence model we studied here, have been widely studied in the context of biochemical

reaction networks. Ideas focusing on the faster prediction of resulting distributions over sub-

populations of molecular species, based on fluid, continuous space approximations [54, 55], as

well as moment closure approximations [56–58] could be useful for improving the scalability

of our parameter synthesis problem. Further promising approaches include global optimisa-

tion algorithms adopted from machine learning ideas, allowing us to develop a notion of

robustness degree [59, 60]. Different from our work here, these approaches handle continu-

ous-time Markov models and assume temporal data.

While the methodology presented in this paper trivially applies to the case when all BSCCs

are singletons, it can be applied to the more general case when BSCCs contain more states but

are indistinguishable by the observational apparatus. In future work, we plan to further gener-

alise and evaluate our framework for more complex temporal properties and for the case when

the BSCCs contain states with different labels. Moreover, we plan to investigate how different

projections of data can help to reduce uncertainty in the inference procedures.
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Writing – review & editing: Julia Klein, Matej Hajnal, David Šafránek, Tatjana Petrov.
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58. Backenköhler M, Bortolussi L, Wolf V. Generalized method of moments for stochastic reaction networks

in equilibrium. In: Computational Methods in Systems Biology. Springer; 2016. p. 15–29.

59. Bortolussi L, Sanguinetti G. Learning and Designing Stochastic Processes from Logical Constraints. In:

Quantitative Evaluation of Systems. Springer; 2013. p. 89–105.

60. Bartocci E, Bortolussi L, Nenzi L, Sanguinetti G. System design of stochastic models using robustness

of temporal properties. Theoretical Computer Science. 2015; 587:3–25. https://doi.org/10.1016/j.tcs.

2015.02.046

PLOS ONE Combining formal methods and Bayesian approach for stochastic models inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0291151 November 13, 2023 26 / 26

https://link.springer.com/10.1007/978-1-4419-1772-0
https://link.springer.com/10.1007/978-1-4419-1772-0
https://doi.org/10.1186/s13662-020-02995-1
http://www.ncbi.nlm.nih.gov/pubmed/33042201
https://tools.ietf.org/html/rfc3927
https://doi.org/10.1016/j.peva.2013.01.001
https://doi.org/10.2307/1912775
https://doi.org/10.1109/TCBB.2017.2775219
http://www.ncbi.nlm.nih.gov/pubmed/29990108
https://doi.org/10.1016/j.tcs.2015.02.046
https://doi.org/10.1016/j.tcs.2015.02.046
https://doi.org/10.1371/journal.pone.0291151

