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ABSTRACT
The ranking of nodes in a network according to their centrality or “importance” is
a classic problem that has attracted the interest of different scientific communities
in the last decades. The current COVID-19 pandemic has recently rejuvenated the
interest in this problem, as it informs the selection of which individuals should be
tested in a population of asymptomatic individuals, or which individuals should be
vaccinated first. Motivated by these issues, in this paper we review some popular
methods for node ranking in undirected unweighted graphs, and compare their per-
formance in a benchmark realistic network that takes into account the community-
based structure of society. In particular, we use the information of the relevance of
individuals in the network to take a control decision, i.e., which individuals should
be tested, and possibly quarantined. Finally, we also review the extension of these
ranking methods to weighted graphs, and explore the importance of weights in a
contact network by exhibiting a toy model and comparing node rankings for this
case in the context of disease spread.
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1. Introduction

1.1. Motivation

The outbreak of COVID-19 and the various attempts to find effective non-
pharmaceutical interventions to mitigate the impact of this virus have highlighted
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both the potential value of network science, and also the pressing need to further un-
derstand complex interaction networks to support the development of efficient control
measures for graphs. Among these interventions, smart testing strategies are one of
the most effective measures (Manabe et al., 2020; Salathé et al., 2020). To assess the
impact of different proposed strategies, a range of forecasting models has been applied,
of which the most popular are compartmental models (Rahimi et al., 2021). Lyng et al.
(2021) modeled testing strategies for schools and business considering various parame-
ters (such as test sensitivity, testing frequency, results lag, sample pooling, etc.) based
on a Susceptible, Infectious, Removed (SIR) model. Choi and Shim (2021) defined the
testing and social isolation strategies based on a Susceptible, Exposed, Infectious and
Recovered (SEIR) model. They concluded that in order to reduce the disease burden,
in combination with social distancing, the testing should be more intense in the early
stage of the infection wave and after the peak. A modified SEIR model was also used
by Amaku et al. (2021) to compare two test-trace-and-quarantine strategies to control
the COVID-19 outbreak in Brazil. They concluded that total population testing allows
reducing the number of cases by 90%, while the testing of symptomatic individuals
and their contacts still reached the same number of cases (90% reduction), but at a
significantly lower cost for the healthcare system.

Another widely used class of methods consider machine learning algorithms. Bas-
tani et al. (2021) used reinforcement learning to increase the testing efficiency of the
traversers of Greek border. The algorithm uses data about passengers’ country and
region of origin, age and sex to target individuals who should be tested. This measure
almost doubled the testing efficiency in terms of number of cases detected. Goodman-
Meza et al. (2020) tested seven machine learning techniques and further merged them
to create a single model. The input parameters include a set of basic demographic
characteristics and blood biomarkers obtained in hospitals, and are used as a proxy
for testing.

Alternatively, network science could be applied to deal with the distribution of tests,
in the case where tests (or adherence to public health testing requirements) are limited.
Indeed, the population in which the virus spreads can be parsed as a network, where
individuals are represented by nodes, the registered interactions among individuals
are the links between nodes, while relevant parameters, such as contact duration or
distance during the contact, may be considered as link weights. Then, naturally, graph
theory techniques may be applied to analyze and possibly mitigate the spread of the
disease. The current study highlights both the potential value of network science and
also the pressing need to further understand complex interaction networks to support
the development of efficient control measures for graphs.

Several diverse scientific communities have already developed different techniques
to better analyze and understand complex networks of interactions. For instance, in
the study of electrical grids, a graph with vertices and edges can represent a power
system, with its vertices representing system components and its edges representing
interactions or dependencies among those components. Analyses of this grid using
graph theory can assess the vulnerability of grid components during cascade failure
(a model called extended betweenness combines network structure with electrical
characteristics of the power grid (Yan et al., 2014)) or help to integrate renewable
energy sources (for example, networks with the small-world property might be more
resistant to small variations in load and generation (Koeth, 2019)). In neuroscience,
networks may represent connections between neurons and help to understand the
architecture and development of the brain. In this context, the detection of commu-
nities and bridges helps to “separate functionally related neural elements” and to
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study the flow of neural signals and information (Sporns, 2018). Also, important or
central nodes may help to identify key players in social networks (Borgatti, 2006),
which may ultimately help in finding spread blockers in dynamic networks (Yu et al.,
2008), with possibly applications in the mitigation of the spreading of fake news
(Bovet and Makse, 2019). Obviously, applications in social networks are also use-
ful for understanding the propagation of epidemics over graphs (Hufnagel et al., 2004).

There are many other research areas in which the application of graph theory
has played an important role. However, despite such a great interest from different
communities, COVID-19 has illustrated both the importance of graph theory and
its enormous potential, but also its limitations in the eyes of policy makers. For
example, as we write this note, there are more than 7000 results for the combination
of “COVID-19” and “graph theory” on Google Scholar. Yet few of these results, to
the best of our knowledge, have actually influenced policy in response to COVID-19.
This is despite the fact that all networks arising in studies prior to the pandemic
share many important features with networks in which disease propagates. All are
“driven by common organizing principles” and obey fundamental laws (Barabási,
2016), and in fact common mathematical methods can be applied to these.

As we have mentioned, the field of network science has benefited from the fact that
it is interdisciplinary and applicable in many research areas. Consequently, overlapping
contributions have been made in diverse areas. This is both good and bad; good as
progress has been fast, but also bad as it makes parsing available results difficult, both
from the perspective of understanding how they connect with each other, and from
the perspective of applying these results to real-world problems. Indeed, while many
comparisons between more classical graph theory indicators, and other community-
aware centrality measures, have been already performed in the existing literature (see
for instance Ghalmane et al. (2019) and Rajeh et al. (2021)) usually the existing com-
parisons focus on the correlations between different indicators, and observe qualitative
properties of networks (e.g., that community-aware centrality measures are more dis-
tinct in situations where the community structure is strong). Conversely, in this work
we try to evaluate more quantitative results, and in particular what could be the ac-
tual advantage (e.g., in terms of the number of infected individuals) if one ranking
measure is used over another to recommend which individuals should be tested, in the
case where testing must be limited (i.e. only a certain proportion of the population
can be tested per day). For this purpose, and motivated by the recent world interest
in the spread of COVID-19, and building on our recent paper on this topic (Yilmaz
et al., 2020), the specific objective of the present manuscript is to review the many
existing indicators that have been proposed to rank nodes in graphs, and to compare
them in terms of their effectiveness and efficiency (i.e., their ability to mitigate the
infection spread, considering computational effort for large-scale graphs) in a simpli-
fied COVID-19 case study. While the case study is indeed quite simple and considers
a limited amount of individuals, it nonetheless allows one to appreciate that different
indicators may lead to different results, under certain conditions on the properties of
the network. While we focus on the classic case of undirected and unweighted graphs,
we also provide an interesting comparison for the weighted case as well, for which very
few results can be found in the literature (e.g., see Kamp et al., 2013; Zhang et al.,
2013).
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1.2. Contributions

This paper provides the following main contributions:

(1) First, we review the most popular centrality measures that have been used in
the existing literature to rank nodes in networks. While many other review pa-
pers have been published on this topic (see Gómez, 2019; Oldham et al., 2019;
Ronqui and Travieso, 2015), in our interdisciplinary review we also include some
centrality measures taken from different scientific communities (e.g., epidemiol-
ogy, operations research, spectral graph theory, control theory, communications
and computer science communities) and compare their ability to mitigate the
spreading of the virus in the same network. Some of them have never been in-
cluded in similar comparisons before, see for instance the Kemeny index (Yilmaz
et al., 2020).

(2) Second, we propose a benchmark case study which can be used for compari-
son purposes. This includes a description of how to create a realistic network
of contacts, which is adapted from a work on epidemiological studies (Salathé
and Jones, 2010), and a simplified model to mimic the COVID-19 spreading
dynamics.

(3) As opposed to other comparisons, we do not just compare the correlations of
the indicators in ranking the nodes of a single static network. Rather, we make
an attempt at evaluating the cumulative impact of using a given indicator to
make a control decision (testing and quarantining) and compare how the use of
different indicators may affect the outcome in disease spread.

(4) Finally, we produce a simple example of a weighted network that motivates the
consideration of the duration of a contact between individuals in a network, and
allows us to observe what indicators may be more appropriate to use in the case
of weighted networks.

Remark: It is important to note that the objective of this paper is to compare and
contrast control measures based on different node rankings. We use a simplified model
for the disease, and our objective is thus not to propose practical solutions for testing
individuals for the COVID-19 pandemic. We are aware that more sophisticated and
realistic models than those that are actually deployed in this manuscript, should be
used for this purpose to validate any result we obtain. Conversely, this manuscript
only uses simplified COVID-19 transmission models as a motivating case study to
showcase that not all nodes are equally important, and not all ranking methods provide
equally useful indications in some circumstances. Accordingly, for the mere purpose
of comparison, we did not consider it particularly important that realistic models of
COVID-19 transmissions are used, but that exactly the same model is used every time
a different ranking indicator is adopted.

1.3. Organization of the paper

The paper is organized as follows: firstly, we briefly describe the indicators that will be
later considered in the comparisons, surveying existing literature on this topic. In the
following section we present the benchmark case study of undirected and unweighted
network and the indicators’ comparison. Next, we describe the revisited network to
compare indicators in the weighted framework, and show the corresponding obtained
ranks of the nodes. Finally, we conclude our manuscript and briefly outline possible
extensions of our work.
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2. Centrality and connectivity measures of a network

In this section we provide an extensive review of methods for ranking nodes by how
“central” they are to the network. While many surveys of this type exist (see, for
example Gómez, 2019; Oldham et al., 2019; Ronqui and Travieso, 2015), the aim
of the current work is to compare and contrast these and their effectiveness in the
context of disease spread in a contact network. We also include several centrality
measures which are currently underrepresented in network science, that play a more
prominent role in other disciplines. Furthermore, we consider alternative methods for
ranking node centrality by considering how much each node’s removal contributes to a
change in some global measure of connectivity of the network. As such, we also review
some network connectivity measures, and their interpretation in the context of disease
spread.

2.1. Some mathematical preliminaries

A simple undirected graph is denoted G = (V, E), with vertex set V = {1, . . . , N} and
edge set E ⊆ {{i, j} | i, j ∈ V}. We say that i and j are adjacent, and denote this as
i ∼ j, if there is an edge between i and j (i.e. {i, j} ∈ E). If i ∼ j, we say that j is
a neighbour of i. The number of neighbours of i is referred to as the degree of vertex
i, and denoted deg(i). The adjacency matrix of G is the symmetric matrix A defined
entrywise as:

aij =

{
1, if i ∼ j;
0, otherwise.

A directed graph with vertex set V as above is one in which the edges are ordered
pairs of vertices (i, j); i.e. E ⊆ V×V. The edge (or arc) (i, j) is considered to represent
a connection from i to j, sometimes denoted i → j, to indicate that the arc’s initial
vertex is i and terminal vertex is j. The adjacency matrix is defined in the same way
as above, though aij = 1 if and only if (i, j) ∈ E , and aij ̸= aji in general.

A weighted graph arises when each edge {i, j} is assigned a weight wij . This is taken
into account in the adjacency matrix by simply allowing the (i, j) entry of the matrix
to be the weight wij .

Directed and weighted graphs provide generalizations of the simple undirected graph
which may be very useful in the context of disease spread in a contact network. Differ-
ing weights of edges may account for differing strengths of transmission between pairs
of individuals, due to, for example, different circumstances of the interaction—length
of time, distance, etc. Asymmetric values allow for transmission to be more likely in
one direction than the other between two individuals, for reasons more pertinent to
the individual; for example, different levels of susceptibility, preventative measures,
waning immunity, age differences, etc.

Centrality measures and connectivity measures can be defined for simple undirected
graphs, and while some definitions may allow extensions to the weighted or directed
case, they may lose some aspect of their interpretation; some do not generalize at all.
In what follows, we attempt to indicate for each metric listed whether or not they do
generalize in this way. The ones which extend most naturally, we find, are those which
are derived from random walks, and so we include some mathematical preliminaries
pertaining to these here.

A random walk on a connected undirected graph G (and here we shall consider
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strongly connected graphs in the directed case) is a discrete-time stochastic process
in which, at any given time, a “random walker” occupies one vertex of the graph,
and in a subsequent time-step, moves to an adjacent vertex j of his/her current ver-
tex i, according to some transition probability pij . For a simple random walk on an
undirected graph, the transition probability pij is simply 1

deg(i) ; that is, the random

walker chooses his/her next position uniformly at random from among the neighbours
of his/her current vertex. This process is a Markov chain whose state space is the
vertex set of G, since the state in any time-step depends only on the state of the chain
in the previous time-step. The probability transition matrix P = [pij ] for this Markov
chain is easily determined from the adjacency matrix A by normalizing the rows so
that they sum to 1. In the case of weighted graphs, the transition matrix may be
determined in exactly the same way from the weighted adjacency matrix, although a
novel alternative will be later described in this manuscript; it follows similarly in the
case of directed graphs, although if there are any vertices with no outgoing edges, the
random walk is no longer well-defined.

For an ergodic Markov chain with states indexed 1, . . . , n and n × n transition
matrix P , the stationary distribution vector of P , denoted w, is a left eigenvector of
P corresponding to the eigenvalue 1, normalized so that the entries of w sum to 1 and
thus represents a probability distribution across the states. In particular, wi represents
the long-term probability that the Markov chain occupies the ith state. Note that in
the case of a simple random walk on a connected undirected graph, the stationary
distribution vector entries are proportional to the vertex degrees;

wi =
deg(i)∑
k deg(k)

.

For any two states i and j, the mean first passage time from i to j, denoted mij , is
the expected time it takes to reach the jth state, given that the chain starts in the ith

state.

2.2. Node centrality measures

2.2.1. Degree centrality

The first and simplest proposal for ranking nodes in a network is by considering each
node’s degree (sometimes called valency), or the number of neighbours of each node.
The degree of node i can be easily computed via the ith row sum of the adjacency
matrix:

deg(i) =

N∑
j=1

aij . (1)

The degree is a simple centrality measure for undirected networks, where it identifies
the most connected nodes, in the sense that highly-ranked nodes under this metric
will have the most neighbours. In the context of disease spread in a contact network,
these highly-ranked nodes correspond to individuals with the most contacts; as such, a
high-degree node infected with the disease has more opportunity to spread the disease
to other individuals.

In the case of directed graphs, one has to distinguish between incoming and outgoing
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edges, defining the in-degree and out-degree, respectively, as

deg−(i) =
∑
j

aij deg+(i) =
∑
k

aki.

Given this dual definition, it is more difficult to consider degree as a measure of
centrality in the directed case; some options are to consider the sum or the average of
the two (as in Gómez, 2019).

For weighted graphs, the degree of a vertex is easily extended by defining deg(i) as
the sum of the weights of incident edges. This is sometimes referred to as the strength
of a vertex (see, for example Barrat et al., 2004).

2.2.2. Closeness centrality

The distance between nodes i and j, denoted dist(i, j), is defined as the minimum
number of consecutive edges needed to move from node i to j or, equivalently, as
the length of a shortest path between them. The closeness centrality of a node i is
computed by taking the inverse of the average distance from i to any other node:

CC(i) =
N − 1∑

j ̸=i dist(i, j)
. (2)

The larger the value of CC(i), the more central node i is in the network, in the sense
that it is, on average, close to many other nodes.

As with degree centrality, the definition of closeness centrality can be extended to
directed networks, though a distinction must be made on whether the distances are
computed from, or to, the reference node i, respectively. Note also that “distances” are
not symmetric in directed networks. For weighted graphs, one could consider the edge-
weights as a “cost” to traversing the edge, and thus define shortest-distance between
u and v as the minimum weight of any path from u to v (where the weight of a path
is the sum of the weights of edges in the path). With such a definition for distance
in hand, it is reasonable to generalize the closeness centrality for weighted graphs; see
Opsahl et al. (2010) for some limited discussion.

In a disease spread context, ranking vertices in a contact network by their closeness
centrality would, in theory, highlight individuals for whom there is (on average) low
degree of separation between the individual and all other members of the community.
If this individual were infected, then, it takes fewer secondary infections on average to
infect others.

2.2.3. Betweenness centrality

The betweenness centrality of a node i is computed in terms of how many shortest
paths pass through that node (Freeman, 1977, 1978). In particular, fix a source node
s and target node t (distinct from i), and let σst denote the total number of shortest
paths from s to t (or geodesics, i.e. paths of length dist(s, t)). Letting σst(i) denote
the number of those paths that include node i, we take the ratio of these and then
average over all choices for s, t ̸= i:
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BC(i) =
2

(N − 1)(N − 2)

N∑
s,t=1
s,t ̸=i

σst(i)

σst
(3)

Accordingly, the betweenness centrality of a node corresponds to the fraction of
shortest paths that pass across that node, and this expression is valid for both di-
rected and undirected networks. In principle, betweenness centrality is expected to
rank highly the nodes that behave as bridges between clusters in the network (Gómez,
2019). In the context of disease spread, these highly-ranked nodes would correspond
to individuals who bridge multiple communities.

We encounter similar difficulties with the extension of betweenness centrality to
weighted and directed graphs as with closeness centrality. Some limited work exists;
see for example H. Wang et al. (2008), that focuses on the betweenness centrality of an
edge in a weighted network, rather than betweenness centrality of nodes, and White
and Borgatti (1994), that discusses several possible extensions to directed graphs and
their limitations.

2.2.4. PageRank centrality

The PageRank algorithm computes a ranking for every web page based on the graph
of the World Wide Web. PageRank has applications in search engines and traffic
estimation (Page et al., 1999). The PageRank algorithm is best understood via a
random walk on the network.

PageRank can be thought of as a model of a “random surfer” who starts on a
random webpage and keeps clicking on links randomly, never hitting “back”; that is,
he/she takes a random walk on the World Wide Web, a directed graph in which (i, j)
is an edge if webpage i has a hyperlink to webpage j. At any point, the surfer may get
bored and “teleport” to a random page in the network. The long-term probability that
the random surfer occupies webpage i in this stochastic process also corresponds to the
stationary distribution of the corresponding Markov chain. Note that the transition
matrix for this Markov chain is

P = (1− α)D−1A+ α 1
N J, (4)

where D is the diagonal matrix of vertex out-degrees, A is the adjacency matrix, and
J is the N × N matrix of all ones (Langville and Meyer, 2006). The parameter α is
related to the damping factor and represents the probability at each step that the
“random surfer” will request another random page; as a matter of convention, this
value is usually set to 0.15 (Brin and Page, 1998). We note that in the case of the
World Wide Web, the underlying directed graph is not strongly-connected; indeed,
there may be many webpages with no outgoing hyperlinks. This causes immediate
problems with the random walk being well-defined, but is usually fixed by replacing
any zero row of the adjacency matrix with a row of all 1s. Thus when the random surfer
ends up on a webpage with no outgoing links, he/she chooses a webpage uniformly
at random in the next step. This allows computation of the PageRank vector in the
setting that some nodes have outdegree 0.

The interpretation of this measure of centrality is interesting in the context of disease
spread. In the case that we work with a simple undirected graph, if α = 0 (i.e. a simple
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random walk with no teleportation), then the PageRank centrality ranking corresponds
exactly to the node degree centrality ranking. However, including a damping factor
may allow for the possibility that a person contracts the disease not from another
individual they have contact with, but rather by chance (e.g. touching a surface with
traces of the virus), or by some mechanism not accounted for in the contact network
model. PageRank centrality ranking of the nodes can essentially be thought of as
strongly related to the node degree ranking in this context, with some relaxation that
may actually reflect the features of the disease more accurately.

If one wishes to consider a weighted or directed graph, PageRank centrality is a
measure which can be applied along with its interpretability, simply by considering a
random walk on the given weighted or directed graph.

2.2.5. Random walk betweenness centrality

A measure of betweenness centrality based on random walks, called random walk
betweenness (RWB) was introduced by Newman (2005). The idea is to calculate the
centrality of a given node i by the proportion of random walks that pass through node
i. This is very similar to betweenness centrality, but does not consider shortest paths.
In particular, Newman (2005) describes it as “the expected net number of times a
random walk passes through vertex i on its way from a source s to a target t, averaged
over all s and t”. This measure was shown to better rank the importance of nodes
in graphs with existing communities, and to be less correlated with vertex degree in
most networks (Newman, 2005). Interestingly, the method for computing this measure
is strongly dependent on considering the graph in question as an electrical network
and considering current flow through a vertex. The author then proves that this is
equivalent to the “flow” of a random walk; however, this means that this particular
definition of random walk betweenness does not extend to directed or weighted graphs,
and there is no literature which attempts this.

Random-walk betweenness centrality is obtained by averaging the current flow

(f
(st)
i ) through vertex i over all possible origins (s) and destinations (t),

RWB(i) =
2

N(N − 1)

∑
s<t

f
(st)
i . (5)

See Newman (2005) for further information on how this quantity is calculated.
While it is not necessarily obvious from the electrical network description above,

there is a large body of literature on analogy between electrical networks and random
walks (see Doyle and Snell, 1984), and this value does indeed compute the expected
net number of times a random walk would pass through node i before reaching a
target t, given that it starts at a source s, averaged over all pairs s, t. This intuitively
seems to indicate “pivotal” individuals in a contact network in which a disease is
spreading at random, and as we will see in the next section, this metric is one which
is particularly effective in controlling the disease when used exclusively to determine
testing protocols. It is also known that in networks with strong community struc-
ture, immunization interventions targeted at individuals bridging communities (e.g.,
using random walk betweenness) are more effective than those simply targeting highly
connected individuals (Salathé and Jones, 2010).

Note that the definition 5 can be directly applied only to simple undirected graphs;
there does not exist a generalization to weighted or directed graphs.
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2.2.6. Random walk centrality (RWC)

Random walk centrality is introduced by Noh and Rieger (2004), and is said to “quan-
tify how central a node i is located regarding its potential to receive information which
is randomly diffusing over the network”. Given a graph G, consider a random walk
on the graph with transition matrix P . The stationary distribution vector for P is
denoted w, and the kth entry of w is denoted wk. The characteristic relaxation time
of vertex k is introduced as τk ≡

∑∞
j=0((P

j)k,k − wk). This quantity converges when-
ever the transition matrix P is primitive, which is the case for a random walk on a
connected non-bipartite graph. The random walk centrality (Noh and Rieger, 2004) of
vertex k is then calculated as Ck ≡ wk

τk
.

Kirkland (2016) observes that the random walk centrality is the reciprocal of the
measure of centrality known as the accessibility index. For a given vertex k, the acces-
sibility index of vertex k is defined

αk =
∑
j ̸=k

wjmjk,

where mjk is the mean first passage time from j to k. This definition allows the
interpretation of the accessibility index as the expected time to reach vertex k for the
first time, given that we start in any randomly-chosen initial state. It is shown by
Kirkland (2016) that Ck = 1/αk. This is particularly useful as it admits a definition of
this as a measure of centrality not just for simple undirected graphs (as is introduced
by Noh and Rieger (2004)) but for any Markov chain, as a measure of state centrality.
In particular, this is a useful metric for both weighted and directed graphs. Further
work on estimating the accessibility index using statistical techniques may be found
in Johnson and Kirkland (2019).

In the disease spread context, this measure ranks highly the vertices which are
“easily accessed” from other vertices of the graph. This is a useful way to consider
how “central” an individual is in a community. However, in the context of the spread
of disease, and in particular when considering testing protocols in order to control the
disease, this may not be appropriate. Controlling the disease in our simulations means
determining individuals who are most instrumental in the disease spreading through
the whole graph, and while those individuals with high random walk centrality may
have increased likelihood of being infected, this may not coincide with individuals who
ought to be tested and isolated as quickly as possible.

2.3. Network connectivity measures

Many connectivity measures exist which provide a single, numerical value describing
the “connectedness” of a network in some way. Such measures can be easily extended
to measure the criticality of a single node i in a graph G by inferring the criticality of
the ith node from the change in criticality of the network after the ith node is removed
from the network. This is described as follows in Fouss et al. (2016): given some graph
invariant cr(G) measuring the connectedness of the graph G in some manner, define

cri(G) := cr(G)− cr(G \ i).

We include several such measures of node centrality here for consideration in later
simulations.
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2.3.1. Effective graph resistance (Kirchhoff index)

The effective graph resistance is interpreted as a “robustness measure” of a network
(X. Wang et al., 2017). To formulate the effective graph resistance (also known as
the total graph resistance, or the Kirchhoff index of the graph), the (undirected and
connected) graph G is seen as an electrical circuit, where an edge {i, j} corresponds
to a resistor of rij Ohm, and the effective graph resistance is the sum of the effective
resistances over all pairs of vertices. These effective resistances Rst can be computed
using the Laplacian matrix of the graph.

The Laplacian matrix of a graph is defined as the adjacency matrix subtracted from
the diagonal matrix of vertex degrees: L = D − A. Note that in the context of the
electrical network, an undirected, unweighted graph is considered to have resistors of
rij = 1 Ohm on each edge. However, this can be extended to weighted networks, where
resistors have rij = 1/wij , where wij denotes the edge weight between vertices i and j.
In this case, the weighted Laplacian matrix can easily be defined, and used to extend
the following results.

Through applications of Kirchhoff’s current and circuit laws, one can show that the
effective resistance Rst between vertices s and t may be calculated using the Moore-
Penrose pseudoinverse L† of the Laplacian matrix of a graph:

Rst = (es − et)
TL†(es − et),

where ei denotes the standard unit vector, i.e., a vector consisting of all zeros except
a single 1 in the ith position. Given this expression for the effective resistance between
two vertices, the total graph resistance (or resistance distance - RD) can be expressed
in terms of the sum of the reciprocals of the nonzero eigenvalues of the Laplacian
matrix (Klein and Randić, 1993):

RD(G) =
1

N

N∑
j=2

1

ρj
. (6)

As previously mentioned, this measure can be easily extended to weighted graphs,
though it is not clear that a generalization for directed graphs is possible.

2.3.2. Kemeny’s constant

Given an ergodic Markov chain with transition matrix P , stationary vector w, and
mean first passage times mij , one can define the following quantity:

κi =

N∑
j=1

mijwj .

This can be interpreted as the expected time to reach a randomly-chosen state j, given
that the chain starts in state i. Astonishingly, this quantity is independent of the initial
state i (Kemeny and Snell, 1960). Thus Kemeny’s constant, denoted as K(P ), can be
computed as

K(P ) =

N∑
j=1

mijwj . (7)
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An interpretation of this result is that the expected time to reach a randomly-selected
destination state j from a fixed initial state i (where state j is selected randomly
according to the stationary distribution w) does not depend on the starting point i
(Doyle, 2009). Furthermore, since the wj sum to 1, we can write Kemeny’s constant
as a double-sum:

K(P ) =

N∑
i=1

N∑
j=1

wimijwj ,

admitting the interpretation of Kemeny’s constant as the expected length of a ran-
dom trip in the chain, where both initial and destination states are chosen randomly
according to the stationary distribution. Therefore, Kemeny’s constant is an intrinsic
measure of a Markov chain. If the transition matrix P has eigenvalues λ1 = 1, λ2, ..., λn,
then another way of computing K(P ) is (Levene and Loizou, 2002),

K(P ) =

N∑
j=2

1

1− λj
. (8)

Note that this expression furnishes a computationally useful method for determining
K(P ) in practice; K(P ) is computed as the trace of a given generalized inverse of the
singular matrix I − P .

Kemeny’s constant is a proxy for the global “connectedness” of a network, given
the interpretation as the expected length of a random trip between states in the chain.
Thus, networks characterised by small values of Kemeny’s constant should be more
efficient in terms of flow (Crisostomi et al., 2011). In a contact network, small values
of Kemeny’s constant for the random walk on the graph indicate that the individuals
in the network are well-connected, while large values of Kemeny’s constant may be
indicative of clustered behaviour, and that it is difficult to traverse the graph. If one can
identify the vertex whose removal causes the largest increase in the value of Kemeny’s
constant, this could be interpreted as a “central” vertex.

Since Kemeny’s constant can be computed for any ergodic Markov chain, it extends
most usefully to weighted, directed graphs.

2.3.3. Subdominant Eigenvalues

For an ergodic Markov chain with transition matrix P , the eigenvalues may be listed
λ1 = 1, λ2, . . . , λn, and by Perron-Frobenius theory, |λj | ≤ 1 for all j = 2, . . . , n. As is
evident from our discussion of Kemeny’s constant above, much information regarding
the dynamics of the Markov chain may be extracted from these eigenvalues. We are
frequently interested in the eigenvalue λj for which |λj | has second-largest modulus
(SLEM) after 1. Without loss of generality, suppose this is λ2. We outline here several
ways in which the value of λ2 can be used to infer how well-connected the states of a
Markov chain are (or the vertices of a graph; where the chain in question represents a
random walk on a graph). In general, if λ2 is bounded away from 1, the states of the
Markov chain are considered to be “well-connected”.

For a Markov chain with transition matrix P , the probability distribution after k
time-steps is given by uTk = uT0 P

k, where u0 is the initial probability distribution
vector. It is well-known that if the Markov chain is ergodic (i.e. the matrix P is
primitive), then uTk converges to the stationary distribution vector wT of the chain
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as k → ∞, independently of the initial distribution. The asymptotic rate of this
convergence is clearly dictated by the moduli of the eigenvalues of P . If all eigenvalues
have modulus bounded away from 1, convergence happens quickly. This convergence
is often referred to as the “mixing rate” of the chain, and is framed in terms of how
quickly the initial information is lost.

In the context of a random walk on an undirected connected graph, the transition
matrix for the random walk on G is P = D−1A; denote its eigenvalues by 1 ≥ λ2 ≥
· · · ≥ λn. There is the following bound on the total variation distance after k time-steps
have passed (see Chung and Graham, 1997):

∥uT0 P k − wT ∥ ≤ max
j ̸=1

|λj |k
maxi

√
deg(i)

minj
√

deg(j)
.

As P has real eigenvalues, issues arise when λj is close to 1 or close to −1. We note
that there is some difference in the dynamics of the Markov chain in these cases—a
subdominant eigenvalue close to 1 in value is indicative of clustering behaviour, or
of near-decoupling (Breen et al., 2018; Crisostomi et al., 2011; Hartfiel and Meyer,
1998), while −1 occurs as an eigenvalue of P if the undirected graph is bipartite,
causing periodic behaviour in the Markov chain. For this reason, in the context of
disease spread in a network, we are more interested in a subdominant eigenvalue
whose value is close to 1 (not whose modulus is close to 1). See Breen et al. (2018) for
more discussion.

The subdominant eigenvalue λ2 and its relationship to graph structure is also well-
studied in the context of the normalized Laplacian matrix, defined as

L = D−1/2(D −A)D−1/2

when G has no isolated vertices. It is easily seen that L is similar to the matrix
I − D−1A, so that the normalized Laplacian eigenvalues 0 ≤ µ1 ≤ · · · ≤ µn−1 are
in one-to-one correspondence with the eigenvalues of D−1A, where µj = 1− λj+1. In
particular, the eigenvalue µ1 = 1− λ2 is often referred to as the algebraic connectivity
of the graph (Chung and Graham, 1997) (not to be confused with Fiedler’s algebraic
connectivity, defined in the next section as an eigenvalue of the combinatorial Laplacian
L = D −A).

The eigenvalue µ1 (or the spectral gap 1−λ2) is well-known to be related to isoperi-
metric numbers of the graph. In particular, we have the following relationship with
Cheeger’s constant h(G) (Chung and Graham, 1997):

h(G)2

2
≤ µ1 ≤ 2h(G).

The Cheeger’s constant is a measure of how much a vertex set can expand in the
graph; formally,

h(G) = min
S⊂V (G)

vol(S)≤ 1

2
vol(G)

e(S, S)

vol(S)
,

where vol(S) is twice the number of edges between vertices in S, and e(S, S) denotes
the number of edges in the graph between vertices in S and in S, i.e. vertices outside
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S. We note that graphs with low values of Cheeger’s constant typically have “bottle-
neck” vertices, or clusters/communities with very few edges between them. Finally,
the quantity 1/µ1 is referred to as the relaxation time of the random walk, and is
studied in itself as a measure of the asymptotic rate of convergence to the stationary
distribution (see Aldous and Fill, 2002). Note that the relaxation time 1/(1 − λ2) is
the first and largest term in the expression (8) of Kemeny’s constant.

In the context of disease spread in a graph G, the value of the second-largest eigen-
value λ2 of the transition matrix for the random walk (and how close it is to 1) may
be used to indicate how quickly the disease may disperse through the graph, as a
measure of clustering behaviour in the graph, or as a stand-in for Cheeger’s constant,
indicating whether the graph has good expansion properties (which would imply that
the disease spreads quickly).

Since subdominant eigenvalues can be calculated for any Markov chain, this measure
is easily extended to weighted and directed networks. We remark that in the case that
a subdominant eigenvalue is a complex number, some work has been done in that area
to show how clustering behaviour may be derived from the value of λ2 in that case
(Breen et al., 2018).

2.3.4. Algebraic Connectivity (AC)

The eigenvalues of the Laplacian matrix of a graph G, L = D − A, can be listed
ρ0 = 0 ≤ ρ1 ≤ · · · ≤ ρn−1, and the second-smallest eigenvalue ρ1 is referred to as the
algebraic connectivity of the graph and denoted a(G) (Fiedler, 1989). This eigenvalue
is strictly greater than 0 if and only if G is a connected graph. The magnitude of this
value reflects how well connected the overall graph is. It has been used in analysing
the robustness and synchronizability of networks. There are many papers and results
relating the value of a(G) to many other structural quantities in the graph, such as
vertex- and edge-connectivity, diameter, minimum degree, isoperimetric constants, and
many others. For an overview, see the excellent survey by De Abreu (de Abreu, 2007).
There is some research in the area of extending the definition of algebraic connectivity
to directed graphs (Wu, 2005) and how it may be interpreted.

2.3.5. The Basic Reproduction Number (R0)

The basic reproduction number R0 is perhaps the most popular indicator in the epi-
demiology community, and it may be defined as the expected number of individuals
that a randomly infected individual can infect during his/her infection period in a
fully-healthy susceptible population (Mei et al., 2017). This value depends on the
specific disease (e.g., its intrinsic infectivity), and on the topology of the network of
contacts. In particular, it can be shown that in a wide class of network-SIS mod-
els (a susceptible-infected-susceptible model) R0 is proportional to λmax, where λmax

denotes the dominant eigenvalue of the adjacency matrix (Castellano and Pastor-
Satorras, 2017; Mei et al., 2017; Y. Wang et al., 2003). Accordingly, in this paper we
shall use the dominant eigenvalue of the adjacency matrix as a proxy for R0, with the
ultimate goal of testing individuals whose removal gives rise to the lowest value of R0.
We note that this eigenvalue is shown to reflect the basic reproduction number in Mei
et al., 2017 under certain modelling assumptions which may not hold in our simplified
model. Nevertheless, the largest eigenvalue of the adjacency matrix is well-known as a
key quantity in determining properties of dynamical systems on graphs; see Restrepo
et al., 2006 for similar work in the criticality of nodes and edges with respect to λmax.
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2.4. Modularity

The last measure we discuss here is the modularity of a network, which is considered
to quantify the degree of community structure of the network. In order to define this
measure (as defined by Newman and Girvan (2004)), we assume there exist some pre-
determined communities to which the vertices of a graph G belong, and partition the
vertex set accordingly; say V (G) = S1 ∪ S2 ∪ · · ·Sr . We define eij to be the fraction
of all edges in the network that join vertices from Si with vertices from Sj , with eii
considered as the fraction of edges within the community Si (i.e. vol(Si)/vol(G)).
Define ai =

∑r
j=1 eij , considered as the fraction of edges that connect to vertices in

Si. Then the modularity is defined

Q =

r∑
i=1

(eii − a2i ).

This quantifies the degree of community structure in the network by comparing the
fraction of all edges that are within a community to the fraction of the edges con-
necting that community to the other communities, and observing that if there was no
community structure, one could expect that eij = aiaj , giving a modularity of Q = 0.

In this present manuscript we do not consider modularity as one of our criticality
measures used to rank nodes by the effect of their removal on this quantity. Indeed,
we note that due to how we construct our contact networks, modularity is unlikely to
be sensitive to the removal of a single node, and would not produce meaningful results
if considered as a means of ranking nodes. Instead, modularity plays a more vital role
in our simulations, as we construct contact networks with varying levels of community
structure as described by modularity. We follow the method outlined in Salathé and
Jones (2010) to construct these; see section Case study: Creation of the network of
daily contacts.

3. Comparison for the COVID-19 case study

3.1. Case study: Creation of the network of daily contacts

Our case study is created according to the procedure outlined by Salathé and Jones
(2010), and later reused also by Yilmaz et al. (2020). The procedure to create the
network can be summarized in the following steps:

(1) 6 small-world communities of 40 nodes are first created using the Watts-Strogatz
algorithm (Watts and Strogatz, 1998), so that each node has exactly N0

d edges
connecting to nodes of the same community;

(2) We then add 30 · N0
d edges in a random way to connect different communities;

after this step, the average node degree becomes Nd = 5
4N

0
d ;

(3) We then rewire between-communities edges (i.e., edges that connect nodes be-
longing to two different communities) so that they become within-community
edges (i.e., edges that connect nodes belonging to the same community). In do-
ing this, the modularity of the graph increases, and we stop the procedure once
a desired level of modularity M is achieved.

In particular, we compare the different indicators for different values of Nd, that cor-
respond to the number of daily contacts of individuals, and for different values of
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modularity M , that allows one to evaluate what happens for societies with weaker or
stronger community structures. We create a new network for each day in the simula-
tion according to the procedure previously given, and we assume that it corresponds
to a network of daily contacts. Individuals remain in the same communities each day,
but inter- and intra-community edges change from day to day.

3.2. Case study: simulation of epidemic spread on a graph

The previously-described procedure had been proposed in Salathé and Jones, 2010 to
mimic the network of contacts of individuals in a society, with the final objective of
evaluating the impact of different testing/vaccination campaigns, to better mitigate the
spreading of epidemics. While such networks could be only guessed in that context,
contact tracing applications are now giving the unprecedented advantage of indeed
knowing when individuals meet at a close distance for a sufficient time to infect a new
individual (e.g., at least 15 minutes at a distance of 1 meter). An implicit assumption
here is that individuals allow the sharing of the information of their daily contacts to
some centralized data center that aggregates this kind of information and knows the
network (e.g., in terms of an adjacency matrix).

We then model the spreading of the virus, and the testing procedure in the following
simplified way: On the first day, we randomly label two individuals as “infected”, and
they correspond to our initial condition. Every single day, we assume that a susceptible
individual who gets in contact with an infectious individual, has a probability of 10 %
of being infected. Also, every day, we test Ntest individuals according to the different
indicators introduced in Section 2: if a tested individual is found infected, then he/she
is quarantined for the following 14 days, after which we assume the individual is fully
recovered and not susceptible anymore (i.e., they can not be infected again). Also all
his/her contacts of the same day are further tested (but not those of the previous
days). During the quarantine, we assume that the individual is fully compliant with
the rules, and does not have contact with any other individual. It may also happen
that infectious individuals are never tested, and obviously may infect other individuals
as well as they are not quarantined, and we assume that they also recover after 14
days, after which they are not susceptible anymore.

The previous model is obviously a simplification of the COVID-19 dynamics, and
may be seen as a simplified agent-based SIQR model, where each individual in the pop-
ulation may belong to only one of the disjoint compartments of Susceptible – Infected
– Quarantined – and Recovered individuals. While more accurate and sophisticated
models have been recently introduced in this context, e.g., the popular SIDARTHE
model (Giordano et al., 2020), the core of most compartmental models is the same as
the one analyzed by Bin et al. (2021). Since we only test individuals on the basis of the
topology of the network, depending on the specific indicator of interest, this method
may be applied in practice to target-testing individuals in a population of asymp-
tomatic individuals, and should be obviously complemented with the good practices
of testing individuals who, independently from the topology of the network, exhibit
COVID-19 symptoms. However, as we have already mentioned, simulations results are
only intended to be used in a comparative fashion, and actual or realistic applications
of any indicator is beyond the purpose of this work.
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3.3. Discussion of the simulation results

Simulation results are described in Fig. 1, where the final number of susceptible indi-
viduals at the end of the simulation (i.e., after 30 days) is shown. Note that due to
the adopted COVID-19 spreading model, the final number of susceptible individuals
corresponds to 240 (size of the considered population) minus the number of infected
individuals (so a larger number of susceptibles individuals corresponds to a smaller
number of infected individuals). Due to the stochasticity of the considered model, re-
sults shown in Fig. 1 are averaged over 100 simulations, and every time two randomly
chosen individuals are supposed to be infectious. The evolution of the number of in-
fected individuals throughout the 30 days of simulations is shown in Fig. 2. As can be
seen on the graph, the infection spread starts from 2 individuals, and is constrained by
testing and quarantining individuals according to different indicators. It is possible to
observe that the curve of infected individuals has a similar shape in all cases, but by
testing individuals using some of the indicators (e.g., RWB, SLEM, BC, and Kemeny)
allows one to significantly reduce the peak of the curve.

In the simulations we have considered networks of modularity equal to 0.8, average
node degree Nd equal to 7.5 and the possibility of testing 20 different individuals ev-
ery day. Then such default values are perturbed to observe how results consequently
change, as summarized in Fig. 1. In particular, from the figure above it is possible to
appreciate that better results can be obtained if networks with stronger community
structure are considered (values of modularity greater than 0.8). This result also high-
lights the importance of the indicator choice depending on the graph structure: while
in the absence of communities all indicators perform in a similar manner, with the in-
crease of modularity significant differences may be noticed, and the indicators that are
able to identify bridges between communities (such as AC, SLEM, RWB, Kemeny) are
associated with a higher number of healthy people by the end of the simulation. The
second panel of Fig. 1, demonstrates that the most relevant quantity is the average
node degree Nd. This could be expected since it corresponds to the number of daily
relevant contacts. Finally, the last panel shows the obvious result that as the number
of daily tests is increased, then a reduced number of individuals gets infected.

3.4. Computational burden for different indicators

With the increase of the network size, the computational burden could become too high
for some indicators, and thus limit their scalability. Table 1 reports the computation
time for the different indicators with a personal computer, equipped with a 6-core
i7-8700 CPU @ 3.20GHz, RAM 16 GB. The values correspond to an average time for
ten runs of the whole 30-day simulation and are sorted accordingly.

The indicators that can be computed fastest are those measuring the node centrality,
i.e., Page Rank, Closeness centrality, Node degree, Betweenness centrality, and RWC.
As expected, node connectivity measures are more resource-demanding and result at
least one order of magnitude slower. Among them, the most computationally expensive
are Second Largest Eigenvalues in Modulus (SLEM) and Kemeny constant. Finally,
it is noteworthy that although RWB still measures the node centrality, it is the most
burdensome measure among all indicators (almost 300 times slower than Page rank).
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Figure 1. Final number of susceptible individuals at the end of the simulation, for networks of different
modularities (above), different average node degree (middle), and for different values of daily tests.
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Figure 2. Daily number of infected individuals for different indicators. The shaded area corresponds to 95%
confidence interval.

4. Case study: simulation on weighted graphs

The primary contribution of this article is the survey and comparison of various node
ranking procedures in the control of disease spread in a contact network. However,
throughout the review in Section II of existing centrality indicators, we have stressed
the importance of considering metrics which generalize to weighted or asymmetric
(i.e., directed) graphs. This is motivated in no small part by the nature of the current
pandemic and the emphasis on increased risk of transmission caused by a lengthier
interaction, or a contact event with no personal protective equipment. In this section,
we present a small example to motivate further consideration of this issue.

In Newman’s paper (see Newman, 2005), the idea of random walk betweenness was
introduced, but first motivated by the example shown in Fig. 3. This example indicates
that while a node may not sit on any shortest path, intuition would still indicate that
it is still somehow more “central” than others. Finding existing measures of centrality
(which depended largely on shortest paths) falling short in appropriately categorizing
such nodes, Newman introduced the idea of random walk betweenness. Inspired by this
key example, and its natural appeal to the reader’s intuition, we present a comparable
example here which highlights the importance of considering the weights of connections
between nodes; first by an intuitive argument, then backed up by computations.

In Fig. 4, we have a network consisting of 10 nodes, and edges of different weights.
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Figure 3. Newman’s classic example to indicate the shortcomings of shortest-path centrality measures; node

6 receives the lowest centrality ranking.

Figure 4. A weighted network on 10 vertices, where weights correspond to varying probabilities of infection

between individuals.
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Indicator Average
computa-
tion time
(seconds)

Computation
method

PageRank
centrality

3.3 Matlab func-
tion (centrality,
‘pagerank’)

Closeness
centrality

3.5 Matlab function
(centrality, ‘close-
ness’)

Node de-
gree

3.6 Matlab function
(degree)

Betweenness
centrality

3.8 Matlab function
(centrality, ‘be-
tweenness’)

Random
walk cen-
trality
(RWC)

8.3 Based on general-
ized inverse (The-
orem 1.1 in (a)
(Kirkland, 2016))

Algebraic
connectiv-
ity (AC)

102.5 Second smallest
eigenvalue of
Laplacian matrix

R0 111.2 Highest eigen-
value of adja-
cency matrix

Resistance
distance
RD

154.8 Based on eigen-
values of Lapla-
cian matrix -
Equation (6)

Kemeny’s
constant

179.5 Based on general-
ized inverse

SLEM 194.8 Second largest
eigenvalue mod-
ulus of a Markov
chain transition
matrix

Random
walk be-
twenness
(RWB)

944.0 Eq. (5) (the com-
plete algorithm to
compute it is de-
scribed in New-
man, 2005, sec-
tion 2.2)

Table 1. Computational burden to compute each indicator. Also, for replicability purposes, we explain which
equations, or which Matlab function, has been used to compute it.

The weights are given by the following matrix:

W =



0 0.3 0.3 0.3 0.1 0 0 0 0 0
0.3 0 0.3 0.3 0.1 0 0 0 0.95 0
0.3 0.3 0 0.3 0.1 0 0 0 0 0
0.3 0.3 0.3 0 0.1 0 0 0 0 0
0.1 0.1 0.1 0.1 0 0.1 0 0 0 0
0 0 0 0 0.1 0 0.1 0.1 0.1 0.1
0 0 0 0 0 0.1 0 0.3 0.3 0.3
0 0 0 0 0 0.1 0.3 0 0.3 0.3
0 0.95 0 0 0 0.1 0.3 0.3 0 0.3
0 0 0 0 0 0.1 0.3 0.3 0.3 0


.
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For our purposes, we will interpret the edge weight wij as the probability of transmis-
sion from individual i to j (or vice versa) based on their contact time and conditions,
if one of them is already infected. Note that in Fig. 4, the weights are represented
proportionally by thinner or thicker lines. It is a reasonable argument that based on
these infection probabilities, nodes 2 and 9 should play a larger role in the spread of
the disease through the entire community than nodes 5 and 6. However, if we were
to assume that the graph is unweighted, or that all infection probabilities are equal,
then we would assume that all four nodes (2, 5, 6, and 9) have equal importance. If
testing/quarantine strategies are based on this assumption, we may fail to prevent or
slow the spread of the disease.

For the remainder of this section, we analyse this example in a few ways. First,
we compare the rankings of the nodes of this example according to each centrality
indicator from the previous section, where we consider the network to be unweighted
(i.e. all weights of contacts/edges are either 0 or 1). Then we will compute rankings
when the weights of the edges are taken into account. To do so, we will need to
elaborate further on how these will be computed in the weighted case. Finally, we run
some simulations to compare the effectiveness of each indicator (both unweighted and
weighted) in controlling the disease. These simulations differ from those in the previous
section since this network is too small for those same simulations to be sensible.

For unweighted indicators (node degree, betweenness centrality, random walk be-
tweenness, second-largest eigenvalue, and Kemeny’s constant), we compute as before,
taking the weight of every edge to be 1, and working with either the 0− 1 adjacency
matrix A, or the simple random walk on the graph with transition matrix D−1A. For
weighted indicators, we make a few adjustments:

• For weighted node degree, we use W as the weighted adjacency matrix, and
determine the weight of node i as the sum of the weights of incident edges, or
the sum of row i.

• In computing betweenness centrality of a node in a weighted graph, typically
the edge-weights correspond to a “cost”, and minimum distance corresponds to
paths or walks of minimal cost. As such, it does not make sense in this context
to compute betweenness centrality using infection probabilities as weights, since
if the value of wij is high, it is easier for the disease to spread, not harder (which
we would associate with high cost). We choose to simply replace the weight wij

of the edge between i and j by the cost 1−wij , and then compute betweenness
centrality for each node in the usual way.

• There is no known formulation of random walk betweenness for weighted graphs,
so we do not include a weighted version here.

• For the second-largest eigenvalue of a probability transition matrix, and for Ke-
meny’s constant, there are a few choices we could make for how to represent a
random walk on the weighted network. One option is to simply normalize the
rows of the matrix W , producing a stochastic matrix. However, in the disease-
spread context, this may not be appropriate. Instead, to account for individuals
with less-risky contacts overall, we implement an adjusted random walk, in which
for certain nodes, there is a nontrivial probability that the random walker stays
in place in the next time-step (in our application, this would correspond to as-
suming that an infectious individual will not infect another individual). To do
this, we find the maximum row-sum of W , and normalize the entire matrix by
that value. Then we replace the diagonal entry in each row by the difference
between 1 and the ith row-sum to produce a stochastic matrix. See matrix P
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P =



0.487 0.154 0.154 0.154 0.051 0 0 0 0 0
0.154 0 0.154 0.154 0.051 0 0 0 0.487 0
0.154 0.154 0.487 0.154 0.051 0 0 0 0 0
0.154 0.154 0.154 0.487 0.051 0 0 0 0 0
0.051 0.051 0.051 0.051 0.744 0.051 0 0 0 0
0 0 0 0 0.051 0.744 0.051 0.051 0.051 0.051
0 0 0 0 0 0.051 0.487 0.154 0.154 0.154
0 0 0 0 0 0.051 0.154 0.487 0.154 0.154
0 0.487 0 0 0 0.051 0.154 0.154 0 0.154
0 0 0 0 0 0.051 0.154 0.154 0.154 0.487


.

(9)

in Eq. (9) for the stochastic matrix representing the adjusted random walk for
this example with these weights. The advantage of this normalization is that
all contacts having the same duration are eventually associated with the same
probability of spreading the virus in the transition matrix, while without the
diagonal correction this is not guaranteed to occur, due to the normalization
steps required to make transition matrices row-stochastic. With this transition
matrix in hand, we compute the weighted versions of these indicators using this
representation of the Markov chain. For the sake of comparison, we also com-
pute Kemeny’s constant for the weighted random walk (without the diagonal
correction).

Due to the symmetry of the graph, some nodes of this network are associated with
the same values of criticality. Accordingly, such nodes can be grouped and analyzed to-
gether. In particular, there are at most three groups: {2, 9}, {5, 6} and {1, 3, 4, 7, 8, 10},
where nodes in the same group receive the same rank. The results are reported in Table
2 and can be summarized as follows:

• All unweighted indicators group {2, 5, 6, 9} together as being equally the most
critical nodes, while the remaining nodes rank second.

• Both weighted node degree (ND W) and the weighted version of Kemeny’s con-
stant (Kemeny WA) for the adjusted random walk rank {2, 9} as most critical,
{1, 3, 4, 7, 8, 10} next, and {5, 6} as least critical.

• The weighted betweenness centrality (BC W) measure ranks {2, 9} as the most
central nodes in the weighted network, and weights all other nodes equally.

• The second-largest eigenvalue measure for the adjusted random walk (SLEM
W) ranks {2, 9} as most critical, then {5, 6}, then the remaining nodes
{1, 3, 4, 7, 8, 10}. Interestingly, Kemeny’s constant for the weighted random walk
without the diagonal correction (Kemeny W) ranks the nodes the same way.

Intuition and visual inspection of the graph are sufficient to determine that un-
weighted indicators fail to properly rank nodes because nodes {2, 9} are more critical
than {5, 6} (the virus is spread more likely from one community to the other through
the {2, 9}-link as the duration of their contact is longer than that of {5, 6}). Indeed, all
indicators based on the weighted graph reach a consensus on indicating nodes {2, 9}
as the most critical. Conversely, there is a discrepancy on which one should be the
second most critical set of nodes (i.e., Kemeny’s constant indicates {1, 3, 4, 7, 8, 10},
while the weighted betweenness centrality measure indicates {5, 6}).

Accordingly, we run disease-spread simulations with this network so to establish
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Ranking strategy First group Second group Third group

Correct ranking 2,9 1,3,4,7,8,10 5,6
Unweighted indicators 2,5,6,9 1,3,4,7,8,10 -
Kemeny W 2,9 5,6 1,3,4,7,8,10
Kemeny WA 2,9 1,3,4,7,8,10 5,6
ND W 2,9 1,3,4,7,8,10 5,6
SLEM W 2,9 5,6 1,3,4,7,8,10
BC W 2,9 1,3,4,5,6,7,8,10 -

Table 2. Nodes ranking on the weighted graph

which one is the correct response. As mentioned already, this network is too small to
obtain meaningful results from the heuristic outlined in the previous section. Instead,
we do the following: For each node, remove it from the network, infect one other node
chosen at random, and run an infection simulation according to the probabilities given
in W . Take note of the number of days it takes for the disease to spread to all the
remaining 9 nodes in the network. Run this same simulation 1000 times and record
the average number of days for the disease to spread to the entire network. Thus for
each node in the network, we have a simulated measure of how “critical” it is in the
spread of disease through the network - the higher the number of days for the disease
to spread with node i removed, the more critical node i must be to the spread in the
underlying network shown in Fig. 4. The average numbers of days are shown for each
node as follows:

Node Avg. days
1 7.55
2 17.41
3 7.39
4 7.39
5 6.84
6 6.83
7 7.63
8 7.63
9 17.37
10 7.39

Note that in 1000 simulations on the full weighted network, the average number of
days for the disease to spread to all ten nodes is 7.86 days. Removing some nodes
might either speed up or slow down the spreading of the disease. We consider the
outcome of this simulation as the evidence of which nodes are most critical, and we
report it accordingly in Table 2.

4.1. Discussion of the Results for the Weighted Case

Table 2 shows through a simple example several interesting results:

• Unweighted indicators fail to work properly in weighted graphs. Thus, indicators
that cannot be directly used in weighted graphs should not be used when weights
are known and available;

• Some unweighted indicators may be actually used in the weighted case as well,
but they may not be as effective as they used to be in the unweighted case, see
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for instance betweenness centrality in Table 2;
• The indicator based on the Kemeny’s constant (and the transition matrix with
diagonal scaling) appears to work equally well for weighted and unweighted net-
works, thanks to its ability to identify bridges of communities, which are indeed
critical in spreading a virus in a population Yilmaz et al., 2020. The previous
comments suggest that indicators like the Kemeny’s constant should be used
to analyse weighted networks. Conversely, the usage of unweighted indicators
corresponds to neglecting potentially useful information that drives the spread-
ing of the infection (e.g., different duration of contacts that leads to different
probabilities of infection).

5. Conclusions

Inspired by the recent problems arising in the context of the COVID-19 pandemic,
and most notably in terms of who should be tested, and who should be vaccinated
first, this manuscript reviews some of the most popular ranking methodologies to iden-
tify the importance of nodes in networks of individuals. While the dynamics of the
COVID-19 have been simplified, still it is possible to observe that significantly different
results may be obtained if different ranking methods are adopted to select the most
suitable individuals for tests or vaccination. In particular, three main parameters were
considered to assess the actual effectiveness of the indicators, i.e., the network mod-
ularity, the average number of daily contacts and the number of available tests. The
simulations showed that for many combinations of these parameters, indicators like
the algebraic connectivity, betweenness centrality, second largest eigenvalue modulus,
Kemeny’s constant and random walk betweenness, may actually be twice as effective
as other indicators in abating the number of infected individuals (i.e., with respect to
PageRank or node degree).
The comparison becomes even more interesting under the assumption that duration of
contacts may be measured and shared. In this case, this information can be encapsu-
lated as a weight in edges of the graph, but unweighted indicators, i.e., indicators based
on the corresponding unweighted graph, fail to take into consideration this piece of
information and its impact in the virus spread. In addition, indicators that appeared
to perform very well in the unweighted case, most notably, betweenness centrality
and the second largest eigenvalue, fail to correctly rank nodes in the proposed simple
network, which is a weighted revisitation of the classic Newman’s network. Other indi-
cators that explicitly take into account the (weighted) transition matrix, as Kemeny’s
constant appear to be the most suitable in correctly ranking the nodes.
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Klein, D. J., & Randić, M. (1993). Resistance distance. Journal of Mathematical Chem-
istry, 12 (1), 81–95. https://doi.org/10.1007/BF01164627

Koeth, F. (2019). Graphs, Networks and Power Systems. Retrieved May 17, 2021, from
https://www.incite-itn.eu/blog/graphs-networks-and-power-systems/

27



Langville, A. N., & Meyer, C. D. (2006). Google’s PageRank and Beyond - the science
of search engine rankings. Princeton University Press.

Levene, M., & Loizou, G. (2002). Kemeny’s Constant and the Random Surfer. The
American Mathematical Monthly, 109 (8), 741–745. https://doi.org/10.1080/
00029890.2002.11919905

Lyng, G. D., Sheils, N. E., Kennedy, C. J., Griffin, D. O., & Berke, E. M. (2021).
Identifying optimal COVID-19 testing strategies for schools and businesses:
Balancing testing frequency, individual test technology, and cost. PLoS ONE,
16 (3), e0248783.

Manabe, Y. C., Sharfstein, J. S., & Armstrong, K. (2020). The need for more and
better testing for COVID-19. JAMA, 324 (21), 2153–2154.

Mei, W., Mohagheghi, S., Zampieri, S., & Bullo, F. (2017). On the dynamics of deter-
ministic epidemic propagation over networks. Annual Reviews in Control, 44,
116–128. https://doi.org/10.1016/j.arcontrol.2017.09.002

Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks.
Social Networks, 27 (1), 39–54. https://doi.org/10.1016/j.socnet.2004.11.009

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure
in networks. Physical Review E, 69 (2), 026113. https ://doi . org/10 .1103/
PhysRevE.69.026113

Noh, J. D., & Rieger, H. (2004). RandomWalks on Complex Networks. Physical Review
Letters, 92 (11), 118701. https://doi.org/10.1103/PhysRevLett.92.118701

Oldham, S., Fulcher, B., Parkes, L., Arnatkeviciūtė, A., Suo, C., & Fornito, A. (2019).
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