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Abstract 
 

Sex differences researchers are becoming increasingly interested in how differences in averages 
and variability jointly influence male and female representation at the tails of the distribution. 
This paper introduces the S-index, a novel index that provides a simple and robust summary of 
the shape of sex differences at the distribution extremes. The use of S is illustrated with a 
selection of real-world datasets of personality and cognitive ability, and a R function is provided 
to calculate S and draw intuitive proportion plots of sex differences across the distribution. The 
S-index is not limited to the study of sex differences; it can be applied to other domains as long 
as the groups to be compared are about equally represented in the population and the variables of 
interest are approximately bell-shaped. 

 
Keywords: gender differences; group differences; methodology; proportions; sex 

differences; tails. 
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In the psychological literature, sex differences are typically measured by comparing male 

and female averages with univariate indices, such as Cohen’s d (e.g., Hyde, 2014).1 In recent 
years, researchers have started exploring alternative methods to reveal the full scope and 
complexity of sex-related patterns of cognition and behavior. These methods range from 
straightforward extensions of the standard approach (e.g., multivariate distances between means; 
see Del Giudice, 2009, 2022; Eagly & Revelle, 2022) to complex machine learning models for 
classification and prediction (e.g., Loesche, 2019). Meanwhile, the long-standing focus on 
averages has been broadened by a renewed interest in sex differences in variability, typically 
quantified as variance ratios (e.g., Borkenau et al., 2013; Gray et al., 2019; Johnson et al., 2008; 
see Del Giudice, 2022). Patterns of dispersion around the mean are especially relevant to the 
greater male variability hypothesis (GMVH), which was proposed by Darwin (1871) and went 
on to became the object of more than a century of heated debate (see Del Giudice, 2023; 
Feingold, 1992). More recently, the GMVH has attracted the attention of evolutionary 
psychologists (e.g., Archer & Mehdikhani, 2003; Del Giudice et al., 2018; Stewart-Williams & 
Halsey, 2021), and shown an undiminished power to excite controversy (for a recent example, 
see Harrison et al., 2022 and Del Giudice & Gangestad, 2022).  

 
Importantly, sex differences often become magnified as one moves toward more extreme 

values of a trait. The same difference may have a small or negligible impact near the center of 
the distribution, but yield substantial imbalances in the proportions of males and females at the 
distribution’s tails. Moreover, the effects of differences in trait means and variability—as well as 
other features, e.g., subtle differences in skewness and kurtosis—combine with one another in 
ways that are not always intuitive. Patterns of sex differences at the extremes are an important 
topic of investigation in their own respect; for two notable empirical examples, see Paessler’s 
(2015) study of vocational interests and Thöni and Volk’s (2021) analysis of time, risk, and 
social preferences. 

 
At present, researchers have two main ways to quantify sex differences at the distribution 

extremes. Tail ratios measure the ratio of the two sexes in the region above or below a cutoff 
(see Del Giudice, 2022; Voracek et al., 2013). Relative distribution methods can be used to plot 
the relative density of males and females across the entire distribution, and separate the effect of 
mean differences from that of differences in dispersion and other aspects of distribution shape 
(Handcock & Morris, 1998, 1999; see Del Giudice, 2022). Because ratios tend to amplify the 
impact of fluctuations in the data, tail ratios are quite sensitive to sampling error and require very 
large Ns to yield accurate estimates. While relative density plots can be highly informative, they 
are not immediately intuitive and require some technical background to interpret correctly. 
Methods based on differences between distribution quantiles (Rousselet et al., 2017) yield results 
that are potentially more robust, but even harder to interpret for casual readers. 

 
In this paper, I introduce the S-index, a novel statistic that provides a simple, robust 

summary of the shape of group differences at the distribution extremes. The S-index is designed 

 
1 Here I use “sex differences” as a descriptive label for differences between males and females, with no particular 
assumptions about their biological and/or cultural origins. For more discussion of this terminological issue see Del 
Giudice (2022, 2023).  
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to compare groups that are about equally represented in the population, which makes it ideally 
suited to the analysis of on sex differences. In what follows, I describe the logic and meaning of 
S and demonstrate its use in a selection of real-world datasets. I also provide an R function to 
calculate the index and supplement it with intuitive, informative plots. 

 
The S-Index 
 

The S-index (for “shape”) is based on the proportions of two groups at three points of 
their overall distribution: the unweighted group mean and the upper and lower extremes of the 
range under consideration. Proportions are considerably more robust than ratios, as they 
compress the upper and lower ends of the scale into a small interval (for example, increasing the 
M:F ratio from 20 to 200 to 2,000 only changes the percentage of males from 95% to 99.5% to 
99.9%). For this reason, proportions are not just intuitive but also comparatively insensitive to 
sampling error. Male and female proportions across the distribution can be displayed in 
proportion plots like the ones shown in Figure 1 (which are based on idealized normal 
distributions with different means and SDs).  

 
 

 
 

Figure 1. Illustrative proportion plots showing (a) an X-shaped pattern and (b) a U-shaped pattern of sex 
differences, based on idealized normal distributions. Blue = males; pink = females.  

 
 
When two groups are about equally represented in the population (as is the case for 

males and females) and their distributions are approximately bell-shaped (as with many 
morphological and psychological traits), the resulting patterns of proportions fall between two 
prototypical configurations. The first prototype corresponds to X-shaped patterns like the one in 
Figure 1a: the proportion of members of one group increases moving from the lower to the upper 
extreme of the distribution, while the proportion of members of the other group declines 
accordingly. The second prototype corresponds to U-shaped patterns line that in Figure 1b: the 
proportion of members of one group increases at both extremes and decreases around the mean 
(U), while the proportion of members of the other group declines at both extremes and increases 
toward the mean (inverted U). In between one finds weaker versions of X-shaped and U-shaped 
patterns, as well as “mixed” patterns that combine aspects of the two. The online supplement 
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(section S1) shows the range of patterns that may arise from combinations of mean and variance 
differences typically observed for psychological traits. 

 
The S-index exploits the regularities of proportion patterns to summarize their shape with 

a single numerical value ranging from –1 to +1. Positive values of S correspond to X-shaped 
patterns (e.g., Fig. 1a), whereas negative values correspond to U-shaped patterns (e.g., Fig. 1b). 
Large values of S indicate strong patterns, such as those shown in Fig. 1; smaller values indicate 
weaker and/or more mixed patterns. Finally, values around zero mean that the pattern lacks a 
consistent trend on at least one side of the distribution, possibly because there are no meaningful 
differences in the trait. The absolute magnitude of S can be used to rank different effects as 
weaker or stronger than one another, but should not be over-interpreted as implying a true ratio 
scaling. For example, an effect of S = –.60 indicates a more pronounced U-shaped pattern than 
one of S = –.30; however, that pattern may not be exactly “twice as large” as the other on any 
straightforward metric. 

 
Formula and Notation 
 

The formula to compute S is: 
 

𝑆 = sgn[(𝑝! − 𝑝")(𝑝" − 𝑝#)] ∙ -
|𝑝! − 𝑝"|

1
2 + 2

1
2 − 𝑝"3 sgn(𝑝! − 𝑝")

∙
|𝑝# − 𝑝"|

1
2 + 2

1
2 − 𝑝"3 sgn(𝑝# − 𝑝")

 

 
where sgn(∙) is the sign function and 𝑝", 𝑝#, and 𝑝! are the proportions (range: 0-1) of 

one of the groups (which one does not matter) at the unweighted mean of the two groups and at 
the upper and lower extremes of the range under consideration, respectively (see Fig. 2). The 
square-root term in the formula is the geometric mean of two normalized differences: (1) the 
absolute difference between 𝑝" and 𝑝!, normalized by either 𝑝" or (1 − 𝑝"), depending on the 
side of 𝑝" on which 𝑝! lies; and (2) the absolute difference between 𝑝" and 𝑝#, also normalized 
by 𝑝" or (1 − 𝑝") depending on the value of 𝑝#. In the example of Fig. 2, |𝑝! − 𝑝"| would be 
normalized by 𝑝", whereas |𝑝# − 𝑝"| would be normalized by (1 − 𝑝"). The term outside the 
square root determines the sign of S, based on the concordant vs. discordant directions of the two 
differences. The formula yields S = 1 when 𝑝! = 0 and 𝑝# = 1 or vice versa (extreme X-shaped 
pattern); S = –1 when 𝑝! = 𝑝# = 0 or 𝑝! = 𝑝# = 1 (extreme U-shaped pattern); and S = 0 when 
𝑝! = 𝑝", 𝑝# = 𝑝", or both (inconsistent trends or no group differences). 

 
The notation of S includes a subscript to indicate the distance of the extremes from the 

mean, expressed in terms of the overall standard deviation of the two groups combined 
(assuming equal group size). For example, S2 would indicate the S-index calculated ±2 SDs from 
the mean. This raises the issue of what is a suitable operational definition of “extremes”. I 
propose that S3 should serve as a sensible default for most applications, keeping in mind that any 
such choice is going to be somewhat arbitrary. Typical rules of thumb to identify outliers use 
thresholds of ±2.5 or 3.5 SDs from the mean, suggesting that deviations of ±3 SDs match most 
researchers’ intuitive conception of “extreme scores” reasonably well. In a normal distribution, 
±3 SDs leave out the top and bottom 0.13% of the data, consistent with a notion of rarity at the 
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extremes (only about 2-3 participants out of 1,000 are expected to score outside these bounds). 
That said, different applications may suggest different definitions of the distribution extremes. 
For example, S2 may be more informative or relevant than S3 for certain specific purposes; in 
general, however, ±2 SDs from the mean identify scores that are far from average but not truly 
extreme (e.g., almost 5% of the data in a normal distribution are expected to lie outside these 
bounds).  
 

Because S has the same value regardless of which group is used to compute 𝑝", 𝑝!, and 
𝑝#, it can be useful extend the notation to specify the directionality of the pattern. A simple way 
to do so is to add the letter M or F to indicate whether males or females are over-represented at 
the upper extreme of the distribution. To illustrate, the X-shaped pattern in Fig. 1a (with more 
females than males at the upper extreme) can be summarized as S3 = .81 (F), whereas the U-
shaped pattern of Fig. 1b (with more males than females at both extremes) corresponds to S3 = –
.82 (M).  

 
 

 
 

Figure 2. Visual explanation of the quantities used to calculate the S-index. The labels 𝑝!, 𝑝", and 𝑝# 
indicate the proportions of one of the groups (darker line) at the population mean and at the upper and 
lower extreme of the range under consideration.  

 
 
R Function 
 

An R function (s.index) to calculate the S-index and draw proportions plots is available at 
https://doi.org/10.6084/m9.figshare.21437727. This function can calculate the S-index from the 
means and SDs of two normal distributions, from the empirical distributions of two groups, or 
from idealized normal distributions with the same means and SDs as the empirical distributions. 
In the case of empirical data, density functions and proportions are estimated with a Gaussian 
kernel, using the average of the bandwidths suggested for the two groups by Silverman’s rule of 
thumb (Silverman, 1986). The bandwidth used to estimate proportions is increased by an 
adjustment factor (1.5 by default) to yield smoother, more robust curves. The function also 
provides bootstrapped confidence intervals on S.  
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Statistical Power, Estimation Bias, and Standard Error 

 
The online supplement reports initial simulation results on the inferential properties of the 

estimation/bootstrap procedure employed by the s.index function in relation to effect and sample 
size. These simulations explore index S3 in the basic scenario of normally distributed 
populations. Section S2 displays the results for statistical power, Section S3 for estimation bias, 
and Section S4 for the standard error; here I present some illustrative highlights.  

 
As can be expected, the S-index requires fairly large samples in order to reliably detect 

patterns of group differences at the extremes. To detect clear-cut effects of S3 = +/–.50 with 
sufficient power (> 80%), one needs more than ~3,000 participants per group; achieving the 
same power for subtler effects around S3 = +/–.25 requires more than ~20,000-25,000 
participants per group. With ~100,000 participants per group, one obtains excellent power for all 
but the most subtle effects (down to about S3 = +/–.15). Conversely, ~1,000 participants per 
group are only adequate to detect large effects in the order of S3 = +/–.70. 

 
As shown in section S3, sample estimates of S are biased toward zero, yielding somewhat 

deflated values of the statistic. This reflects the increasing asymmetry of the sampling 
distribution as sample size decreases and/or the population value of S approaches +/–1 (see 
sections S3 and S4). The effect becomes especially pronounced when there are fewer than ~1000 
participants per group. Having more than ~10,000 participants per group reduces bias to 
uniformly low amounts (less than about +/–0.05 in absolute magnitude). In general, one should 
be very cautious about estimating S3 with fewer than 1,000 participants per group, unless the 
expected effect is extremely strong (in excess of +/–.80) and significant amounts of deflation can 
be tolerated.  

 
Empirical Examples 
 

Figure 3 illustrates the S-index with a selection of real-world datasets (the data and R 
code used to make the plots are available at https://doi.org/10.6084/m9.figshare.21437949). 
Panel 3a displays the distribution of height for 7,424 adults (50.7% females) in the National 
Health and Nutrition Examination Survey (NHANES) database. Height is a useful reference trait 
because of its familiarity; sex differences show a very strong X-shaped pattern, with S3 = 1.00 
(M, 95% CI [1.00, 1.00]). When the S-index is computed from empirical datasets, the default 
option is to avoid extrapolating beyond the actual data: if the minimum ad/or maximum observed 
values of the variable fall inside the specified bounds (e.g., ± 3 SDs from the mean), the 
empirical minimum and/or maximum are used instead. Proportion plots show the empirical 
minimum and maximum of the variable as dotted vertical lines. 

 
Panels 3b-3f are based on Big Five personality traits for a sample of 100,000 participants 

from the United States (50% females), randomly selected from a larger dataset described in 
Kaiser (2019). Both Agreeableness and Neuroticism yield clear X-shaped patterns, with S3 = .56 
(F, 95% CI [.47, .64]) for Agreeableness and S3 = .47 (F, 95% CI [.37, .56]) for Neuroticism. 
Openness and Extraversion show much weaker (and less symmetric) configurations that do not 
reach statistical significance, with S3 = .10 (F), 95% CI [–.28, .32] and S3 = .15 (F), 95% CI [–
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.19, .29], respectively. Note that these small values hide a higher proportion of males at the low 
end of the scale—a reminder that S provides a broad-brush statistical summary that cannot 
replace a detailed examination of the data. Finally, the S-index indicates no consistent patterns 
for Conscientiousness (S3 = –.06, M, 95% CI [–.11, .05]).  

 
 

 
 

Figure 3. Examples of proportion plots and S3 values from three empirical datasets (see main text for 
details). (a) Sex differences in adult height. (b-f) Sex differences in Big Five personality traits. (g-i) Sex 
differences in cognitive performance (ASVAB battery). Dotted vertical lines show the minimum/maximum 
observed values of the variable. Blue = males; pink = females.  

 
 
Panels 3g-3i show the distribution of cognitive performance on the Armed Services 

Vocational Aptitude Battery (ASVAB). This sample from the 1997 National Longitudinal 
Survey of Youth (NLSY97) includes 7,076 participants with complete data (49.4% females). 



  
 

The S-Index 9 

Verbal scores yield a mild X-shaped pattern of sex differences, with S3 = .21 (F, 95% CI [–.22, 
.40]). In contrast, math scores reveal a reliable U-shaped pattern, with a preponderance of males 
at the higher and lower ability levels: S3 = –.35 (M, 95% CI [–.49, –.22]). The combined scores 
(average of math and verbal) show the same configuration (S3 = –.30, M; 95% CI [–.44, –.08]). 
Given the comparatively small size of the ASVAB sample, one should keep in mind that these 
estimates are likely to be somewhat deflated (see supplementary section S3). 

 
Conclusion 

 
The S-index extends the statistical toolkit for the study of sex differences, by providing a 

simple and robust summary of patterns of male and female proportions at the distribution 
extremes. This novel index can be used to screen variables for potentially interesting patterns, 
and permits quantitative evaluations and comparisons in addition to qualitative ones. I have 
introduced the S-index in the context of psychological sex differences because its assumptions 
(approximately equal-sized groups, bell-shaped distributions) are often satisfied in this area of 
research. However, it is worth stressing that this index is by no means specific to sex differences, 
and can be applied equally well to other domains as long as the relevant assumptions are met. 
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S1. Patterns of proportions 
 

 

 

  

 
Fig. S1. Patterns of proportions (between ± 3 SDs from the mean) for two normally distributed groups of equal size. 
Columns correspond to increasing values of Cohen’s d (0, 0.5, 1); rows correspond to increasing values of the variance 
ratio (VR; 1, 1.1., 1.2, 1.5). 
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S2. Statistical Power 
 
The power curves displayed in Fig. S2 and S3 were obtained by (a) simulating samples from normal distributions and (b) 

estimating the S-index (specifically S3) and its 95% CI from empirical data with the default settings of function s.index (to 
speed up computations, bootstrapped CIS were based on 500 samples without jackknife acceleration). Positive S3 values 
were obtained from two populations with equal variances but different means, as in the top row of Fig. S1. Negative S3 
values were obtained from two populations with equal means but different variances, as in the left column of Fig. S1. In both 
cases, power was evaluated at 9 effect sizes and 13 sample sizes, from N = 100 to 100K per group (total sample size: 200 to 
200K). The curves were based on 200 samples for each combination of effect/sample size and smoothed for error correction. 

  

 
Fig. S2. Statistical power (a = 0.05, two-tailed) for positive values of the population S3, based on equal-sized samples 
from two normally distributed populations.  
 

 
Fig. S3. Statistical power (a = 0.05, two-tailed) for negative values of the population S3, based on equal-sized samples 
from two normally distributed populations.  
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S3. Estimation Bias  
 
The bias curves displayed in Fig. S4 and S5 were obtained from the same simulated data presented in section S2. The curves 

show the average S3 estimated with function s.index (smoothed for error correction), as compared with the true value of S3 in the 
population. 
 

 
Fig. S4. Average sample estimates for positive values of S3 at different sample sizes. Dotted lines show population values 
of S3. Simulations were based on equal-sized samples from two normally distributed populations. 

 
 

 
Fig. S5. Average sample estimates for negative values of S3 at different sample sizes. Dotted lines show population 
values of S3. Simulations were based on equal-sized samples from two normally distributed populations. 

  

Positive S3 values

Sample size (per group)

A
ve

ra
ge

 S
3 

es
tim

at
e

100 250 500 1K 2.5K 5K 10K 25K 50K 100K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
S3 = .90

.80

.70

.60

.50

.40

.30

.20

.10

Negative S3 values

Sample size (per group)

A
ve

ra
ge

 S
3 

es
tim

at
e

100 250 500 1K 2.5K 5K 10K 25K 50K 100K

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

-.90

-.80

-.70

-.60

-.50

-.40

-.30

-.20

S3 = -.10



S4. Standard Error 
 
The curves displayed in Fig. S6 and S7 were obtained with the same procedure as in sections S2 and S3, but with 1,000 

samples for each combination of effect/sample size. The standard error was estimated as the SD of the distribution of 
sample values of S3, calculated with the default settings of function s.index. 

 

 
Fig. S6. Standard error estimates for positive values of the population S3, based on equal-sized samples from two 
normally distributed populations.  
 

 
Fig. S7. Standard error estimates for negative values of the population S3, based on equal-sized samples from two 
normally distributed populations. 
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