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Abstract
Quantum phase transitions with multicritical points are fascinating phenomena occurring in
interacting quantum many-body systems. However, multicritical points predicted by theory have
been rarely verified experimentally; finding multicritical points with specific behaviors and
realizing their control remains a challenging topic. Here, we propose a system that a quantized light
field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities,
which is described by a generalized Dicke model. Multicritical points for the superradiant quantum
phase transition are shown to occur. We determine the number and position of these critical points
and demonstrate that they can be effectively manipulated through the tuning of system parameters.
Particularly, we find that the quantum critical points can evolve into a Lifshitz point (LP) if the
Rabi frequency of the light field is modulated periodically in time. Remarkably, the texture of
atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system. The
magnetic orders of the three phases around the LP, represented by the atomic pseudo-spins, are
similar to those of an axial next-nearest-neighboring Ising model. The results reported here are
beneficial for unveiling intriguing physics of quantum phase transitions and pave the way towards
to find novel quantum multicritical phenomena based on the generalized Dicke model.

1. Introduction

Critical phenomena is an everlasting subject of interest, both for its connection with the heart of statistical
physics and for its relevance to everyday and technological applications [1]. A conceptual point intensely
scrutinized focused on how quantum effects modify criticality and to chart quantum phase transitions [2].

In this line of research, a major topic is to characterize and study the quantum counterpart of
multicritical points, which is a very active and promising field of research; see, e.g. [3]. In this field, it would
be of paramount importance to have a physical setup, highly controllable, in which one can produce and
control quantum multicritical points.

A major example of multicritical point is the Lifshitz point (LP) where three phases meet together,
i.e. two first-order and a second-order (or two second-order and a first-order) phase transitions intersect in
phase diagram. It was shown that the critical behavior around such a point can be achieved by varying the
external parameters, and/or by preparing mixed compounds or alloys [4]. For instance, a paramagnetic
phase, a (anti-)ferromagnetic phase and a helicoidal phase can meet at an LP, where the second order phase
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transition line meshes with the first order one. LPs have been observed in a variety of condensed matter
systems [5, 6] and expected to occur in systems of Rydberg atoms [7] and quantum chromodynamics [8, 9].
Quantum tricritical point (QTP) can be defined as a point where two lines of first-order and second-order
phase transitions merge, with properties quite different from those at boundaries of conventional phase
transitions. Remarkable efforts have been made on QTPs in various systems [10–12], and recently in Dicke
models [13–16].

Dicke model describes typically the interaction between a quantized single-mode light field and an
ensemble of two-level atoms [17–19], a many-spin version of a quantum Rabi model. In recent years many
experimental works have been devoted to systems governed by such a model, including ones by optical
cavities [20–22], circuit quantum electrodynamics (QED) [23] and cold atoms [24]. The Dicke model can
exhibit second-order phase transition between superradiant phase (SP) and normal phase (NP) [25]. Due to
the relative simplicity of theoretical approach, the Dicke model and its extension have become excellent
platforms for studying quantum phase transitions, a useful path to simulate and understand the similar
phenomena occurring in quantum many-body physics. Although various generalized schemes of Dicke
model have been suggested [13, 14, 26–35], quantum multicritical behaviors predicted theoretically have not
been verified by experiment. Hence, finding multicritical points with specific properties and realize their
active control in such systems remains a challenging topic up to now.

In this work, we consider a driven system that can be described by an extended Dicke model, in which a
laser field interacts with a gas of identical two-level atoms trapped inM cavities, with each cavity coupled by
an arbitrary Zeeman (microwave) field. We show the emergence and manipulation of different quantum
critical points (QCPs). Based on the relation between the order parameter of the radiance and system
parameters, we propose a method to accurately determine the number and the positions of the QCPs in the
phase diagram, which paves the way to manipulate the QCPs and to detailed study of the criticality in
experimental realizations.

Furthermore, we explore the multicriticality of the system when the atom-field interaction is driven
periodically by a laser field. In this case, the system can be described by a correlated model with spin–spin
interaction between the cavities. Especially, the QCP can evolve into an LP when the driven is strong. Such a
critical behavior is similar to that appearing in an axial next-nearest-neighboring Ising (ANNNI)
model [6, 36] or quantum Lifshitz model [37], and the atomic pseudo-spins in each cavity represent the
‘magnetic orders’ of different phases around the LP.

Comparing with solid systems, the quantum critical behaviors predicted in the present system, together
with its interesting physical properties, may be easier to observe and can be actively controlled
experimentally due to highly tunable of the system.

2. Extended Dicke model

We consider a cold atom gas with N two-level atoms, which is trapped equally inM identical high-quality
optical cavities and interacts with a quantized single-mode laser field. In each cavity, a microwave field
couples the two states of the atoms, with coupling strength kj for jth cavity (j = 1,2, . . . ,M). These microwave
fields serve as staggered Zeeman fields experienced by the atoms in the cavities, see appendix A for details.

The system can be described by an extended Dicke model (ℏ≡ 1) by the Hamiltonian H=HDM +HEF,
with

HDM = ωa†a+
N∑
i=1

[
δ

2
σ z
i +

G(t)

2
√
N

(
a† + a

)
σ x
i

]
, (1)

HEF =
ω

2

M∑
j=1

kj

N/M∑
i=1

σ x
i+N(j−1)/M, (2)

where HDM is the Dicke Hamiltonian; HEF is contributed by the external microwave fields; a(†) is the bosonic
operator for the laser field with frequency ω; δ is the transition frequency between the two atomic levels; ση

i

(η = x,y,z; i = 1,2, . . . ,N) are Pauli matrices; and G representing the laser-atom coupling strength is the
single-photon Rabi frequency of the laser field, which can be modulated in time by varying the amplitude of
the laser field. The system can be taken to be composed ofM subsystems, each containing N/M atoms. We
assume, without loss of generality, that the Zeeman coupling strength kj (j = 1,2, . . . ,M) is real and can take
different signs. This can be realized by choosing the relative phases of the microwave fields. For convenience,
we take ω as energy unit, i.e. ω= 1.
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The multi-cavity (or cavities array) systems, possible to realize in experiments, have been studied to be
closely related to strongly correlated systems [38], where each cavity acts as a site in a lattice. We note that too
many cavities may be technically challenged, therefore only the systems with a few (⩽5) cavities are
calculated here. Especially, when the periodic driving is turn on, at most three cavities are considered.

3. Results

3.1. Critical points and phase diagramwithout driving
For completeness, we first consider the simple case of a constant coupling strength, G(t) = g. Assume that
the photon number in the laser field is large, and a mean-field approximation a→ ⟨a⟩ is applied. In
thermodynamic limit (N→∞), the functional of energy-per-atom is given by F(ξ) = ξ 2/ν−

∑M
j=1√

δ2 +
(
ξ+ kj

)2
(see appendix B) , where ξ = 2g⟨a⟩/

√
N, ν = 2g2/M are the dimensionless order parameter

and the laser-atom coupling strength, respectively. If ξ= 0 (|ξ |> 0), the system is in NP (SP). We use the set,
K= {k1,k2, . . . ,kM;kj ∈ R}, to represent different Zeeman couplings in different cavities. The ground-state
property of the system depends on the choice of K. For instance, in the case of K= {−1,1} the
corresponding term in the Hamiltonian reads HEF =− 1

2

∑N/2
i=1 σ

x
i + 1

2

∑N/2
i=1 σ

x
i+N/2.

Figures 1(a)–(c) show the phase diagrams of three examples for taking three sets: K3, K4 and K5, chosen
respectively as K3 ≡ {−1,0,1}, K4 ≡ {−1.5,−0.5,2,3}, and K5 ≡ {−2,−1,0,1,2}, by minimizing the
energy-per-atom in the system. We see that, with the increase ofM (the number of the cavities), the number
of minima of F(ξ) (each minimum corresponds to an SP) is increased, and hence the number of the SP
phases is also increased. Moreover, the phase diagram for the case of K5 is similar to that of K3. The former
contains three SPs (i.e. SP-I, SP-II, SP-III) and two QCPs, while the later contains two SPs (i.e. SP-I, SP-II)
and one QCP.

To explore the properties of the QCPs more clearly, we start by locating the QCP in the superradiant
region in figure 1(a), which is at (δ,ν) = (0.715,1.139). Then, we fix the value of δ or ν, and study how the
order parameter ξ evolves with the variable ν or δ around the QCP. For δ = 0.655,0.715,0.775, three phase
diagrams with respect to ν are shown in figures 2(a)–(c), respectively. When δ= 0.655, it is clear that a
first-order phase transition appears at ν= 1.12 (figure 2(a)); when δ= 0.715, at the QCP the second-order
phase transition between two SPs, as a joint of the first-order phase transition for δ < 0.715, occurs at
ν = 1.139, ξ = 0.902 (figure 2(b)) where the derivative of the curve diverges. For δ= 0.775, only the phase
transition between the NP and the SP appears, and the curve in the superradiant region becomes smooth
(figure 2(c)). The same phenomenon occurs in the other three diagrams shown in figures 2(d)–(f), when
fixing the value of ν = 1.109,1.139,1.169, respectively.

From figure 2(b), we find that when δ is fixed, both the functions ξ (ν) and its inverse ν(ξ ) are
monotonic. The QCP is the stationary point and the inflection point of ν(ξ ). These properties can be then
used to find an analytical method to locate the QCPs in the phase diagram.

The positions of the QCPs in the phase diagrams figures 1(a)–(c) can be determined in the following way.
First, let consider the condition of minimizing energy per atom F(ξ), i.e. ∂F(ξ )/∂ξ = 0, we can obtain the
function ν, which is now a function of δ and ξ, i.e.

ν = ν(δ,ξ )≡ 2ξ∑M
j=1(kj + ξ )[δ2 +(kj + ξ )2]−1/2

. (3)

The QCP at the second-order phase transition joining the first-order phase transition line, is the
stationary point of the curve as shown in figure 2(b), i.e. ξ ′(ν) =∞ and ν ′(ξ ) = 0. Moreover, we find that
the QCP is also the inflection point of ν(ξ ), namely the curvature of ν(ξ ) is zero at the QCP. Hence, we are
able to establish the two equations

∂ν(δ,ξ )

∂ξ
= 0,

∂2ν(δ,ξ )

∂ξ 2
= 0, (4)

to find out the solutions (δ,ξ ). Then, we put the solutions back to ν(δ,ξ), and we obtain where the QCPs are.
Note that we need to check whether the energy functional is a minimum at the intersection point, i.e.
∂2F/∂δ2 > 0 or ∂2F/∂ν2 > 0. However, equation (4) do not necessarily have solution, which depends on the
coupling strengths K. For instance, no solution is found when K= {0,1,2}, since ∂ν/∂ξ > 0. The number
and location of the QCP can be manipulated by tuning the external fields K to some extent. Moreover,
knowing where the location of the QCP is also helpful to determine physical quantities such as the coupling
strength g (related to ν) or the energy gap δ.
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Figure 1. Ground-state phase diagrams as function of δ (atomic transition frequency) and ν = 2g2/M (dimensionless laser-atom
coupling strength) are obtained numerically by minimizing the functional of energy-per-atom. (a) The case for the Zeeman
coupling coefficient set K3 = {−1,0,1} contains two SPs (i.e. SP-I and SP-II); the green dot in the SP region denotes QCP.
(b) The same as (a), but with K4 = {−1.5,−0.5,2,3}, where there are three SPs (i.e. SP-I, SP-II, SP-III) and two QCPs. (c) The
same as (a), but with K5 = {−2,−1,0,1,2}. The phase diagram is similar to (a) except that there are three SPs and two QCPs.
The blue solid (red dashed) line in (d)–(f) represents the one obtained by solving the equation ∂ν/∂ξ = 0 (∂2ν/ ∂ξ2 = 0). The
intersections marked by the green dots in (d)–(f) are the locations of the QCPs for K3,K4,K5 (corresponding to the QCPs shown
in (a)–(c)), respectively.

In figures 1(d)–(f) we show the results respectively for the Zeeman coupling sets K3, K4, and K5. In the
figure, the blue line and the red dashed line are obtained by equation (4). The intersections marked by the
green dots are the locations of the QCPs, corresponding respectively to the QCPs in (a)–(c). In figure 1(d),
only one intersection represents a QCP at (δ,ν,ξ ) = (0.715,1.139,0.902) for the K3 = {−1,0,1}model,
consistent with the result marked by the green dot in figure 1(a). We also find the intersection points for
K4,K5 models in figures 1(e) and (f), which are the same QCPs marked in figures 1(b) and (c), respectively.
The number of the SP is increased generally when the number of the Zeeman couplings increases. This can
be understood by the reason that an addition of new Zeeman couplings can bring a new symmetry breaking
in the system. Furthermore, the number and the location of the QCP can be manipulated by tuning the
external fields K. Knowing where the QCP is also helpful to determine physical quantities such as the
coupling strength g or the energy gap δ.

3.2. Multicriticality with a periodic driving
We now turn to consider the case that the atom-field coupling is periodically driven [39], G(t) = g+
Acos(Ωt). If the driving frequency is so large that we can integrate out all the fast-varied effects, then the
effective time-independent Hamiltonian can be obtained for g,ω,δ ≪ Ω (see details in appendix D)

4
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Figure 2. For the K3 = {−1,0,1}model, different curve forms before and after the QCP at (δ,ν,ξ ) = (0.715,1.139,0.902).
(a)–(c) ν is fixed to be 1.139 and δ is varied. (d)–(f) δ is fixed to 0.715 while ν is varied. At the QCP, the second-order phase
transitions occur between two different superradiant phases.

h0 = ωa†a+
g
(
a† + a

)
√
N

M∑
j=1

Jxj +ω
M∑
j=1

kjJ
x
j +

ω

2

A2

NΩ2

 M∑
j=1

Jxj

2

+ δJ0

[
2A
(
a† + a

)
Ω
√
N

]
M∑
j=1

J zj , (5)

where J0 is the Bessel function of the first kind, Jµj = 1
2

∑
i σ

µ
j+M(i−1) are collective spin operators. This

Hamiltonian is a combination of the anisotropic Zeeman couplings, the ‘spin–orbit’ coupling (a+ a†)Jx,zj

and the spin–spin interaction Jxi · Jxj . All the couplings strengths can be conveniently changed in the highly
tunable atomic systems comparing with the solid-state systems. If there is only one cavity, then no ‘spin–spin’
interaction is involved and the Hamiltonian goes back to that in [39].

In the thermodynamic limit, the fluctuation can be neglected and the energy of the ground state in the

mean-field approach is obtained by substitutions in h0: J zj → N
2M

(
Y2
j − 1

)
, Jxj →− N

2MYj

√
2−Y2

j , and

a→
√
NX/

√
2M [40] (see appendix C). This energy functional is highly nonlinear and its minimum can

only be found numerically. By minimizing the energy, the order parameters Y j and X=
√
2Mξ/(2g) and the

phase of the ground state are obtained.
If there is no staggered Zeeman field, the phase transition is turned to first-order by the periodic driving

at large δ (or large g [39]), and a QTP appears to join the second-order phase transition remaining at small δ.
If the driving amplitude A is increased, the QTP moves in the direction of decreasing δ, until A is so large that
all the phase transitions are first-order and the QTP disappears. In the following, for simplicity but without
loss of generality, we focus on the several typical cases where two and three Zeeman fields are included.

Without the driving, the case of two staggered Zeeman fields, i.e. K= {−ϵ,ϵ}, leads a QTP joining the
first-order phase transition (small δ) to the second-order phase transition (large δ). Increasing ϵmoves the
QTP in the direction of increasing δ [13]. If both the driving and the Zeeman fields K= {−ϵ,ϵ} (ϵ= 1)
jointly influence the system, the phase diagram (figure 3(a)) can be understood as the superposition of the
phase diagrams with the driving only or with the staggered Zeeman fields only (details can be found in
appendix C): at small δ, the first-order phase transition is led by the superposition of the first-order (from
staggered Zeeman fields) and the second-order (from the driving) phase transitions; when δ is large, the
opposite occurs; in the intermediate region of δ, the superposition of two second-order phase transitions
remains the phase transition second-order. As shown in figure 3, the QTP at smaller δ is due to the staggered
Zeeman fields while the QTP at larger δ is from the driving A/Ω= 0.23. If the staggered Zeeman fields or the
driving are increased, the two QTPs move towards each other as shown in figure 3(a), and finally all the
phase transitions are first-order and the QTPs disappear once the two QTPs meet.

5
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Figure 3. (a) The phase diagram of the model with K= {−ϵ,ϵ} (ϵ= 1) and A/Ω= 0.23. The ground states are obtained
numerically by minimizing the functional of energy-per-atom. Two QTPs are marked by the green dots. The QTP at smaller δ is
induced by the staggered Zeeman couplings while the other one is induced by the periodic driving A. The upper (lower) arrow
represents the direction of the QTP moving when A (or ϵ) is increased. (b) The critical exponent γ and the error bars for the
second-order phase transition line between the two QTPs are obtained by power fitting the curve of ξ.

The critical exponents obtained by fitting the curve of the order parameter ξ (see the details in
appendix D) are γ= 0.25 at the QTPs and γ= 0.5 for the second-order phase transition between the two
QTPs.

3.3. LP in three-optical-cavity system
We next consider the three-cavity system with the periodic driving. For simplicity, we start by discussing the
cases with the Zeeman couplings K3 = {−1,0,1}. When the amplitude of the driving, A, is small, the phase
diagram should be similar to that without driving shown in figure 1(a), a QCP, as the end point of the
first-order phase transition line between the SP-I and SP-II, stays in the SPs to separate SP-I and SP-II. When
A is increased, a QTP is generated at large δ (δ= 3.3 for A/Ω= 0.3) by the driving, as illustrated in
figure 4(a). This QTP connects the first-order (for δ > 3.3) and the second-order (for δ < 3.3) phase
transitions.

Increasing the amplitude of the driving pushes the QCP in the SP region towards the NP-SP transition in
the direction of increasing δ (details can be found in appendix C), shown as the white arrow in figure 4(a).
Meanwhile, the QTP is moved in the direction of decreasing δ by increasing A for the same reason as
discussed in the two-cavity case (see also appendix C), as the black arrow shown in figure 4(a). When
A/Ω> 0.35, the QCP and the QTP can meet to form a new critical point.

As shown in figure 4(b), the SP-I does not disappear at weak coupling g, the first-order phase transition
line between SP-I and SP-II is extended till the border of the NP-SP transition. The QCP which is the end of
this phase transition line arrives at the NP-SP border and meet the QTP moving downwards along the NP-SP
border. A LP is then formed, acting as a triple point that connects SP-I, SP-II and the NP. Two first-order
phase transitions (one between the two SPs, the other between the NP and SP-II) and a second-order phase
transition between the NP and SP-I intersect at the LP, as shown in figure 4(b). The SP-II has much stronger
radiance than the SP-I, providing the feasibility to observe the LP by measuring the superradiance.

The periodic driving mostly affects the pseudo-spin polarized SP-II where the pseudo-spins of the three
cavities are approximately parallel and its related phase transitions, since the spin–spin interaction is most
significant when the pseudo-spins are polarized. The phase transition between spin unpolarized SP-I and NP
is unchanged, since

∑
j J

x
j is small and the spin–spin interaction is not important either. The reason why the

LP appears can be traced from the Hamiltonian (5). Although the atoms do not explicitly interact with each
other, the driven system is effectively governed by a spin–spin correlated model, which makes the system
contain physics as rich as strongly correlated systems. Moreover, the effective Lagrangian of the system in the
continuum approximation is in some sense equivalent to that of the quantum liquid system [37], which can
be described by the quantum Lifshitz model containing the LP in the phase diagram. Hence, it would be
reasonable that our system holds an LP.

This Hamiltonian is also similar to that of the ANNNI model [6, 36], in which the LP exists surrounded
by (anti-)ferromagnetic, paraferromagnetic and modulated phases. In our case, the two SPs and the NP can
also be characterized by the ‘magnetic orders’ of the pseudo-spins of the atoms in the three cavities. The

6
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Figure 4. The phase diagrams for the model of K= {−ϵ,0, ϵ}. The ground states are obtained numerically by minimizing the
functional of energy-per-atom. (a) A QCP in the SPs at δ= 0.85 and a QTP at δ= 3.3 for A/Ω= 0.3, ϵ= 1. The small region
surrounded by the dashed line is zoomed in the inserted panel. When A increases, the two critical points move in the direction of
the arrows. Once the two points touch, the LP is formed, at about A/Ω≈ 0.35; (b) the LP is displayed for A/Ω= 0.4. The three
phases with different radiance from low to high are marked as NP, SP-I and SP-II. (c) The phase diagram with varying ϵ and fixed
δ = ω, a QCP separates SP-I and SP-II when the driving is absent. With increase of the driving, the QCP moves in direction of the
arrow. (d) A/Ω= 0.5. For A/Ω> 0.45, the critical point moves to then moves down along the NP-SP transition border to evolve
to a QTP. Since the SP-I is not significantly changed, an LP is formed as a triple point, crossed by the first-order SP-I to SP-II and
NP to SP-II transitions, and the second order NP-SP-I phase transition.

pseudo-spins in each cavity are the sum of all the pseudo-spins of the atoms therein. The magnetic order of a
phase in our system is represented by the textures of the pseudo-spins of the three cavities.

For simplicity, here we only monitor ⟨Jxj ⟩ in the three adjacent phases around the LP, and put ⟨J zj ⟩ aside
since it is not related to the spin–spin interaction or the anisotropic Zeeman couplings. Figure 5 clearly
indicates the three different magnetic orders of the three phases: the NP has the anti-ferromagnetic order,
SP-I has the modulated magnetic order, and SP-II is ferromagnetism. The full spin textures can be found in
appendix E. We notice that if the pseudo-spin is more polarized, the atoms are more coherent, and the
superradiance is stronger. The correspondence between the extended Dicke model and the ANNNI model
illustrates why the atomic system can hold an LP surrounded by different magnetic orders. Besides, for the
K3 = {−1,0,1}model without driving, the three phases (NP, SP-I and SP-II) also have these magnetic orders
around the QCP. Namely, a Lifshitz regime including the QCP is perhaps already formed, which however
cannot be closed up to an LP due to the lack of the driving induced spin–spin interaction.

To obtain more information of the evolution of the LP, we then consider the cases with varied microwave
fields K= {−ϵ,0, ϵ} and a fixed energy between the two atomic levels δ = ω to plot the phase diagram.
Without driving, a first-order phase transition with its end QCP separating SP-I and SP-II is shown in
figure 4(c). The strong staggered Zeeman couplings depolarize the atomic pseudo-spins to weaken the
radiance. The SP-I with weaker superradiance thus appears at large ϵ. When the driving arises, the first-order
phase transition line is extended and the QCP is also pushed towards the NP-SP transition line in the
direction of decreasing ϵ (as the arrow in figure 4(c)).

When A/Ω≈ 0.4, the phase transition line between the two SPs is extended to intersect with the NP-SP
transition line. The QCP arrives at the NP-SP transition line to become an LP, which is intersected by the

7
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Figure 5. In the model with K3 = {−1,0,1} and A/Ω= 0.4, the illustration of the x components of the pseudo-spins ⟨J x1,2,3⟩ for
the three cavities (1, 2, 3) of the three phases (NP, SP-I and SP-II) around the LP. The value of ⟨J x1,2,3⟩ are represented by the
arrows at the triangle vertices which represent the three cavities. The NP is an anti-ferromagnet since ⟨J x1 ⟩=−⟨J x3 ⟩ and ⟨J x2 ⟩= 0,
the SP-II has a ferromagnetic order: ⟨J x1,2,3⟩< 0, and the SP-I has the crossover pseudo-spin textures with a modulated magnetic
order.

SP-I to SP-II first-order phase transition and two second-order phase transitions (NP to SP-I and NP to
SP-II). The pseudo-spins of the three phases in the three cavities, ⟨Jx1,2,3⟩, can also be illustrated by figure 5. If
A continues to increase, the LP remains and a QTP is generated from the LP moving in the direction of
decreasing ϵ along the NP to SP-II transition line (as the arrow in figure 4(d)). Meanwhile, the NP to SP-II
phase transition between the LP and QTP turns to be first-order.

4. Conclusions and outlook

In the present study, we have proposed and investigated an extended Dicke model describing a laser-field
interacting with an atomic gas trapped in cavities coupled by Zeeman fields. We have shown how to locate
the QCPs, which can be manipulated through tuning the system parameters. We have demonstrated that, if
the atom-field coupling is periodically driven, the system can be mapped to an interacting spin model and
support rich critical behaviors. Especially, the critical point, close to the normal-SP transition, forms a
Lifshitz regime and finally evolves to an LP around which the pseudo-spin of the atoms forms different
magnetic orders due to the competition of the spin–spin interaction and anisotropic Zeeman couplings. The
results reported here are also helpful for finding novel quantum multicritical phenomena in strongly
interacting quantum many-body systems.

Given that the spin–spin interaction is long-range, thermalization is likely to be prevented in the
system [41]. If the system is disordered by introducing noises in the external microwave fields or the driving,
the many-body localization [42] may emerge and the energy levels of the system obey Poisson distribution
with disorder [43]. Thereby, our system may be used to realize discrete time crystal [44] where pseudo-spins
of the atoms would have spontaneous time translational symmetry breaking [45]. Moreover, it would be
interesting to explore the effect of quantum fluctuations and consider the performance of metrological tasks
near the quantum multicritical points based on the model suggested here.
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Appendix A. Details on the experimental set-up

To obtain the extended Dicke model studied in the main text, we generalize the scheme used in [13]. We
assume that a quantized single-mode laser field interacts with a cold atom gas, which is trapped equally inM
identical high-quality optical cavities; see figure A1(a).
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Figure A1. (a) Possible experimental setup for realizing the extended Dicke model. Atoms are trapped inM identical optical
cavities, which are connected by single-mode fibers. (b) The excitation scheme of four-level atoms. An external laser (solid red
lines), together with the dominant cavity mode (dashed red lines), drives Raman transitions between two ground-state sublevels
|0⟩ and |1⟩ (i.e. pseudo-spin states). A microwave field is applied in each cavity to couple |0⟩ and |1⟩, with coupling strength k.
The microwave fields are assumed to have relative phase differences, i.e. the sign of kj (j = 1,2, . . . ,M) can be changed actively,
which served as effective Zeeman fields for different cavities.

The optical cavities are assumed to be connected byM− 1 optical fibers, each of them contains one
normal mode that is near resonant with the atomic transition, and the other modes are negligible.

For the atoms in each cavity, only four levels (two upper and two lower ones) are involved. An external
laser (represented by solid red lines), together with the dominant cavity-mode (represented by dashed red
lines), drives the Raman transitions between two ground-state sublevels |0⟩ and |1⟩ (i.e. pseudo-spin states);
see figure A1(b). In this way, each atom in the cavity may be described by a two-level model by using
pseudo-spin language ( |0⟩ and |1⟩ are two states of the pseudo-spin). Such a Raman excitation scheme can
provide a strong coupling between the cavity-mode field and the atoms than that by using direct dipole
excitation scheme, and hence is practical for the realization of the SP transitions.

Appendix B. Mean-field energy functional of the extended Dicke model without
external driving

The mean-field Hamiltonian HMF can be obtained by replacing the bosonic operator a with its expectation
value φ ≡ ⟨a⟩. It is easy to obtain

HMF = ωφ 2 +
N∑
i=1

Bi ·σi, (B.1)

where σi = (σ x
i ,σ

y
i ,σ

z
i ), and

Bi =
δ

2
ẑ+

(
gφ

M
√
N

+
ω

2
ki

)
x̂ (B.2)

is the effective magnetic field experienced by ith atom.
The minimum energy of the system can be obtained by taking Bi to be all along the direction anti-parallel

with σi, i.e.

⟨HMF⟩= ωφ 2 −
N∑
i=1

|Bi| . (B.3)

9



New J. Phys. 25 (2023) 053001 Y Hu et al

So the mean-field energy per atom is given by

⟨HMF⟩
N

=
ωφ 2

N
− 1

N

N∑
i=1

√(
δ

2

)2

+

(
gφ

M
√
N

+
1

2
ωki

)2

. (B.4)

After substituting the dimensionless quantities ξ and ν into equation (B.4), we can obtain F(ξ) in the
manuscript.

Appendix C. Energy function in the models with periodic driving

We add both the external Zeeman fields and the time-dependent driven coupling to the Hamiltonian:

H(t) = ωa†a+ δ
M∑
j=1

J zj +
G(t)

(
a† + a

)
√
N

M∑
j=1

Jxj +ω
M∑
j=1

kjJ
x
j , (C.1)

where the time dependent coupling is supposed to be

G(t) = g+Acos(Ωt) ,

with A and Ω being the amplitude and the frequency of the driving, respectively.
To eliminate the time-dependent terms we need to write the Hamiltonian in the interaction picture.

Performing a canonical transformation

U=
M∏
j=1

exp

[
−i

A
(
a† + a

)
√
N

sin(Ωt)

Ω
Jxj

]
exp
(
−iω ′a†at

) M∏
j=1

exp
(
−iδ ′J zj t

)
, (C.2)

we have

Hint = U†
(
H− i

∂

∂t

)
U.

After this transformation we get the Hamiltonian

Hint =
(
ω−ω ′)a†a+ iω

A sin(Ωt)√
NΩ

(
ae−iω ′t − a†eiω

′t
) M∑

j=1

℘j (t)+ω

[
A sin(Ωt)√

NΩ

]2 M∑
j=1

℘j (t)

2

+ δ

M∑
j=1

J zj [J0ℓ(t)]+ 2J zj

∞∑
n=1

J2n [ℓ(t)]cos(2nΩt)−
J+j eiδ

′t − J−j e−iδ ′t

i

∞∑
n=0

J2n+1 [ℓ(t)] sin [(2n+ 1)Ωt]


+

g
(
a†eiω

′t + ae−iω ′t
)

√
N

M∑
j=1

℘j (t)+ω

M∑
j=1

kj℘j (t)− δ ′
M∑
j=1

J zj (C.3)

where J0, J2n, J2n+1 are Bessel functions of the first kind, J
+
j + J−j = Jxj ,

J+j −J−j
i = Jyj , and

ℓ(t) =
2A
(
a†eiω

′t + ae−iω ′t
)

Ω
√
N

, (C.4)

℘j (t) =
J+j eiδ

′t + J−j e
−iδ ′t

2
. (C.5)

When g, δ,ω,δ ′,ω ′ ≪ Ω and δ ′,ω ′ → 0, we can obtain the effective Hamiltonian Heff ≈Hint, in the
general form,

Heff (t) =
∞∑

n=−∞
hn exp(inΩt) . (C.6)

If the driving frequency is so large that we can neglect the fast oscillatory time dependence terms in the
Hamiltonian, i.e. all n ̸= 0 terms in equation (C.6), we find the time-independent effective Hamiltonian
(with ω ′ = δ ′ = 0),

10
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h0 = ωa†a+
1

2
ω

(
A√
NΩ

)2
 M∑

j=1

Jxj

2

+ δJ0

(
2A
(
a† + a

)
Ω
√
N

)
M∑
j=1

J zj

+
g
(
a† + a

)
√
N

M∑
j=1

Jxj +ω
M∑
j=1

kjJ
x
j , (C.7)

which is shown in the main text. It in fact describes a system analogy to an anisotropic spin system
interacting with a bosonic field. It also implies the possibility of different critical behaviors existing in its
phase diagram. When A= 0 (without the driven term), the effective Hamiltonian becomes

h0 = ωa†a+ δ
M∑
j=1

J zj +
g
(
a† + a

)
√
N

M∑
j=1

Jxj +ω
M∑
j=1

kjJ
x
j (C.8)

which goes back to the original Hamiltonian.
In the thermodynamic limit, we again employ the Holstein–Primakoff transformation [40],

J zj = b†j bj −
N

2M
, (C.9)

J+j = b†j

√
N

M
− b†j bj, (C.10)

J−j =

√
N

M
− b†j bjbj, (C.11)

and introduce macroscopic displacements,

⟨a⟩= c+X

√
N

2M
,
⟨
bj
⟩
= dj −Yj

√
N

2M
, (C.12)

to obtain the mean-field energy by neglecting the small quantities∼O(1),

E0 =
N

2M
ωX2 +

ω

2

(
A√
NΩ

N

2M

)2
 M∑

j=1

Yj

√
2−Y2

j

2

+
N

2M
δJ0

(
4AX√
2MΩ

) M∑
j=1

(
Y2
j − 1

)

− N

M
gX

√
1

2M

M∑
j=1

Yj

√
2−Y2

j −
Nω

2M

M∑
j=1

kj
(
Yj

√
2−Y2

j

)
. (C.13)

At last, we obtain the effective energy function per atom

EK = ωX2 +
ω

4M

(
A

Ω

)2
 M∑

j=1

Yj

√
2−Y2

j

2

+ δJ0

(
4AX√
2MΩ

) M∑
j=1

(
Y2
j − 1

)

− 2gX

√
1

2M

M∑
j=1

Yj

√
2−Y2

j −ω
M∑
j=1

kj
(
Yj

√
2−Y2

j

)
. (C.14)

The order parameter defined in the main text ξ is related to the order parameter X here,

ξ =
2g⟨a⟩√

N
=

2gX√
2M

. (C.15)

For two staggered external fields, K2 = {−1,1}

EK2 = ωX2 +
ω

8

(
A

Ω

)2
 2∑

j=1

Yj

√
2−Y2

j

2

+ δJ0

(
2AX

Ω

) 2∑
j=1

(
Y2
j − 1

)

−
2∑

j=1

(gX+ωkj)
(
Yj

√
2−Y2

j

)
, (C.16)
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Figure C1. The phase diagram containing a QTP of the extended Dicke model: (a) A/Ω= 0.23,K= {0}. Increasing Amakes the
QTP move in the direction of the arrow; (b) the model parameters are A= 0,K= {−ϵ,ϵ}, and ϵ= 1. Increasing ϵmoves QTP in
the direction of increasing δ shown as the arrow.

Figure C2. The phase diagram containing a QCP of the extended Dicke model with K3 = {−1,0,1}: (a) A/Ω= 0.1,
(b) A/Ω= 0.2, and (c) A/Ω= 0.3. Increasing Amakes the QCP move in the direction of the arrow.

with k1 =−1,k2 = 1. For three staggered external fields, K3 = {−1,0,1} ,

EK3 = ωX2 +
ω

12

(
A

Ω

)2
 3∑

j=1

Yj

√
2−Y2

j

2

+ δJ0

(
4AX√
6Ω

) 3∑
j=1

(
Y2
j − 1

)

−
3∑

j=1

(
2gX√
6
+ωkj

)(
Yj

√
2−Y2

j

)
, (C.17)

with k1 =−1,k2 = 0,k3 = 1.

By minimizing the energy function, we can find the order parameters X=
√
2Mξ
2g and Y j which are related

to the atomic states. As mentioned in the main text, if there is no staggered Zeeman field, the driving can
convert the second-order phase transition (between NP and SP) to the first-order one when δ is large. So a
QTP appears to joint the first-order and the second-order phase transitions as shown in figure C1(a). If the
driving A/Ω increases, the QTP moves in the direction where δ becomes small, as the arrow in figure C1(a).

If A= 0 and K = 0, the NP-SP phase transition is second-order. If A= 0 and K= {−ϵ,ϵ} with ϵ= 1, the
QTP proposed in [13] is appearing as seen in figure C1(b). Nonzero ϵmakes the NP-SP phase transition be
first-order when δ is small. If ϵ is increased, the QTP is pushed in the direction of increasing δ, as the arrow
in figure C1(b). If both the driving and K= {−ϵ,ϵ} are added in the system, when increasing either A or ϵ or
increasing both of them, the QTP induced by the driving (or K= {−ϵ,ϵ}) are moving towards the other
QTP (induced by K or the driving). When the two QTPs meet each other, all the phase transitions are
first-order and no QTP appears any more.

In the case of K3 = {−1,0,1}, the increase driving make the QCP in the superradiant region towards the
NP-SP transition border in the direction of increasing δ. The movement of the QCP is shown as the arrows
in figure C2.
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Figure D1. The extended Dicke model with K2 = {−1,1} and A/Ω= 0.4. The power fitting of order parameter when ν is a bit
deviated from the phase transition at (a) the QTP δ= 2.325 and (b) δ= 4.

Figure D2. The extended Dicke model with A/Ω= 0.5, of which the phase diagram is shown in figure 3(d). The staggered
Zeeman fields are, K3 = {−ϵ,0, ϵ}, and δ is fixed to be identical to ω. (a) The power fitting of order parameter at ϵ= 0.2 with
varying ν shows that the critical exponent γ ≈ 1/2 near the phase transition. (b) The power fitting of order parameter at the QTP
ϵ= 0.4 with varying ν should be γ ≈ 1/4.

Appendix D. Critical exponents

We show here the data of the critical exponent γ, by power fitting, at the phase transition line of the model
with K2 = {−1,1} and A/Ω= 0.4. In figure D1(a), the order parameter ξ is plotted when ν is slightly
deviated from the phase transition at the QTP of δ= 2.325. The power fitting gives the critical exponent
γ≈ 0.25. At δ= 4, the second-order phase transition with γ≈ 0.5 is shown in figure D1(b).

Near the QTP in figure 3(d), in the main text, the critical exponent can also be found numerically by
power fitting. In figure D2, we explicitly show the fitting data at the QTP to obtain that γ ≈ 1/4.

Appendix E. Pseudo-spin textures andmagnetic orders

We take the three-field model (K3 = {−1,0,1}) as an example to illustrate the pseudo-spins of the atoms in
different cavities. The pseudo-spins are represented by vectors in figure E1. The vectors is defined by

J1,2,3 = ⟨J(x)1,2,3⟩δ̂+ ⟨J(z)1,2,3⟩ν̂ =
(
⟨J(x)1,2,3⟩,⟨J

(z)
1,2,3⟩

)
. We note that the arrows represent the pseudo-spin of atoms

J i in the ith cavity, and the location of the arrow represents the parameters (δ and ν) in the phase diagrams.
The atoms themselves are distributed randomly in the cavities.

Without driving, the atoms pseudo-spins in three cavities are shown in figures E1(a)–(c), respectively.
When A/Ω= 0.4, the atoms pseudo-spins in three cavities are shown in figures E1(d)–(f), respectively. The
illustrations of the ferromagnetic order of the NP, the paramagnetic order of the SP I and the
anti-ferromagnetism in SP II are also shown in figure E1.
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Figure E1. Spatial pattern of the atomic pseudo-spins in the K3 = {−1,0,1}model. (a)–(c) The atomic pseudospin orientations

of J1,2,3 in the ground state of the K3 model without driving. The arrows represent vectors J1,2,3 =
(
⟨J(x)1,2,3⟩,⟨J

(z)
1,2,3⟩

)
for the

three cavities in the phase diagram. Each vector represents the pseudo-spin orientation of the atoms in a cavity and the position of
the arrow represents the system parameters δ,ν in the phase diagram. (a)–(c) The atomic pseudospin orientations of J1,2,3 in the
ground state of the K3 model without driving. (d)–(f) The atomic pseudospin orientations of J1,2,3 in the ground state of the K3

model with driving A/Ω= 0.4. The arrows are all normalized to have the same length. The QCPs are marked as the red dots. The
pseudo-spin orders of the NP, SP-I and SP-II are illustrated on the right side.
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