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General Article

Recently introduced in the form of multiverse analysis 
(Steegen et  al., 2016), specification-curve analysis 
(Simonsohn et al., 2018, 2020), assessment of vibration 
of effects (VoE; Patel et al., 2015), and similar approaches 
(e.g., Young & Kindzierski, 2019), multiverse-style meth-
ods have quickly attracted attention. In standard prac-
tice, researchers report one analysis or, at most, a small 
subset of all possible analyses of their data set. These 
analyses may not be representative of the entire set of 
possibilities, and their results may be biased by the 
selective use of hidden degrees of freedom. In multiverse-
style methods, researchers explicitly specify the decision 
nodes required to prepare a data set for analysis. These 
decision nodes are used to generate all possible combi-
nations of decisions, and the data are analyzed using 
the full array of specifications.

The potential of multiverse-style methods is obvious; 
it is hard to overstate the importance of reporting ana-
lytic decisions transparently and exploring the robust-
ness of research findings. At the same time, we see some 
pressing reasons for concern. The central notion of these 
methods is that the alternatives included in the multi-
verse are “arbitrary” or equally “reasonable.” However, 
there is little guidance or consensus on how to evaluate 
arbitrariness, and virtually no consideration of the poten-
tial pitfalls of multiverse-style methods. What are the 
implications if some of the choices regarded as arbitrary 
are in fact not? We feel that researchers have started 
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Abstract
Decisions made by researchers while analyzing data (e.g., how to measure variables, how to handle outliers) are 
sometimes arbitrary, without an objective justification for choosing one alternative over another. Multiverse-style methods 
(e.g., specification curve, vibration of effects) estimate an effect across an entire set of possible specifications to expose 
the impact of hidden degrees of freedom and/or obtain robust, less biased estimates of the effect of interest. However, 
if specifications are not truly arbitrary, multiverse-style analyses can produce misleading results, potentially hiding 
meaningful effects within a mass of poorly justified alternatives. So far, a key question has received scant attention: How 
does one decide whether alternatives are arbitrary? We offer a framework and conceptual tools for doing so. We discuss 
three kinds of a priori nonequivalence among alternatives—measurement nonequivalence, effect nonequivalence, and 
power/precision nonequivalence. The criteria we review lead to three decision scenarios: Type E decisions (principled 
equivalence), Type N decisions (principled nonequivalence), and Type U decisions (uncertainty). In uncertain scenarios, 
multiverse-style analysis should be conducted in a deliberately exploratory fashion. The framework is discussed with 
reference to published examples and illustrated with the help of a simulated data set. Our framework will help researchers 
reap the benefits of multiverse-style methods while avoiding their pitfalls.
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traveling across the multiverse without a map, and often 
with surprisingly little awareness of the dangers that lurk 
out there. In this article, we address these issues and offer 
an initial map to the multiverse, in the form of a system-
atic framework for the evaluation of analytic decisions.

Multiverse-Style Methods: Rationale, 
Promises, and Pitfalls

When they perform data analysis, researchers must make 
decisions—for example which predictor and criterion 
variables to examine, whether to aggregate measures, 
and what exclusion criteria, if any, should be applied to 
individual cases. Researchers typically report a single 
analysis or, at most, a few analyses and results; these 
analyses may or may not be representative of the mul-
tiverse of possible valid specifications. This is true even 
if the analytic plan for the study was preregistered: 
Although preregistration limits the scope for p-hacking 
and similar questionable practices, it does not guarantee 
that the chosen specifications are representative and 
robust (Steegen et al., 2016).

A way to address this problem is to systematically 
generate a set of alternative specifications and examine 
the aggregate results, for example, by plotting the result-
ing distribution of p values (Steegen et al., 2016) or a 
detailed specification curve (Simonsohn et  al., 2018, 
2020). In principle, one can perform traditional hypoth-
esis tests on results from all specifications through ran-
domization or bootstrapping (see Simonsohn et  al., 
2020). Similarly, in an assessment of the VoE, one plots 
the results as a scatterplot of p values as a function of 
effect sizes and computes summary statistics reflecting 
the variability of effects (Patel et al., 2015).

Arbitrariness and the multiverse

As Steegen et al. (2016) explicitly discussed, “the practice 
of selective reporting would not be problematic if the 
single data set under consideration is processed based 
on sound and justifiable choices” (p. 703). But “choosing 
among the alternatives is often arbitrary, and justifica-
tions for the choices are typically lacking” (p. 703). The 
multiverse is constructed from these arbitrary choices, 
such that, on a priori grounds, no particular analysis 
within the multiverse is more justifiable than any other. 
Similarly, within specification-curve analysis, researchers 
examine all “reasonable” specifications (Simonsohn 
et al., 2018, 2020).

These stances raise a critical issue: What does it mean 
for alternative options to be arbitrary, as opposed to one 
option being justified and reasonable relative to others? 
Steegen et al. (2016) offered very little guidance in this 
regard. Simonsohn et al. (2018, 2020) noted that arbitrary 
decisions are, at least in part, ones for which theory 

offers very little justification. By contrast, any choice that 
theory or background knowledge indicates is clearly 
justified over others is nonarbitrary and should not be 
used to generate alternative specifications. Simonsohn 
et al. (2020) also stressed that investigators should not 
consider specifications that are “unambiguously inferior” 
(p. 1209) to alternatives. These considerations are cru-
cially important, and the motivation behind our own 
analysis in this article. Yet Simonsohn et  al. did not 
substantiate their remarks with an in-depth examination 
of why certain specifications may be objectively prefer-
able to others. Accordingly, multiverse-style analyses 
published to date have rarely been accompanied by any 
detailed discussion of why and how certain decisions 
were deemed arbitrary (e.g., Hall et al., 2019; Hässler 
et al., 2019; Moors & Hesselmann, 2019; Orben et al., 
2019; Orben & Przybylski, 2019a, 2019b, 2020; Rae et al., 
2019; Rohrer et al., 2017; Stamos et al., 2020; Stern et al., 
2019).

The absence of consensus in the literature extends to 
basic analytic issues such as covariate selection. 
Simonsohn et al. (2018) correctly stressed that analyses 
“with and without a certain set of covariates are not dif-
ferent answers to the same question, they are different 
answers to different questions” (p. 10). Decisions of 
which covariates to include, then, “should not usually 
be part of robustness tests” (p. 10).1 In striking contrast, 
Patel et al. (2015) demonstrated the VoE with robustness 
analyses that involved only alternative sets of covariates. 
This and other examples reveal a pressing need for con-
ceptual clarity and suggest that the absence of reasoned 
guidelines has limited the potential of multiverse-style 
methods in practical applications.

The multiverse is a dangerous place

In principle, multiverse-style analyses can be highly 
instructive. At the same time, analyses that explore mul-
tiverse spaces that are not homogeneous can produce 
misleading results and interpretations, lead scholars to 
dismiss the robustness of theoretically important findings 
that do exist, and discourage them from following fruit-
ful avenues of research. This can hinder scientific prog-
ress just as much as the proliferation of false, unreplicable 
findings does (see Fiedler, 2018; Fiedler et al., 2012).

The main danger of multiverse-style methods lies in 
their potential for combinatorial explosion. Just a few 
decisions incorrectly treated as arbitrary can quickly 
explode the size of the multiverse, drowning reasonable 
effect estimates in a sea of unjustified alternatives. A 
single decision node with two alternatives doubles the 
number of specifications. Five binary decision nodes 
expand the multiverse by a factor of 32. If one alterna-
tive is justifiable over the other in each case, the region 
defined by justified choices ends up occupying just 3% 
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of the total multiverse. If the decision nodes involve 
three alternatives each, the corresponding figure is 0.4%. 
With so many individual effects within the multiverse, 
researchers may find it easier to characterize the distri-
bution of effects with simple summary statistics, such as 
a median or mean effect size. But when the proportion 
of effects that best estimate the effect of interest is very 
small, the central tendency of effects can become mis-
leading or virtually meaningless.

By inflating the size of the analysis space, the combi-
natorial explosion of unjustified specifications may, ironi-
cally, exaggerate the perceived exhaustiveness and 
authoritativeness of the multiverse while greatly reducing 
the informative fraction of the multiverse. At the same 
time, the size of the specification space can make it 
harder to inspect the results for potentially relevant find-
ings. If unchecked, multiverse-style analyses can generate 
analytic “black holes”: massive analyses that swallow true 
effects of interest but, because of their perceived exhaus-
tiveness and sheer size, trap whatever information is 
present in impenetrable displays and summaries.

Disclosures

All the code and simulated data employed in this article 
are available on figshare at https://doi.org/10.6084/
m9.figshare.12089736. The Supplemental Material (http://
journa l s . sagepub.com/doi/suppl/10 .1177/2515 
245920954925) includes a section on the reliability of 
composite measures (S1), a section on the problems with 
simultaneous entry of multiple indicators in regression 
models (S2), a primer on covariate selection from the 
standpoint of causal modeling (S3), and the results of 
500 replicates of the main analysis described in the arti-
cle (S4).

Mapping the Multiverse: A Framework 
for the Evaluation of Analytic Decisions

The key step toward a systematic evaluation of decisions 
is to move beyond intuitive notions of what constitutes 
an arbitrary or justified alternative. We now present a 
framework that enables this kind of evaluation, drawing 
on concepts from statistical inference, psychometrics, 
and causal modeling. We first review three distinct ways 
in which alternative specifications may be expected a 
priori to yield different answers, and thus cannot be 
treated as arbitrary. Specifically, we consider measure-
ment nonequivalence, effect nonequivalence, and power/
precision nonequivalence. (Note that although these 
kinds of nonequivalence cover many common scenarios, 
they are not exhaustive; other relevant domains include 
criteria for outliers, variable transformations, choice of 
statistical models, and so forth.)

We then go on to describe three types of decision 
scenarios. In Type E decisions (principled equivalence), 
the alternative specifications can be expected to be prac-
tically equivalent, and choices among them can be 
regarded as effectively arbitrary. In Type N decisions 
(principled nonequivalence), the alternative specifica-
tions are nonequivalent according to one or more non-
equivalence criteria. As a result, some of the alternatives 
can be regarded as objectively more reasonable or better 
justified than the others. Finally, in Type U decisions 
(uncertainty), there are no compelling reasons to expect 
equivalence or nonequivalence, or there are reasons to 
suspect nonequivalence but not enough information to 
specify which alternatives are better justified. In this 
scenario, multiverse-style analyses should be carried out 
with a deliberately exploratory approach.

Three kinds of nonequivalence

Measurement nonequivalence.  In many cases, scien-
tific constructs are not univocally defined by a single indi-
cator; constructs may be tapped by multiple indicators, 
each serving as an imperfect measure. If a construct has 
been measured in multiple ways within a single study, or 
could have been plausibly measured in alternative ways, 
the choice of measure becomes a node in the decision 
tree and may be explored in a multiverse. The problem is 
that different measurement choices can often be expected 
to yield systematic differences in validity and reliability, 
with predictable consequences on the effect of interest. 
In such cases, alternative measures cannot be treated as 
equivalent.

Validity and reliability.  The validity of a measure is the 
extent to which it reflects the construct it is purported to 
measure. Reliability is the proportion of variance in a mea-
sure that can be regarded as signal rather than noise—in 
the language of classic test theory, this corresponds to the 
squared correlation between the observed score and the 
underlying true score (see Revelle & Condon, 2018). It is 
generally assumed that all valid variance is reliable, such 
that reliability puts a ceiling on validity, but some reliable 
variance may not be valid.

A simple way to quantify the validity of a measure is 
to estimate its validity coefficient, or its correlation with 
the construct it taps (see Fig. 1). In some cases, a perfect 
criterion of the construct can be assessed, such that a 
validity study can directly estimate this strength of asso-
ciation. In other cases, a validity coefficient can be esti-
mated from simulations (e.g., Gangestad et al., 2016). If 
all the reliable variance in a measure is valid, the validity 
coefficient is just the square root of the measure’s reli-
ability. For an overview of methods for estimating reli-
ability, see Revelle (2015; Revelle & Condon, 2018).

https://doi.org/10.6084/m9.figshare.12089736
https://doi.org/10.6084/m9.figshare.12089736
http://journals.sagepub.com/doi/suppl/10.1177/2515245920954925
http://journals.sagepub.com/doi/suppl/10.1177/2515245920954925
http://journals.sagepub.com/doi/suppl/10.1177/2515245920954925
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Composite measures.  Instead of individual indicators, 
researchers sometimes use composite measures, typically 
weighted or unweighted sums of multiple indicators. Com-
ponent scores obtained via principal components analysis 
and factor scores derived from exploratory factor analysis 
fall in this category. Composite measures of a construct 
are usually more valid and reliable than individual indi-
cators (see Section S1 of the Supplemental Material for 
relevant formulas). Suppose each of four indicators of a 
construct has a validity coefficient of .60, and thus a reli-
ability of .36 (as in Fig. 1a). Their composite would have 

a validity of .83 and a reliability of .69. Even if one of the 
indicators is considerably more valid and reliable than the 
others, a composite may still yield improved performance. 
In the example of Figure 1b, one indicator has a validity of 
.80 and a reliability of .64, while the remaining ones have 
a validity of .50 and a reliability of .25. An equal-weighted 
sum of the four indicators will yield a validity of .82 and a 
reliability of .67. Naturally, a composite need not outper-
form individual indicators if some of the indicators have 
little to no validity. In Figure 1c, two indicators have a 
validity of .60, while the remaining two have zero validity. 
In this case, the validity of the composite of all four is .55.

The implications for multiverse-style analyses involv-
ing composite measures are twofold. First, unless the 
composite includes a considerable proportion of invalid 
indicators, it will generally yield a higher validity than 
individual indicators—which translates into larger effect 
sizes, more precise estimates, and higher statistical 
power. Second, if some of the indicators are known to 
be invalid, composites that exclude them will predictably 
yield higher validities than composites that include them.

In one study, the authors sought to measure children’s 
gender identity with a composite of five indicators—such 
as preference for male versus female peers, toy prefer-
ence, and clothing preference (Rae et al., 2019). They 
then ran a multiverse analysis in which indicators were 
used as predictors individually and in all their possible 
combinations. Predictably, composites that included 
more indicators tended to yield larger effect sizes and/
or more precise estimates of the effects.

In another study, investigators examined women’s 
preferences for muscular bodily features in men (Stern 
et al., 2019). They measured five putative cues of upper-
body strength, such as shoulder-to-hip ratio and upper-
arm circumference. In fact, however, just two of the cues 
independently predicted a criterion of muscularity (rat-
ings of bodily dominance) of the same stimuli (Gangestad 
et al., 2019b). Within a multiverse analysis, the two fea-
tures showing independent evidence of validity predict-
ably outperformed the other features in predicting 
women’s preferences. A composite of just these features 
yielded even larger effect sizes (see Gangestad et  al., 
2019a, 2019b).

In their analysis of adolescents’ well-being and use of 
digital technology, Orben and Przybylski (2019a) mea-
sured well-being with the mean of any combination of 
items drawn from full-scale questionnaires, plus single 
items. One of these measures has 25 items and an 
internal-consistency reliability of about .80 (Stone et al., 
2010). Accordingly, the expected reliability of single items 
and combinations of two, three, and four items drawn 
from the full questionnaire can be estimated at about .14, 
.24, .32, and .39, respectively (see Section S1 of the Sup-
plemental Material). These shortened measures are highly 

X1 X2 X3 X4

X1 X2 X3 X4

X1 X2 X3 X4

Construct X

.60 .60 .60 .60

.80 .50 .50 .50

.60 .60 .00 .00

a

b

c

Construct X

Construct X

Fig. 1.  Schematic illustration of a latent construct X measured with 
four indicators. The validity coefficient of each indicator is the cor-
relation between the indicator and the latent construct. The diagrams 
illustrate cases in which (a) all the indicators have the same validity, 
(b) one indicator has higher validity than the rest, and (c) two puta-
tive indicators have zero validity (no association with the construct; 
indicated by the dashed lines).
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unreliable, but the authors used more than 15,000 of 
them to populate the multiverse. (We note that in analy-
ses on other dependent variables, these same authors 
used only full scales; Orben & Przybylski, 2019b.)

Simultaneous entry.  When multiple indicators of a 
construct are available, investigators running a multiverse-
style analysis may decide to enter them simultaneously as 
predictors—for instance, in a regression model—and test 
the unique effects of different combinations of predictors 
on a response variable. In their study of women’s prefer-
ences for bodily features, for example, Stern et al. (2019) 
considered seven putative indicators of bodily masculin-
ity. In addition to examining effects of single indicators 
and composites, they examined effects of each indicator 
within a regression analysis that simultaneously entered 
the six remaining indicators.

This approach is problematic because the simultane-
ous inclusion of multiple indicators can substantially 
deflate the individual effect of each indicator (and 
reduce the corresponding statistical power). When mul-
tiple indicators partly tap the same construct, the correla-
tion between each indicator and the construct, with all 
other indicators controlled for—that is, the partial valid-
ity coefficient—is necessarily less than the original valid-
ity. Notably, reductions in validity are even greater if 
individual indicators have larger validity coefficients, as 
partialing removes greater amounts of valid variance. 
For more details on the implications of simultaneous 
entry, see Section S2 of the Supplemental Material.

Effect nonequivalence.  The logic of multiverse-style 
methods rests on the assumption that the effect of interest 
remains the same across the specifications included in a 
single analysis. Gross violations of this assumption occur 
when researchers include qualitatively different effects 
within the same analysis. For example, Stern et al. (2019) 
ran a single multiverse analysis that included both two-
way and three-way interactions among predictors, even 
though the two types of effects are statistically orthogonal 
and pertain to substantively different empirical hypothe-
ses (see Gangestad et al., 2019a).

More subtly but no less importantly, when alternative 
analyses include different sets of covariates, the effects 
they test often cease to be logically and/or statistically 
equivalent. In particular, adjusting for certain covariates 
may predictably add bias to (or remove bias from) the 
estimate of the effect of interest. The impact of including 
versus excluding a given variable depends on the role 
played by that variable in the causal model that (explicitly 
or implicitly) underlies the analysis (Pearl, 2009; Pearl 
et al., 2016; Rohrer, 2018). This is why covariate selection 
is fundamentally a theoretical problem, and why Simonsohn 
et al. (2018) advised against including alternative sets of 
covariates within a single multiverse.

We illustrate the importance of causal assumptions 
with Figure 2a, which introduces a toy model representing 
a fictional study of the effect of inflammation on depres-
sion. Inflammation is measured indirectly with four bio-
markers, labeled BM1 through BM4. The study variables 
also include age, pain, fatigue, and a measure of pro-
inflammatory genotype. The figure depicts the hypothe-
sized causal relations among the variables, in the form of 
a directed acyclic graph (DAG; see Elwert, 2013; Pearl 
et al., 2016; Rohrer, 2018). According to the model, inflam-
mation affects depression via two distinct pathways, one 
direct and one mediated by pain. Age affects both inflam-
mation and depression, thus acting as a confounder of 
their causal relationship. If the role played by a variable 
can be specified with a causal model like that in Figure 
2a, one can predict in advance whether including it as a 
covariate will add or remove estimation bias, and thus 
decide which alternative specification is better justified.

In Section S3 of the Supplemental Material, we pro-
vide a primer on covariate selection from the standpoint 
of causal analysis. For more information, we recommend 
the accessible book by Pearl and Mackenzie (2018) and 
the more advanced treatment in Pearl (2009; see also 
Pearl et al., 2016). Also, Rohrer (2018) offers an excellent 
summary of the main concepts. DAGitty (http://dagitty 
.net) is a useful tool that can be used to analyze causal 
models and explore the effects of controlling for differ-
ent covariates (Textor, 2016). An interactive version of 
the model in Figure 2a is available at http://dagitty.net/
dags.html?id=Xw8N-D.

In some cases, researchers have enough background 
information to specify a single model of the causal rela-
tions among the study variables. Other times, the correct 
causal model is unknown, or there is more than one 
plausible alternative. For example, Figure 2b shows a 
hypothetical alternative to the model of Figure 2a. Here, 
fatigue partially mediates the effect of inflammation on 
depression (as opposed to being a common effect of 
inflammation and depression). An interactive version of 
this model can be explored at http://dagitty.net/dags 
.html?id=X2ShVE.

According to the model in Figure 2a, fatigue is a col-
lider and should not be included as a covariate (Rohrer, 
2018; see Section S3 of the Supplemental Material). But 
if the model in Figure 2b is correct, fatigue is not a col-
lider but a mediator; as such, it should be excluded if the 
focal hypothesis concerns the total effect of inflammation 
on depression, but controlled for if the hypothesis con-
cerns the direct effect of inflammation on depression. As 
these specifications assess different effects and imply 
incompatible causal assumptions, including both in the 
same multiverse would be highly problematic. Note that 
the choice between alternative causal models does not have 
to rely exclusively on assumptions and preexisting informa-
tion. Different models often make different predictions 

http://dagitty.net
http://dagitty.net
http://dagitty.net/dags.html?id=Xw8N-D
http://dagitty.net/dags.html?id=Xw8N-D
http://dagitty.net/dags.html?id=X2ShVE
http://dagitty.net/dags.html?id=X2ShVE
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about the conditional relations among certain variables, 
which in principle makes them empirically testable against 
the data (see Elwert, 2013). The DAGitty website lists all 
the testable implications that can be derived from a given 
causal model.

We argue that when there is genuine uncertainty 
about the underlying causal model, the uncertainty 
should be acknowledged and addressed from a theoreti-
cally informed standpoint. In the article introducing the 
VoE method, Patel et al. (2015) tested several predictors 
of all-cause mortality while controlling for all possible 
combinations of 13 covariates—including heart disease, 

diabetes, drinking, and physical activity. Depending on 
the specific predictor investigated, these variables may 
plausibly act as either mediators or confounders of the 
effect. If they are mediators, the decision to include or 
exclude them should depend on whether direct or total 
effects are the focus of interest (see Section S3 of the 
Supplemental Material). If they are confounders, models 
that do not include them as covariates return biased 
estimates. Either way, it is entirely expected that esti-
mated effects will change (even dramatically) when 
these variables are controlled for, and such changes 
should not be regarded as a sign of instability.

BM1 BM2 BM3 BM4

Inflammation

Age

Depression

PainPro-Inflammatory Genotype

Fatigue

BM1 BM2 BM3 BM4

Inflammation

Age

Depression

PainPro-Inflammatory Genotype

Fatigue

a

b

Fig. 2.  Two causal models of a hypothetical study of the effect of inflammation on depression. 
Rectangles indicate observed variables; ellipses indicate unobserved latent constructs. The only 
difference between the two models is the direction of the path from fatigue to depression (red 
arrow in the bottom diagram).
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Power/precision nonequivalence.  Even if the alterna-
tive specifications within a multiverse address the same 
effect, they may yield predictably different results if they 
differ in the power to detect that effect or in the precision 
of its estimates. This can happen when measures have dif-
ferent validities or reliabilities. It can also happen when 
alternative criteria for the inclusion/exclusion of data points 
(e.g., removal of outliers) result in substantially different 
sample sizes across specifications. For instance, Stamos 
et al. (2020) examined the association between socioeco-
nomic status and generosity in a laboratory game and 
applied multiple exclusion criteria to the main study vari-
ables. Resulting sample sizes ranged from 114 to 300. Or 
consider the study by Palpacuer et al. (2019), who calcu-
lated the VoE in a series of 9,216 meta-analyses comparing 
the efficacy of two drugs. As a result of alternative inclu-
sion criteria, the number of studies included ranged from 
five to 42 across meta-analyses. Such large differences in 
the size of the study set must have dramatically affected 
the precision of the estimates, but this important factor 
was not discussed in the report.

Less intuitively, including certain covariates in the 
statistical model can increase or decrease the precision 
of the estimated effect, even if those covariates have no 
effect on estimation bias (Cinelli et al., 2019; Pearl et al., 
2016). We briefly discuss this phenomenon in Section 
S3 of the Supplemental Material.

Three types of analytic decisions

Type E decisions: principled equivalence.  For a par-
ticular decision node, evidence and conceptual consider-
ations may indicate that alternative analyses are effectively 
equivalent: Alternative measures have comparable valid-
ity, alternative analyses examine the same effect, and the 
parameter of interest is estimated with comparable preci-
sion or power. If so, results arising from alternative speci-
fications should differ only for nonsubstantive reasons 
(sampling variability, quirks of the data, and so on). Type 
E decisions imply true arbitrariness and are properly used 
to populate a homogeneous multiverse.

Naturally, only rarely will, say, two different measures 
have precisely the same validity. But the evidence may 
indicate that the validities are similar enough to make 
no practical difference. If in doubt, one can use simula-
tions to assess how similar alternative specifications 
need to be to make no important difference to the con-
clusions of the analysis.

Type N decisions: principled nonequivalence.  At times, 
the available evidence and other considerations support the 
conclusion that alternative specifications are not equivalent, 
and some are objectively more justified than others as a 
means of estimating the effect of interest. A Type N decision 

implies that alternatives are not arbitrary, and hence should 
not be used to populate a single multiverse. Often, there is 
little reason to explore the less preferable alternatives, 
because they are expected a priori to yield deflated effects, 
biased effects, or estimates suffering from low power and/or 
precision. If, however, researchers are interested in explor-
ing those alternatives (e.g., to compare the direct vs. total 
effect of a predictor), they should do so in separate analy-
ses to avoid confounding the results.

Type U decisions: uncertainty.  In some instances, there 
are no compelling reasons to expect equivalence or non-
equivalence, or there is reason to expect nonequivalence, 
but insufficient information to specify which alternatives 
are better justified. For example, a researcher may have 
alternative measures of a construct (say, a questionnaire 
and a behavioral observation); though these measures are 
different enough that they are unlikely to have compara-
ble validity, there may be no empirical evidence revealing 
which measure is more valid. In other cases, reasonable 
uncertainty about the causal model underlying the data 
may generate uncertainty about the inclusion or exclusion 
of covariates, as illustrated by the toy models in Figures 2a 
and 2b: If there is no clear reason to prefer one causal 
model over the other, including or excluding fatigue is a 
Type U decision.

Researchers may be tempted to treat Type U decisions 
similarly to how they treat Type E decisions, but, in fact, 
the implications for the multiverse are very different. In 
one case, alternatives are truly arbitrary, and choosing 
one over another should not matter (i.e., should not 
yield different results). In the other case, choosing one 
over the other does matter, even if there is insufficient 
knowledge to determine a priori which alternatives are 
better justified. When facing Type U decisions, it can be 
profitable to carry out multiverse-style analyses as a 
deliberately exploratory endeavor, in which alternatives 
are examined separately (see also Simonsohn et  al., 
2018, for relevant discussion).

A broader view of transparency.  For many scholars, 
the primary aim of multiverse-style analysis is to overcome 
bias due to researcher discretion and hidden degrees of 
freedom. Accordingly, some readers may wonder whether 
the framework we have laid out promotes transparency. If 
researchers get to select the specifications to include in 
the multiverse, what prevents them from cherry-picking a 
set of specifications that will yield the desired results?

On the contrary, we believe that the framework we 
have proposed encourages full transparency. What 
should be transparent are not just the decisions consid-
ered in the analysis, but also the rationale for the evalu-
ation of those decisions. Our framework provides tools 
to perform objective analysis of each decision node. 
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Researchers do not get to arbitrarily classify alternatives 
as equivalent or nonequivalent—they need to justify 
their decisions in detail with the support of evidence 
and/or theory (see also Steegen et al., 2016).

A Simulation Example

We now present a practical example, based on a simu-
lated data set (N = 300) for the fictional study of inflam-
mation and depression (Fig. 2a). Normally distributed 
scores for the variables were generated using the path 
coefficients shown in Figure 3. We assume that the 
researchers are interested in the direct effect of inflam-
mation on depression. The population effect size is a 
standardized path coefficient, β = 0.20 (analogous to a 
regression coefficient). As inflammation is assessed indi-
rectly through biomarkers, however, the population 
effect size for observed scores is smaller than 0.20; the 
exact value depends on the validity of the measure 
employed. In the simulation, individual biomarkers BM1 
through BM3 have .60 validity, whereas BM4 is markedly 
less valid (.20).

After generating the scores, we replaced three ran-
domly selected cases for each biomarker with extreme 
values (uniformly sampled between 3 and 6 SD above 
the mean), to represent laboratory artifacts or atypical 
physiological states. The final correlation matrix is shown 

in Table 1. To verify that the particular data set we chose 
was representative of the universe of possible simulations, 
we repeated the same analyses on 500 replicate samples 
(Section S4 of the Supplemental Material). The simulations 
and analyses were performed in R 3.6 (R Development 
Core Team, 2019).

Full multiverse-style analyses

In the first set of analyses, we derived a large multiverse 
of specifications by considering three typical decision 
nodes: (a) the choice of predictor, (b) the inclusion of 
alternative covariates, and (c) the cutoff for excluding 
outliers (by listwise deletion). To mimic the mechanical 
approach to the multiverse criticized in this article, we 
did not apply any systematic criteria to the analysis of 
alternatives, but simply tried to generate as many speci-
fications as possible. We label this the “full” multiverse 
for the purpose of this example, while recognizing that 
many other decisions could be considered.

The decision node for the predictor yielded 19 alter-
natives: each biomarker used individually; biomarkers 
used individually while controlling for the others (simul-
taneous entry); and all the possible composites of two, 
three, and four biomarkers. The decision node for 
covariates yielded 16 alternatives, corresponding to all 
the possible combinations of age, pain, fatigue, and 

BM1 BM2 BM3 BM4

Inflammation

Age

Depression

PainPro-Inflammatory Genotype

Fatigue

3 Values per Biomarker Replaced With Extreme Values (3−6 SD Above the Mean)

N = 300

0.60

0.50

0.30 0.30

0.600.30

−0.300.200.40

0.10

0.60 0.60 0.20

0.20

Fig. 3.  Simulation parameters used to generate the data set for the example (all path coefficients are standard-
ized). The effect of interest is the direct effect of inflammation on depression (thick arrow).
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genotype. For outliers, we considered four alternatives—
analyzing all cases and excluding cases using three com-
mon cutoffs: 2.5 SD from the mean, 3.5 SD from the 
mean, and the first and third quartiles ±1.5 times the 
interquartile range (Tukey’s fences).

This set of alternatives generates a multiverse of 1,216 
effects, which we estimated with linear regression under 
three types of multiverse-style analyses. First, we plotted 
and summarized the distribution of p values for the effect 
of interest (Steegen et al., 2016). Second, we examined 
the VoE by jointly displaying effect sizes and p values 
(Patel et al., 2015). Third, we explored the results with 
a specification curve (Simonsohn et  al., 2018, 2020), 
plotted using the specr package (Version 0.2.1; Masur & 
Scharkow, 2019).

The distribution of p values and the VoE in the full 
multiverse are shown in Figure 4. The median p was .194. 

Just 27% of the effects reached the conventional thresh-
old of α = .05. Effect sizes (β) ranged from −0.16 to 0.25, 
with a median of 0.01. The VoE plot shows a clear Janus 
effect (see Patel et al., 2015), as the regression coeffi-
cients at the 1st and 99th percentiles of the effect-size 
distribution have opposite signs (−0.14 and 0.21, respec-
tively). These results could easily be interpreted as indi-
cations of poor robustness and replicability. The median 
effect size across specifications was very close to zero 
and far from conventional significance thresholds, even 
though the true effect size in the population was 0.20 
(before accounting for measurement validity). Investiga-
tors using the mean of the multiverse as a presumably 
robust estimate would wrongly conclude that the effect 
of inflammation on depression is about zero.

Figure 5 displays a specification curve for the full mul-
tiverse. The significant effects are split between positive 

Fig. 4.  Results of the full multiverse-style analysis of the simulated data set: (a) distribution of p values across the 1,216 specifications and 
(b) vibration of effects (VoE) plot showing the joint distribution of p values and effect sizes for the same specifications. In VoE plots, the 
negative logs of p values are plotted. Hence, larger values on the y-axis correspond to smaller p values. The 1st, 50th, and 99th percentiles 
of the distributions of effect sizes and p values are indicated by the dotted lines.

Table 1.  Correlation Matrix for the Simulated Data Set

Variable 1 2 3 4 5 6 7 8

1. Age 1.00  
2. Genotype −.03 1.00  
3. BM1 .22 .16 1.00  
4. BM2 .25 .33 .29 1.00  
5. BM3 .24 .30 .31 .31 1.00  
6. BM4 .10 −.01 .07 .06 .08 1.00  
7. Depression −.06 .19 .13 .11 .10 −.05 1.00  
8. Pain .14 .17 .13 .15 .16 .00 .41 1.00
9. Fatigue .24 .23 .26 .30 .24 .07 .65 .42

Note: “BM1” through “BM4” refer to different biomarkers.
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and negative. The pattern for alternative predictors reflects 
the impact of measurement validity, which is lower for 
individual biomarkers (especially with simultaneous 
entry) and higher for composites. But the central tendency 
of effects is similar across predictors. As for covariates, 
inspection of Figure 5 indicates that combinations that 

include fatigue tend to yield negative effects, whereas the 
direction tends to be positive when fatigue is excluded. 
Regardless of the general direction of effects, every com-
bination produced a fair amount of nonsignificant find-
ings. Alternative cutoffs for outliers do not seem to have 
had a systematic impact, except that including all cases 

Fig. 5.  Specification curve for the simulated data set (full multiverse of 1,216 specifications). Blue = positive effect sizes sig-
nificant at α = .05. Red = negative effect sizes significant at α = .05. IQR = interquartile range.
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shifted the distribution toward somewhat more negative 
effects.

Clearly, the specification curve offers more opportuni-
ties to inspect the results for systematic patterns than 
the summary plots of Figure 4 do. Most investigators 
would probably recognize that the direction of effects 
depends strongly on whether fatigue is included as a 
covariate. Without explicit consideration of measurement 
validity, the results for alternative predictors may appear 
to suggest a lack of consistency, or at least marked sen-
sitivity to the precise operationalization of inflammation. 
Overall, these results could readily be interpreted as a 
mixture of chance variation and high dependence on 
the details of the analysis.

Principled multiverse-style analyses

In the second set of analyses, we derived the multiverse 
in a principled way, by assessing the equivalence of 
alternatives at each decision node. For predictors, com-
posites are expected to have higher validity than indi-
vidual biomarkers, and validity is expected to increase 
as more indicators are included. This is a Type N deci-
sion; all else being equal, the preferred option would 
be a composite of all four biomarkers (BM1 + BM2 + 
BM3 + BM4). However, there are indications that bio-
marker BM4 may have low validity, and hence weaken 
the performance of the composite. For the sake of the 
example, we assume that these biomarkers are known 
to be fallible when considered individually. Table 1 
shows very small correlations between BM4 and the 
other biomarkers, and a suspicious near-zero association 
between BM4 and the pro-inflammatory genotype. 
Owing to the appreciable sample size of this study, it 
makes sense to use correlations among biomarkers as 
indications of their validity.

Without additional information, it is hard to make a 
confident decision that BM4 should be excluded, but 
there is a reasonable case for considering the composite 
BM1 + BM2 + BM3 as an alternative predictor. The ques-
tion is whether this should be treated as a Type U or 
Type E decision. Reliability formulas (Section S1 of the 
Supplemental Material) can be used to explore the con-
sequences of including versus excluding BM4 under a 
range of assumptions. The worst-case scenario is one in 
which BM1 through BM3 are moderately valid but BM4 
has zero validity; one then expects the validity of the 
composite with BM4 included to drop by about .06. In 
the context of this study, we judge this difference to be 
small enough that the choice between the two compos-
ites can be treated as a Type E decision, and the two 
alternatives can be included in the same multiverse. Note 
that validity checks on the measures employed in a study 
can be legitimately performed post hoc, though it is 
preferable to preregister them whenever potential 

problems can be anticipated. Also note that we probed 
the validity of BM4 on the basis of its associations with 
other indicators and theoretically related variables, not 
the outcome variable (i.e., depression). This is crucially 
different from p-hacking the effect of interest (which 
would be obviously inappropriate), because selecting 
indicators exclusively on the basis of their intercorrela-
tions cannot systematically inflate their association with 
the outcome (except for contrived cases in which the 
outcome is itself correlated with the invalid portion of 
some indicators).

In addressing the inclusion of covariates, we assume 
that the researchers are uncertain about which of two 
causal models of the data is correct: one in which fatigue 
is a collider (Fig. 2a) and one in which fatigue partly 
mediates the effect of inflammation on depression (Fig. 
2b). (Note that these models predict the same condi-
tional relations among variables, and hence cannot be 
compared on the basis of their fit to the data.) This is a 
Type U decision that reflects genuine uncertainty about 
which alternative is better justified. Accordingly, we con-
structed two separate multiverses. In the first multiverse 
(Model 1), fatigue is treated as a collider and excluded 
from all the specifications; in the second (Model 2), 
fatigue is treated as a mediator and included in all the 
specifications. For the remaining covariates, inclusion/
exclusion is determined by the causal assumptions that 
underlie the study (Type N decision): Age is a con-
founder and should be included, pain is a mediator and 
also should be included (as the effect of interest is the 
direct effect), but genotype should be excluded because 
it may reduce precision (for details, see Section S3 of 
the Supplemental Material).

Finally, we assume that laboratory artifacts and other 
atypical biomarker levels are expected in this kind of 
study. Thus, some form of outlier treatment is preferable 
over analyzing all cases (Type N decision). In the 
absence of clear expectations about the distribution of 
atypical values, the choice among alternative cutoffs is 
effectively arbitrary. In principle, different cutoffs could 
result in markedly different sample sizes (and thus lead 
to power/precision nonequivalence), but this is not the 
case in the present data set: Sample size under alterna-
tive cutoffs ranges from 283 to 289, and the correspond-
ing change in statistical power is negligible. Overall, the 
choice among alternative cutoffs can be treated as a 
Type E decision. (For an argument that arbitrary cutoffs 
are typically unlikely to cause major distortions of 
research findings, see Fanelli, 2019, p. 34.)

To sum up, a principled evaluation of the decision 
nodes involved in this analysis yielded a markedly dif-
ferent set of specifications than the first analysis. Instead 
of a single multiverse with 1,216 specifications, we 
derived two small multiverses with six specifications 
each. This reflects the fact that most of the alternatives 



12	 Del Giudice, Gangestad

that make up the full multiverse—in fact, about 99% of 
them—are not truly arbitrary and should be excluded 
according to the principles discussed in the previous 
sections. Some readers may feel that, no matter how well 
justified, a multiverse of six specifications is too small, 
and that a credible analysis requires many more models—
perhaps a few dozen or hundreds at a minimum. We 
argue that this intuition should be actively resisted. If a 
smaller, homogeneous multiverse yields better infer-
ences than a larger one that includes many nonequiva-
lent specifications, it should clearly be preferred.

Figure 6 shows the distribution of p values and the 
VoE in the two principled multiverses. In the multiverse 
based on Model 1 (i.e., the true model that generated 
the data), all six effects were positive and statistically 
significant at α = .05, with a median p of .012. Effect 
sizes (β) clustered in a narrow range between 0.14 and 
0.16; the median was 0.15. The consistency of effects 
within this multiverse is reflected in the VoE plot of 
Figure 6b. In the multiverse based on Model 2 (which 
incorrectly assumes that fatigue is a mediator), the effects 
ranged from −0.04 to 0.01, with a median (and mean) 

Fig. 6.  Results of the principled multiverse-style analyses of the simulated data set: (a, c) distribution of p values across the six specifica-
tions in each of the two multiverses (Model 1 and Model 2) and (b, d) vibration of effects (VoE) plots showing the joint distribution of 
p values and effect sizes for the same specifications. In VoE plots, the negative logs of p values are plotted. Hence, larger values on the 
y-axis correspond to smaller p values. The 50th percentiles of the distributions of effect sizes and p values are indicated by the dotted lines.
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of −0.02. These small negative effects failed to meet the 
threshold for significance; the median p value was .733.

In sum, analyses of the principled multiverses revealed 
two homogeneous clusters of effects, indicating that the 
exact biomarker composite employed as a predictor and 
the choice of cutoff for outliers do not substantially 
change the conclusions of the study. What does make a 
difference is whether fatigue is treated as a collider and 
excluded as a covariate (Model 1) or treated as a media-
tor and controlled for in the analysis (Model 2). Making 
an informed decision between these models would 
require additional empirical evidence (e.g., experimental 
or quasi-experimental studies), theoretical develop-
ments, or both.

Conclusion

Since becoming aware of it, researchers have increas-
ingly ventured into the multiverse, drawn by its promise 
of better, more complete, and more transparent treat-
ment of data-analytic decisions. In this article, we have 
attempted to offer a set of evaluative tools that will help 
researchers navigate this still largely uncharted territory. 
To successfully navigate the multiverse, researchers must 
address a crucial question: What decisions used to spec-
ify an analysis are truly arbitrary, such that different 
options are not expected to yield substantively different 
answers? Here we have focused on three primary 
domains of nonequivalence and examined the implica-
tions of three kinds of decisions one can make when 
evaluating alternative specifications.

By no means do we offer an algorithmic solution to 
the construction of the multiverse. Researchers planning 
a study face questions about how best to structure and 
analyze data, and not uncommonly their answers are 
best guesses (e.g., based on psychometrics or existing 
theory) rather than rigorously derived solutions; one can 
expect nothing more of multiverse-style analyses. A key 
take-home message of this article in that one should also 
expect nothing less. It makes little sense to include in 
the multiverse a specification that, a priori, one would 
have dismissed as inferior to other specifications. 
Researchers conducting a multiverse-style analysis 
should clearly and systematically present their rationale 
for treating alternatives as equivalent.

Type U decisions reflect uncertainty about which of 
two or more specifications is preferable. We suspect they 
will not be uncommon. Another take-home message is 
that such cases call for systematic exploratory multiverse 
analysis. How do decisions affect effect-size estimates 
of interest? A posteriori, can one make a convincing case 
that one set of analyses offers better estimates than oth-
ers? If not, can one specify the additional data needed 
to resolve decisions about which estimates are better? 

In a related vein, Simonsohn et  al. (2020) observed, 
“specification curve analysis will not end debates about 
what specifications should be run. specification curve 
analysis will instead facilitate those debates” (p. 1209). 
However, researchers conducting multiverse-style analy-
ses have not systematically discussed results in this way. 
In contrast, they have often assumed that when the sub-
spaces of a multiverse yield substantively different 
answers, the results are simply not robust and hence 
cannot be trusted. Going forward, multiverse-style meth-
ods should not be narrowly thought of as a means to 
promote transparency in reporting, but rather should be 
considered an analytic tool that can profitably aid the 
interpretation of data and inform the development of 
theoretical models.
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