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Abstract
Objective To define a predictive Artificial Intelligence (AI) algorithm based on the integration of a set of biopsy-based 
microRNAs expression data and radiomic features to understand their potential impact in predicting clinical response (CR) 
to neoadjuvant radio-chemotherapy (nRCT).
Summary background data The identification of patients who would truly benefit from nRCT for Locally Advanced Rectal 
Cancer (LARC) could be crucial for an improvement in a tailored therapy.
Methods Forty patients with LARC were retrospectively analyzed. An MRI of the pelvis before and after nRCT was per-
formed. In the diagnostic biopsy, the expression levels of 7 miRNAs were measured and correlated with the tumor response 
rate (TRG), assessed on the surgical sample. The accuracy of complete CR (cCR) prediction was compared for i) clinical 
predictors; ii) radiomic features; iii) miRNAs levels; and iv) combination of radiomics and miRNAs.
Results Clinical predictors showed the lowest accuracy. The best performing model was based on the integration of radiomic 
features with miR-145 expression level (AUC-ROC = 0.90). AI algorithm, based on radiomics features and the overexpression 
of miR-145, showed an association with the TRG class and demonstrated a significant impact on the outcome.
Conclusion The pre-treatment identification of responders/NON-responders to nRCT could address patients to a personalized 
strategy, such as total neoadjuvant therapy (TNT) for responders and upfront surgery for non-responders. The combination of 
radiomic features and miRNAs expression data from images and biopsy obtained through standard of care has the potential 
to accelerate the discovery of a noninvasive multimodal approach to predict the cCR after nRCT for LARC.

Keywords Locally advanced rectal cancer (LARC) · Artificial intelligence · microRNA · Complete clinical response · 
Neoadjuvant radio-chemotherapy

Locally advanced rectal cancer (LARC) is defined as a 
transmural (cT3-4) and/or node-positive (cN +) cancer. 
The optimal treatment for LARC is based on neoadjuvant 

chemoradiotherapy (nRCT) followed by surgery after at least 
6–8 weeks [1, 2].
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MRI provides the most accurate imaging of the rectum, 
allowing the definition of the pretherapeutic staging.

nRCT allows disease downstaging as well as reduction 
of the local recurrence rate and preservation of sphincter 
integrity [1]. After nRCT, 50–60% of patients are down-
staged, with approximately 15–20% of pathological com-
plete response (pCR) [3–6]. On the other hand, at the end 
of nRCT approximately 7% of patients do not show any 
response and more than 20% develop a grade 3–4 toxicity 
[7]. Non-responder patients can also develop tumor progres-
sion or distant metastases during nRCT [7].

Complete clinical response (cCR) assessment could be 
achieved by means of clinical examination, endoscopy, and, 
in a more objective way, by MRI and endoscopic rectal ultra-
sound (ERUS), although the estimated accuracy in predict-
ing good responders at restaging is 52–72% and 65–73%, 
respectively [8, 9].

The identification of patients who will really benefit from 
nRCT could be crucial for the improvement of a tailored 
therapy. Currently, no specific biomarker alone is able to 
accurately predict the response to nRCT.

For that reason, there is an increasing trend toward the 
evaluation of tumor response using a variety of techniques.

Artificial intelligence and molecular markers could play 
an interesting role as a potential predictive tool, and micro-
RNAs (miRNAs) and radiomics have been proposed for this 
purpose [10–12].

miRNAs are short non-coding RNAs [10] and they cause 
target degradation, translational repression, or gene silencing 
and thus affect subsequent protein expression [13].

Radiomics refers to the high-throughput extraction and 
analysis of quantitative features from standard-of-care medi-
cal images [14]. Radiomic features (tumor signal intensity, 
shape characterization, and texture) represent quantitative 
and objective measures and could reflect tumor heterogene-
ity and sub-regional habitats.

Prior studies have evaluated the use of radiomics analy-
sis in MR imaging to distinguish cancer from benign tissue 
or add information about cancer aggressiveness [15–18], as 
well as to predict response after nRCT [19, 20].

The primary aim of this study was to understand if (i) 
radiomics analysis could improve the qualitative assessment 
in order to differentiate patients following the regression rate 
and (ii) specific miRNAs, extracted in pre-treatment tissue 
biopsies of LARC, could be considered a potential response 
biomarker.

The secondary aim was to test the combined miRNAs 
and radiomics data for a more accurate prediction of cCR 
to nRCT.

Material and methods

Study sample

160 consecutive rectal cancer patients, treated between 
October 2007 and June 2017 in the Surgical Clinic Unit 
of Trieste’s University Hospital, were retrospectively 
analyzed.

We include in the present study 40 patients who fully 
reach the inclusion criteria (imaging data, RNA isolation, 
protocols, and staff are strictly standardized):

1. Locally advanced rectal cancer patients were included
(cT3-4 and/or node-positive (cN +) cancer);

2. Staging process (included CEA, Ca 19.9, colonoscopy,
thoraco-abdominal CT scan, and pelvic-MRI);

3. A high-field Magnetic Resonance (MR) of 1.5 Tesla per-
formed before and after nRCT analyzed by the same two
radiologist; several patients performed a pelvic-MRI in
private diagnostic center or in other hospitals;

4. Patients treated with regular course RT were included;
5. Only patients with diagnostic biopsy specimen available

were included

The other patients were excluded due to the missing 
of one or more cited inclusion criteria (i.e., patients who 
underwent to colonoscopy in other center and/or per-
formed MRI in other center or MRI less than 1.5 Tesla 
and/or small or missing biopsy).

Following a multidisciplinary discussion, all patients 
received nRCT with capecitabine and pelvic locoregional 
radiotherapy (5 weeks, 45–50 Gy); subsequently, they 
underwent to a restaging pelvic-MRI after 6 weeks and 
submitted to surgery 8–10 weeks after nRCT comple-
tion. The surgical specimens were evaluated and classi-
fied according to TNM-seventh edition and pathological 
response was graded according to the Dworak classifica-
tion of tumor regression grade (TRG) [21, 22].

Based on TRG, subjects were divided into two groups: 
complete and almost complete responders (TRG 3–4, RESP) 
and incomplete and non-responders (TRG 0–2, NO-RESP).

microRNAs selection methods

In the diagnostic biopsy [10, 13], the expression levels 
of 7 miRNAs (let-7a, let-7f, miR-21, miR-29a, miR-145, 
miR-320a, and miR-520d) were measured. As for the 
miRNA selection, a literature research was performed 
using the electronic databases of PubMed, Scopus, WoS 
and EMBASE, and the Cochrane Register of Controlled 
Trials on December 1st, 2019.
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From 2008 to 2019, 188 papers were published regard-
ing the miRNA expression in colorectal cancer. Of them, 
less than 20 try to measure miRNAs levels directly into 
the first biopsy sample. A total of 31 miRNAs were found 
to be upregulated or downregulated in patients with rectal 
cancer compared to controls. After a comprehensive and 
thorough review of the selected papers, the seven reported 
miRNAs associated with rectal cancer were selected.

MR image acquisition and texture analysis 
for radiomics features

A high-field Magnetic Resonance (MR) of 1.5 Tesla was 
performed before and after nRCT. T2-weighted sequences 
in the three planes of space and Diffusion weighted images 
(DWI) were at least requested.

After the anonymization of the images, the DICOM files 
were uploaded in the Health-Myne software, a provider of 
integrated solution for radiomics’ studies.

Two abdominal radiologists, who were aware that all the 
patients had a histologically confirmed diagnosis of rectal 
cancer, first revised the images through the software and 
then identified the lesions in the pre-treatment images; 
finally, the segmentation of the lesion in the pre-treatment 
images (in the T2-weighted images, excluding the lumen of 
the rectum) was performed. In addition, a sphere of 1 cm [3] 
volume was traced in the area which was considered as the 
most representative of the tissue composition of the tumor.

The same software extracted the radiomic features from 
the volumes obtained after the segmentation of the entire 
lesion (EL) and from the single spheres. 3 groups of features 
were extracted: morphological features, gray-level co-occur-
rence-based features, and intensity-based statistical features.

RNA extraction and Real‑Time PCR analysis

Total RNA was isolated starting from three FFPE (Forma-
lin-Fixed Paraffin-Embedded) tissue Sects. (10 µm) using 
the RecoverAll Total Nucleic Acid Isolation Kit for FFPE 
(Thermo Fisher Scientific). RNA quantity and quality were 
assessed by NanoDrop ND-1000 (Thermo Fisher Scientific).

Expression of the selected miRNAs was measured using 
TaqMan quantitative real-time PCR (Applied Biosystems 
(AB)). Single-stranded cDNA was synthesized from 10-ng 
total RNA using specific miRNA primers (TaqMan Micro-
RNA Assay, AB). The following TaqMan microRNA Assays 
were used in this study and obtained from AB: hsa-let-7a-5p 
(000377), hsa-let-7f-5p (000382), hsa-miR-21-5p (000397), 
hsa-miR-29a-3p (002112), hsa-miR-145-5p (002278), and 
hsa-miR-320a-3p (002277). Furthermore, hsa-miR-520d-5p 
(002393) and hsa-miR-16-5p (000391) were used as an 

endogenous control for data normalization by measuring 
expression in all the samples.

Statistical analysis

Clinical characteristics were compared between the two 
groups using t test on continuous variables (or the non-par-
ametric Mann–Whitney test when necessary) and Chi-square 
test (or Fisher’s exact test when necessary) for categorical 
ones.

Given the high number of features, radiomic data under-
went a three-step processing. First, pairwise correlation 
analysis was performed considering all pairs of variables 
in order to identify those highly correlated (Pearson cor-
relation > 0.9) and to remove redundant features. Second, 
univariate association test between features and TRG 
class was carried out and only variables showing associa-
tion (Mann–Whitney test, alpha = 0.05) were retained in 
the analysis. Third, Principal Component Analysis (PCA) 
was performed on the remaining features. PCA is a useful 
method for the multivariate setting in which a transforma-
tion is applied to data with two objectives: to represent cor-
related variables with principal components (PC) that are 
uncorrelated and to reduce the dimension of the variable 
space by selecting a restricted number of PCs. In this study 
the first component (PC1) was extracted [17]. The associa-
tion between PC1 and TRG class was investigated with a 
logistic regression (LR) model. This strategy was applied for 
both EL and sphere segmentation. In the case of spherical 
segmentation, features were additionally filtered based on 
coefficient of variation (cv < 1e.4) to remove those which 
were meaningless for spherical shape.

As for miRNAs data, the expression level was normal-
ized subtracting the level of the control miRNA. Correlation 
analysis was conducted using Pearson correlation method. 
Shapiro–Wilk test was performed for normality of data and 
Levene’s test for homogeneity of variance. Comparison of 
means between RESP and NO-RESP groups was performed 
using the t test.

Variables of the different domains (clinical, radiomics, 
genomics) were used as predictors to estimate LR mod-
els, and the predicted probabilities were used to calculate 
the Area Under the ROC curve (AUC-ROC). In order to 
obtain an internal validation of the models’ performance, 
we applied a bootstrapping resampling strategy, which is a 
data-based simulation method that involves repeated random 
sampling with replacement from the original data to obtain 
multiple random samples, each of which provides an esti-
mate of the parameter of interest. In this study, sampling was 
repeated for 150 times and the resulting ROC curves were 
used to obtain an estimate of AUC-ROC. Once the boot-
strapped estimates were obtained, we subtracted the mean 
of the estimates to the AUC-ROC of the original dataset to 
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correct for the “optimism” in performance evaluation that 
should be always considered when the same dataset is used 
to both develop and validate a model [23].

All computations were carried out with the statistical 
software R version 4.0.3, including libraries rms and pROC 
[24].

Results

Baseline clinical and pathologic characteristics of the cohort 
are resumed in Table 1. Forty consecutive patients were 
analyzed, 24 males and 16 females, with a median age of 
68 years. The study population was homogeneous, and all 
patients were treated with 50.4 Gy in 28 fractions.

At diagnostic workup, clinical stage higher than cT2 was 
present in 36 patients (90%), and 33 patients (82.9%) had 
lymph-node metastasis.   Downstaging of the disease after 
nRCT was observed in 13 (32.5%) patients; non-respond-
ers were 27 (67.5%). As for responder patients, all TRG4 
patients had ypT0No and all TRG3 ones had ypT1-2N0.

Analysis of microRNAs expression

For hsa-miR-145-5p (miR-145), no deviance from normality 
was detected (p-value = 0.16), neither for homogeneity of 
variance (p = 0.15). Groups RESP and NO-RESP showed 
a significant difference in the expression level (t = 2.71, 
df = 33, p-value = 0.010 – Fig. 1). The difference between 
NO-RESP and RESP means was 0.743, which corresponds 
to a fold change of 1.675 (RESP group had miR-145 

expression level increased by 67.5% compared to No-RESP 
group).

No significant differences were identified in the expres-
sion levels of the other six miRNAs (Fig. 1).

Analysis of radiomic features

For T2 images, 206 features were extracted. After pairwise 
correlation analysis that identified redundant variables, 60 of 
them were tested and 16 showed association with the TRG 
class. As reported in Table 2, PC1 has a significant effect on 
the TRG class (OR = 0.38, 95% CI [0.17, 0.67]). For sphere 
images, pairwise correlation analysis reduced the set to 59 
features, of which 7 demonstrated an association with TRG 
class. In this case as well, PC1 has a significant impact on 
the outcome (OR = 6.25, 95% CI [2.22, 28.9]).

Internal validation

The results of 6 different models are reported in Table 3 and 
represented in Fig. 2. The first includes age and stage; the 
second and the third, radiomic PC1 for EL and sphere seg-
mentation, respectively; the fourth, level expression of miR-
145; ultimately, the last two include both miR-145 expres-
sion level and radiomic PC1 (EL and sphere, respectively). 
Considering single-domain models, the top performing 
ones are those based on spherical segmentation radiomics 

Table 1  Main clinical characteristics of the patients included in the 
study

Values are mean ± SD, %, or median [interquartile range]
*NX in one individual

Total 
population 
(n = 40)

RESP (n = 13) NO-RESP 
(n = 27)

p-value

Age 68 (45–85) 66 ± 9 69 ± 11 0.39
Male 24 (60%) 8 (61.5%) 16 (59.2%) 1
ASA >  = 3 9 (22.5%)  4 (30.7%) 5 (59.2) 0.43
Stage (III–IV) 13 (32.5%) 2 (15.4%) 11 (40.7%) 0.12
TNM
T > 2 36 (90%) 11 (84.6%) 25 (92.6%) 0.58
N + 33 (82.5%) 10 (*63.5%) 23 (85.2%) 1
ypTNM
ypT0-1 17 (42.5%) 13 (100%) 4 (14.8%) 0.005
ypT2-4 23 (57.5%) 0 (0%) 23 (85.2%) 0.001
ypN0 31 (77.1%) 13 (100%) 17 (63%) 0.63
ypM + 2 (5.7%) 0 (0%) 2 (7.4%) 0.03

Fig. 1  Distribution of the 7 miRNAs in RESP and NO-RESP groups. 
Data for has-miR-520d-5p are referred to a different scale for a better 
visualization

Table 2  Analysis of radiomic features

The table include the result of the logistic model based on the seg-
mentation of the entire lesion (Radiomics (EL)) and the one based 
on the spherical segmentation (Radiomics (Sphere)). CI: confidence 
interval; OR: odds ratio

Model OR 95% CI p-value

Radiomics (EL) 0.38 [0.17–0.67] 0.005
Radiomics (sphere) 6.25 [2.22–28.9] 0.004
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(AUC-ROC = 0.85, 95%CI [0.71–0.98]) and EL segmen-
tation radiomics (AUC-ROC = 0.83, 95%CI [0.69–0.97]). 
Instead, we observed lower accuracy using clinical pre-
dictors (AUC-ROC = 0.76, 95%CI [0.59–0.93]) and mirR-
145 (AUC-ROC = 0.74, 95%CI [0.55–0.93]). Of note, the 
best performing model was the one which integrated two 
domains: EL segmentation radiomic PC1 and mirR-145 
expression level (AUC-ROC = 0.90, 95%CI [0.80–1.0]) and 
sphere segmentation radiomic PC1 and mirR-145 expression 
level (AUC-ROC = 0.91, 95%CI [0.81–1.0]). Corrected esti-
mates differ very slightly from the raw AUC-ROCs (Fig. 2).

Discussion

Main findings

In a world where medicine is becoming more and more per-
sonalized and resources are not unlimited, predicting the 

correct therapeutic pathway is becoming a crucial point of 
scientific interest. The discrimination of patients between 
non-responders and responders to nRCT could, in fact, spare 
ineffective and possibly harmful harming treatments and 
design ad hoc therapeutic strategies. The integration of miR-
145 expression and radiomics features seems to be a positive 
predictive factor in recognizing good responders to nRCT.

The main strength of the study was to define, for the 
first time, to our knowledge, a predictive model based on 
the integration of a set of biopsy-based miRNAs expres-
sion data and radiomic features: two completely different 
approaches combined together into a statistical model which 
could potentially provide a robust and noninvasive predictor 
of clinical and pathological response after nRCT for LARC, 
in a framework of a new concept of personalized surgery.

Radiomic and miRNAs in LARC patients

As known, the ability of imaging techniques to exclude 
complete response is superior to their ability to confirm it 
[8, 9], which makes it extremely difficult to detect patients 
who could really benefit from a ‘Watch and Wait’ approach. 
To address this problem, a promising concept of AI analy-
sis, such as radiomics analysis, has been recently developed 
[25]. With the analysis of the metadata obtained, diagnostic 
pathways could be improved, and information about progno-
sis and response to treatment could be easily assessed [14]. 
To our knowledge, few studies are available and report that 
radiomics analysis for LARC showed a good performance 
in identifying cCR after nRCT, which increased when com-
bined with standard clinical evaluation [26, 27].

To this account, Horvat et al. demonstrated that the radi-
omics’ performance in detecting cCR after nRCT was higher 
than MRI (p < 0.0001), with a sensitivity of 100% and speci-
ficity of 91% [27]. The results are encouraging but further 
studies with larger and independent datasets are needed in 
order to validate the potential of radiomics in this topic.

On the other hand, many molecular markers have been 
studied in order to identify patients who could really ben-
efit from nRCT:genetic mutations [28], protein biomark-
ers, tumor immune microenvironment [28], or non-coding 
RNAs, such as microRNAs [29]. miRNAs are involved in 
many different cellular processes [10], including carcino-
genesis, radiosensitization, and radioresistance [30, 31]. 
Moreover, they remain stable even in extreme environmen-
tal conditions (e.g., boiling, extreme pH levels), and they 
can be secreted intact in body fluids [32]. To advocate their 
possible use as biomarker, it has also been demonstrated that 
the expression of miRNAs’ levels in tissues and plasma, the 
so-called circulating miRNAs, are concordant [33].

MiRNAs are negative regulators of gene expression 
and are dysregulated in many cancers, including colorec-
tal cancer. In general, in our study, we do not observe 

Table 3  Comparison of predictive performance

Predictive performance in terms of AUC-ROC is reported for model 
based in clinical features (Clinical), radiomics on entire lesion 
(Radiomics (EL)), radiomics on spherical segmentation (Radiomics 
(Sphere)), miR-145 (miR145), radiomics on entire lesion and miR-
145 (Radiomics (EL) + miR145), and radiomics on entire lesion and 
miR-145 (Radiomics (Sphere) + miR145). AUC: Area Under the 
Curve; other abbreviations as in Table 2

Model AUC-ROC 95% CI

Clinical 0.76 [0.59–0.93]
Radiomics (EL) 0.83 [0.69–0.97]
Radiomics (Sphere) 0.85 [0.71–0.98]
miR145 0.74 [0.55–0.93]
Radiomics (EL) + miR145 0.90 [0.80–1]
Radiomics (Sphere) + miR145 0.91 [0.81–1]

Fig. 2  Models’ performance. The performance measured in terms of 
AUC-ROC and relative confidence interval are reported in black for 
each model. The red cross indicates the AUC-ROC corrected for opti-
mism
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significant differences regarding six over seven screened 
miRNAs. Although, for miR-145, we observed that expres-
sion level is significantly higher in RESP compared to NO-
RESP group (the fold change is 1.675 that correspond to 
an increasing in 67.5% expression level in RESP group).

From our findings, several studies try to understand the 
role of the over- or under-expression of microRNAs in 
CCR in response to nCRT, but there are difficult to com-
pare for several reasons: in literature the sample sizes are 
mostly small (< 50 patients), the miRNA extraction meth-
ods used are disparate and the tumor regression grading 
system is different in each study and, in some of them, 
TRG are different in the same cohort.

Drebber et  al. conducted one of the first studies on 
miRNAs expression related to nRCT in rectal cancer [34]. 
They evaluated the levels of miR-21, miR-143, and miR-
145 in tumor tissue of 40 patients before and after therapy 
and demonstrated a significant correlation between a high 
miR-145 expression in the post-therapeutic tumor tissue 
and a major response to nRCT. However, the expression 
of miR-145, which gave significant results, was evaluated 
in the post-therapeutic tissue sample, not focusing on pre-
dicting the response to therapy in advance. For this reason, 
their results are not comparable neither with ours nor with 
the others in the available literature.

Eriksen et al. analyzed the role of both miR-145 and 
miR-21 in a test cohort of 55 patients and a subsequent 
validation cohort of 130 patients in surgical specimen of 
LARC after nRCT [35]. In the test cohort, under-expres-
sion of miR-145 was significantly associated with major 
response to therapy (p < 0.001) but, in the validation 
cohort, this result was confirmed without reaching statis-
tical significance (p = 0.085). This could seem in contrast 
with our data, but the absence of statistical significance 
regarding miR-145 expression levels makes this report less 
consistent.

Concerning the role of miR-145, it has been demonstrated 
that it directly inhibits insulin receptor substrate-1 (IRS-1) 
and type 1 insulin-like growth factor (IGF-IR) [36–38]. In 
rectal cancer cells, miR-145 is frequently downregulated, 
promoting the pro-mitotic role IGF-IR and IRS-1 [39]. 
Hence, the upregulation of miR-145 is presumed to contrib-
ute to the suppression of tumor proliferation. As mentioned 
before, miRNAs are secreted intact in body fluids, includ-
ing blood and plasma, making them the perfect noninvasive 
biomarkers to differentiate patients into responders and non-
responders before nRCT. However, only a few studies evalu-
ated the role of circulating miRNAs in LARC [38, 40, 41].

The combination of radiomic features and miRNAs 
expression data from images and biopsy obtained through 
standard of care has the potential to accelerate the discovery 
of a noninvasive multimodal approach to predict the cCR 
after nRCT for LARC.

Our work presents several limitations. The study is based 
on a retrospective design and a validation cohort for the pro-
posed model is absent. The number of patients included in 
the analysis is small and we cannot exclude that other asso-
ciations between TRG class and miRNAs were not iden-
tified because of the low statistical power. Moreover, the 
application of PCA on the radiomics data made possible 
to include in the model information from multiple features 
and to increase the predictive performance, but the same 
time made the relationship between radiomics and outcome 
difficult to be interpreted. Future developments of the study 
include an external validation of the model in an independ-
ent cohort.

The monocentric design of our study provides a homoge-
neous approach in terms of a therapeutic pathway to LARC, 
pathologic analysis of the surgical specimens, along with a 
uniform TRG classification, and a well-structured miRNAs 
extraction technique and radiomics analysis.

Conclusion

If confirmed by future evidence, patients with a high prob-
ability of a cCR could be proposed for a Total neoadjuvant 
therapy (TNT) regimen. At the same time, non-responders 
could directly undergo upfront surgery, reducing the risk 
related to nRCT, including the hypothesis of tumor pro-
gression. Three therapeutic-targeted pathways could be 
proposed for our daily practice: TNT, nRCT and surgery, 
and surgery alone. Supported by these promising results, in 
a multicentric prospective study, we will extend the analysis 
to the whole-human miRNAome, integrate radiomics, and 
apply advanced classification algorithms to identify LARC 
patients to be addressed to TNT or nRCT or upfront surgery.
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