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Strategy Logic (SL for short) is one of the prominent languages for reasoning about the 
strategic abilities of agents in a multi-agent setting. This logic extends LTL with first-order
quantifiers over the agent strategies and encompasses other formalisms, such as ATL* and 
CTL*. The model-checking problem for SL and several of its fragments has been extensively
studied. On the other hand, the picture is much less clear on the satisfiability front, where 
the problem is undecidable for the full logic. In this work, we study two fragments of One-
Goal SL, where the nesting of sentences within temporal operators is constrained. We show
that the satisfiability problem for these two logics, and for the corresponding fragments of 
ATL* and CTL*, is in ExpSpace and PSpace-complete, respectively.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Temporal logic in its many flavours has proved to be a valuable tool for expressing and analysing properties of reactive 
systems. Different variants of the logic have been studied extensively in the past forty-five years, since the introduction of LTL

by Pnueli [1]. The various temporal languages proposed, whether based on the linear-time model [2–6] or on the branching-
time one [7–15], have been successfully applied to the formal verification of closed nondeterministic systems, namely systems 
where the nondeterministic choices are resolved within, i.e., are under direct control of, the system itself. Systems that 
interact with an unknown environment, however, such as system modules or multi-agent systems, typically involve two forms 
of nondeterministic choices, those controlled by the system and those controlled by the external environment. This kind of 
systems, often referred to as open systems, connects to the notion of alternating computation [16,17] and naturally leads to a 
game-theoretic interpretation, where the system and the environment play a game against each other, by making the choices 
under their own control, in order to satisfy (resp., falsify) some goal. Verifying a desired property for an open system then 
corresponds to checking for the existence of a strategy that the system can follow in order to ensure that its computations 
satisfy that property, regardless of the possible behaviours of (i.e., the strategies followed by) the external environment.

A number of extensions of temporal logics specifically tailored to reason about open multi-agent systems and incorpo-
rating, implicitly or explicitly, the notion of strategy as a central element, have been proposed in the literature that can also 
express interesting game-theoretic notions, such as various forms of equilibria in games [18–23]. Alternating-Time Temporal 
Logic (ATL* , for short) was originally introduced by Alur, Henzinger, and Kupferman [24] and allows for reasoning about 
strategic behaviour of agents with temporal goals. This logic generalises the branching-time temporal logic CTL* [10,13] by
replacing the path quantifiers, there exists “E” and for all “A”, with strategic modalities of the form “〈〈A〉〉” and “[[A]]”, for a 
set A of agents. These modalities can express cooperation and competition among the agents involved towards achieving 
some required temporal goals. In particular, they allow for selective quantifications over the paths resulting from an infi-
nite game between a coalition of agents and its adversary, the complement coalition. Strategy Logic (SL, for short) [25–29],
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instead, extends LTL with two strategy quantifiers, the existential ∃x and the universal ∀x , as well as agent bindings (a, x),
where a is an agent and x a strategy variable. Intuitively, these elements can be read, respectively, as “there exists a strategy 
x”, “for all strategies x”, and “bind agent a to the strategy associated with x”. SL considers strategies as first class citizens and 
can express properties requiring an arbitrary alternation of the strategic quantifiers, as opposed to, e.g., ATL*, which only
allows for at most one such alternation. From a semantic viewpoint, this entails that SL can encode arbitrary functional de-
pendencies among strategies, which may be crucial to express relevant multi-agent systems and non-trivial game-theoretic 
notions [28,29].

The model-checking problem for SL and for many of its fragments has been studied with some depth and is relatively
well-understood [28,30–33]. The picture is, however, much less clear when satisfiability is considered. The full logic SL is 
known to be undecidable [26] on concurrent game structures, while it is decidable on turn-based ones [34,35]. The one-goal
fragment (SL[1g], for short), where only a single binding prefix is allowed in any sentence (i.e., a formula with no free 
variables), is decidable in 2ExpTime [36]. On the other hand, the Boolean-Goal fragment, which allows for Boolean combi-
nations of bindings within a sentence but no nesting of bindings, is already undecidable [29]. Recently, the flat fragment 
of conjunctive-goal SL has been studied in [37], proving that the problem is in PSpace-complete and witnessing the rare 
phenomenon of a language with a satisfiability problem easier than the corresponding model-checking one, which remains 
2ExpTime-complete. Such fragment allows for conjunctions of bindings but no nesting of temporal operators within a sen-
tence.

In this work, we widen the picture, by studying larger non-flat fragments of SL[1g]. Specifically, we allow some forms of 
nesting of temporal operators, but prevent sentences in the first (resp., second) argument of an until (resp., release) operator.
Essentially, temporal operators cannot reiterate the request of satisfaction of a sentence arbitrarily many times. The resulting 
fragment is, thus, called non-recurrent SL[1g] (SL

��
[1g], for short). We show that the fragment where the first (resp., second)

argument of an until (resp., release) is restricted to a pure LTL formula can be decided in ExpSpace. If we further restrict 
those arguments to Boolean formulae, instead, we obtain a weaker fragment (WSL

��
[1g], for short) with a PSpace-complete

decision problem. To prove these results, we first introduce a normal form for the models of satisfiable sentences of these 
fragments. The distinctive property of such models is that, along any of their paths, the number of branching points is 
linear in the length of the formula. To do that, a sentence is converted into a “skeleton”, where it is split into layers at the 
beginning of each block of strategy quantifiers, and then skolemised to obtain a set of purely universally-quantified formulas 
in order to apply techniques from first-order logic [38,39]. Then, we introduce a novel class of tree automata, called bounded-
fork automata, accepting trees with a bounded number of nodes with more than one successor along each path. We show
that the emptiness problem for these automata, unlike for classic tree automata, can be decided in LogSpace. These results 
are key to obtaining the complexity bounds. Indeed, we can show that for any sentence ϕ of the two considered fragments,
we can build a bounded-fork automaton of size doubly-exponential (resp., singly-exponential) in the length of ϕ , accepting 
all and only its normal models. The ExpSpace and PSpace upper bounds for satisfiability, then, immediately follow from the 
complexity of the emptiness problem. The results also trickle down to suitable fragments of sublogics of SL such as ATL,
ATL*, CTL, and CTL*.

Restrictions similar in vein to the non-recurrent one we study here have been considered in the past for LTL, CTL, and 
CTL*. In [40] the author introduces flatLTL, flatCTL, and flatCTL*, as fragments of the corresponding temporal logics where 
the next operator is not allowed and the first argument of both the until and the release operators can only accommodate 
propositional formulae. In their LTL form, these restrictions have been applied in several contexts, such as temporal logics 
enriched with constraints over data [41,42], analysis of discrete pushdown timed systems [43], and for the synthesis of 
hybrid systems [44]. In particular, the LTL fragment considered in [41,43] is a sublogic of the linear-time logic underlying 
WSL

��
[1g], while the one originally considered in [40] is not comparable to ours, as it restricts the first and not the second 

argument of the release operator, therefore still allowing for recurrent sentences. While both model-checking and satisfiabil-
ity problems for flatLTL have been shown to be PSpace-complete [45,46], to the best of our knowledge, only expressiveness 
properties have been studied for flatCTL and flatCTL* .

The paper is structured as follows. In Section 2 we fix some standard notations and concepts useful in the remaining of 
the paper. In Section 3 after recalling SL[1g], the decidable fragment of SL, we provide the definition of SL

��
[1g]. In Section 4

we introduce and discuss normal models for SL
��

[1g]. In Section 5 we introduce the novel class of bounded-fork tree automata
and prefix-deterministic word automata exploited in the following Section 6 where efficient satisfiability-checking algorithms 
are devised and complexity results are stated for the non-recurrent fragments of SL[1g]. Eventually, we conclude the paper
with a discussion and some line of future investigation in Section 7.

2. Preliminaries

Games A concurrent game structure (CGS, for short) w.r.t. non-empty finite sets of atomic propositions AP and agents Ag
is a tuple G � 〈Ac,Ps, τ , vI , λ〉, where Ac and Ps are countable non-empty sets of actions and positions, vI ∈ Ps is an 
initial position, and λ : Ps → 2AP is a labelling function mapping every position v ∈ Ps to the set of atomic propositions 
λ(v) ⊆ AP true at that position. A decision d ∈ Dc � AcAg is a function that chooses an action for each agent. A move function
τ : Ps × Dc → Ps maps every position v ∈ Ps and decision d ∈ Dc to a position τ (v, d) ∈ Ps. By abuse of notation, τ ⊆ Ps × Ps
also denotes the transition relation between positions such that (v, w) ∈ τ iff τ (v, d) = w for some d ∈ Dc. As usual, τ+
(resp., τ ∗) is the transitive (resp., reflexive and transitive) closure of τ .
2
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A path π ∈ Pth ⊆ Ps∞ is a finite or infinite sequence of positions compatible with the move function, i.e., ((π)i , (π)i+1) ∈
τ , for each i ∈ [0, |π | − 1), and fst(π) is the first position of the sequence. The set Pth(v) � {π ∈ Pth | |π |> 0, fst(π)= v}
denotes the set of paths starting at a position v. A history at v is a non-empty finite path ρ ∈ Hst(v) � Pth(v) ∩ Ps+ starting 
at that position. Similarly, a play π ∈ Play(v) � Pth(v) ∩ Psω at v is an infinite path starting at v.

A strategy rooted at v is a function σ ∈ Str(v) � Hst(v) → Ac mapping histories to actions. A v-rooted profile ξ ∈ Prf(v) �
Ag → Str(v) associates agents with strategies. A path π ∈ Pth(v) is compatible with a v-rooted profile ξ ∈ Prf(v) if, for each 
i ∈ [0, |π | − 1), it holds that (π)i+1 = τ ((π)i, d), for the unique decision d ∈ Dc such that d(a) = ξ(a)((π)≤i), for all agents 
a ∈ Ag. The unique play induced by a profile ξ from position v is denoted by play(ξ, v). 

A CGS G is a tree if, for some set X:

1) Ps is a prefix-closed set of words in X∗ ,
2) vI = ε is the empty word, and
3) (v, w) ∈ τ iff w = v · x for some x ∈ X, for all positions v, w ∈ Ps.

As usual, τ−1 : Ps \ ε→ Ps denotes the predecessor function τ−1(v · x) � v, for all v · x ∈ Ps \ ε with x ∈ X. Finally, a tree CGS

G is k-fork, for some k ∈N , if along every path π ∈ Pth(vI ) there are at most k forks, namely, 
∣∣{i ∈N

∣∣ |τ ((π)i)|> 1
}∣∣ ≤ k.

Automata A deterministic (resp., nondeterministic) word automaton (DWA (resp., NWA), for short) is a tuple 〈�,Q, δ, qI ,QF〉,
where

• � and Q are the non-empty finite sets of input symbols and states;
• qI ∈ Q is the initial state;
• QF ⊆ Q is the subset of final states;
• δ : Q ×� → Q ∪{⊥, �} (resp., δ : Q ×� → 2Q) is the deterministic (resp., nondeterministic) transition function mapping each 

state q ∈ Q and input symbol σ ∈� to the successor state (resp., set of successor states) δ(q, σ), and ⊥ and � are two 
implicit distinguished rejecting and accepting states used to simplify the constructions of this work (these implicit states 
are not needed in the case of nondeterministic automata).

By δ∗ : Q × �∗ → Q ∪ {⊥, �} we denote the lift of a deterministic transition function δ : Q × � → Q ∪ {⊥, �} from single 
symbols to words.

A deterministic (resp., nondeterministic) tree automaton (DTA (resp., NTA), for short) is a tuple 〈�,
,Q, δ, qI ,QF〉, where 
all components but 
 and δ are defined as for a word automaton, 
 ⊆ N+ is the non-empty finite set of node degrees,
and δ : Q ×� ×
 → Q∗ ∪ {⊥, �} (resp., δ : Q ×� ×
 → 2Q∗

) is the deterministic (resp., nondeterministic) transition function
mapping each state q ∈ Q, input symbol σ ∈�, and node degree d ∈
 to the tuple of successor states δ(q, σ , d) ∈ Qd (resp.,
set of tuples of successor states δ(q, σ , d) ⊆ Qd).

We only consider the Büchi acceptance condition, for both word and tree automata. The notions of (accepting) run and 
recognised language (denoted by L(·)) are the standard ones. For more details, we refer to [47,48].

Functions A function signature is a tuple F � 〈Fn,ar〉, where Fn is a set of function symbols and ar : Fn → N is an arity 
function mapping each symbol f ∈ Fn to its arity ar(f ) ∈ N . An F -structure F �

〈
D, ·F〉

is defined by a domain D together
with an interpretation of Fn over D, i.e., every function symbol f ∈ Fn is interpreted in a function f F : Dar(f ) → D. The set 
of terms built over the signature F and a set of variables Vr is denoted by Tr.

A substitution is a map μ : Vr → Tr assigning a term to each variable; a valuation w.r.t. F is a map ξ : Vr → D assigning 
an element of the domain to each variable. Given a term t ∈ Tr, by tμ we denote the replacement of all variables in t with 
the terms prescribed by the substitution μ; by tF,ξ we denote the interpretation of t in F under the valuation ξ , i.e., the 
value assumed by t when each variable x is replaced with the value ξ(x).

A set of terms T ⊆ Tr unifies if there is a substitution μ such that tμ1 = t
μ
2 , for all t1, t2 ∈ T. Similarly, T equalises in F if 

there is a valuation ξ such that tF,ξ1 = t
F,ξ
2 , for all t1, t2 ∈ T. For more details, we refer to [49,39].

3. Decidable fragments of strategy logic

Strategy Logic [25,27,50,36,28,29] extends LTL by allowing to quantify over strategies and to assign a strategy to each 
agent, by binding the latter with some quantified variable. We shall focus here on some relevant fragments of One-Goal 
Strategy Logic that restrict the syntax of the LTL component of the language.

In the following, a quantifier prefix will be a finite sequence ℘ ∈ Qn ⊆ {Qx |x ∈ Vr,Q ∈ {∃,∀}}∗ of existential and universal 
quantifiers Qx , in which variables x ∈ Vr occur at most once. With vr(℘)⊆ Vr we denote the set of variables occurring in 
℘ . Similarly, a binding prefix is a finite sequence � ∈ Bn ⊆ (Ag × Vr)|Ag| of bindings of the form (a, x), in which each agent 
a ∈ Ag occurs exactly once.
3
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3.1. One-goal strategy logic

One-Goal Strategy Logic is one of the largest decidable fragments of SL known to date and both satisfiability and model-
checking problems are complete for 2ExpTime [28,29]. Its main constraint w.r.t. full SL is that bindings are tightly connected 
to quantifiers and agents cannot change strategies within the same sentence without quantifying on all of them again in a 
nested subsentence. For convenience, and w.l.o.g., we provide below the positive normal form version of the language.

Definition 1 (SL[1g] syntax). SL[1g] formulae are generated from sets of literals Lit � AP ∪ ¬AP, quantifier prefixes Qn, and 
binding prefixes Bn via the following grammar, where l ∈ Lit, ℘ ∈ Qn, and � ∈ Bn, with vr(℘)= vr(�):

SL[1g] denotes the set of sentences generated by Rule ϕ , while FSL[1g] ⊂ SL[1g] identifies the associated flat fragment, i.e.,
the subset generated by the variant of the grammar where l replaces ϕ within Rule ψ , i.e., with ψ pure LTL.

SL[1g] sentences of the form ℘�ψ are called principal sentences. An SL[1g] formula where each principal subsentence 
occurs at most once is called simple. Clearly, for any formula there exists an equivalent simple one that is obtained by
standard variable renaming. 

With ap(ϕ)⊆ AP, vr(ϕ)⊆ Vr, and free(ϕ)⊆ Vr ∪ Ag we denote, respectively, the sets of atomic propositions, variables, and 
free variables and agents occurring in ϕ . In addition, with ap+(ϕ)⊆ ap(ϕ) we identify the subset of atomic propositions that 
only occur with positive polarity.

Being a first-order language, the semantics of SL formulae is defined w.r.t. an assignment, interpreting variables as strate-
gies. This interpretation is extended to agents as well, in order to take care of bindings assigning strategies to agents.
For a position v, let Asg(v) � (Vr ∪ Ag) ⇀Str(v) denote the set of such v-rooted assignments, i.e., partial functions from 
variables and agents to strategies rooted at v. For a set V ⊆ (Vr ∪ Ag), we also provide, for convenience, the set of assign-
ments defined precisely over V, i.e., Asg(v, V) � {χ ∈ Asg(v) |dom(χ)= V}, and those defined at least over V as Asg⊆(v, V)�
{χ ∈ Asg(v) | V ⊆ dom(χ)}. As usual, given an assignment χ , a variable or agent x ∈ (Vr ∪ Ag) and a strategy σ ∈ Str, we 
denote with χ [x �→ σ ] the assignment χ ′ resulting from assigning σ to x in χ .

In order to define the semantics of the temporal operators, we need to introduce a shift operator sft : (Ps × Asg) →
(Ps × Asg) that, given the current position v and a v-rooted assignment χ computes the position v′ reached after one steps 
along the play induced by χ starting from v and a v′-rooted assignment χ ′ assigning to each variable and agent the same 
strategy as χ but shifted one steps ahead along the play. Let π = play(χ�Ag, v) be the play from v induced by χ , where 
χ�Ag corresponds to the strategy profile of χ . The shift function sft(v, χ) � (v′, χ ′) is defined as follows:

• v′ = (π)1 is the position succeeding v in the play π ;
• χ ′ is the assignment with the same domain as χ such that χ ′(x) : Hst(v′) → Ac and χ ′(x)(ρ) = χ(x)(v ·ρ), for all x ∈ Vr

and ρ ∈ Hst(v′).

We define the i-step shift recursively as follows: sft1(v, χ) = sft(v, χ) and sfti+1(v, χ) = sft(sfti(v, χ)).

Definition 2 (SL semantics). Given a CGS G = 〈Ac,Ps, τ , vI , λ〉, for all SL formulae ϕ , positions v ∈ Ps, and v-rooted assign-
ments χ ∈ Asg⊆(v, free(ϕ)), the satisfaction relation G, (v, χ) |= ϕ is inductively defined as follows:

1) G, (v, χ) �|= ⊥ and G, (v, χ) |= �;
2) G, (v, χ) |= p (resp., G, (v, χ) |= ¬p), if p ∈ λ(v) (resp., p /∈ λ(v)), for p ∈ AP;
3) G, (v, χ) |= φ1 ∨ φ2, if G, (v, χ) |= φ1 or G, (v, χ) |= φ2;
4) G, (v, χ) |= φ1 ∧ φ2, if G, (v, χ) |= φ1 and G, (v, χ) |= φ2;
5) For all x ∈ Vr:

a) G, (v, χ) |= ∃x. φ, if G, (v, χ [x �→ σ ]) |= φ, for some strategy σ ∈ Str(v);
b) G, (v, χ) |= ∀x. φ, if G, (v, χ [x �→ σ ]) |= φ, for all strategies σ ∈ Str(v);

6) For all a ∈ Ag and x ∈ Vr: G, (v, χ) |= (a, x)φ, if G, (v, χ [a �→ χ(x)]) |= φ;
7) G, (v, χ) |= Xφ, if G, sft1(v, χ) |= φ;
8) G, (v, χ) |= φ1 Uφ2, if there exists an index i ≥ 0 such that G, sfti(v, χ) |= φ2 and G, sft j(v, χ) |= φ1, for all indexes 

0 ≤ j < i;
9) G, (v, χ) |= φ1 Rφ2 if, for all indexes i ≥ 0, it holds that G, sfti(v, χ) |= φ2 or G, sft j(v, χ) |= φ1, for some 0 ≤ j < i .

For a sentence ϕ , we write G, v |= ϕ instead of G, (v, ∅) |= ϕ and, in addition, G |= ϕ instead of G, vI |= ϕ . As usual, we 
may use standard abbreviations such as, e.g., ψ1 →ψ2 for ¬ψ1 ∨ψ2 and Fψ for �Uψ . 
4
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The existence of a normal form for the models of sentences, as defined in the next section, relies on the notion of skeleton
that breaks down their nesting structure. The idea is that a skeleton decomposes a sentence ϕ into a set � of simpler
sentences of the flat fragment. Essentially, ϕ is stratified into layers whose sentences cannot occur within temporal operators.
The connection between the layers is achieved by means of auxiliary atomic propositions, used as names of subsentences 
nested within temporal operators in the original formula. The skeleton is reminiscent of the classic decomposition technique 
used in the model-checking algorithms for CTL* [51,52].

Example 1. Consider the following sentence

The sentence ϕ can be stratified into two layers, using the fresh atomic propositions {s, s1, s2} as names for the subsen-
tences of ϕ . The mapping φ1 �→ s1, φ2 �→ s2 and ∀x∃y∀z(a, x)(b, y)(c, z)(X (q ∧ (XFq)U (s1 ∧ s2))) �→ s provides one such 
stratification. In the end, the original formula ϕ is summarised by the positive Boolean formula ζ � p ∧ s . �

The notion of skeleton is formalised by the following definition, where the relation ≺ encodes the ordering among the 
layers and the function � assigns atomic propositions as names of subsentences of ϕ . We shall denote with img(�) the 
image of the function � and with BF (resp., BF

+) the set of Boolean (resp., positive Boolean1) formulae over AP.

Definition 3 (SL[1g] skeleton). An SL[1g] skeleton is a tuple ð � 〈ζ,�,�〉, where ζ ∈ BF
+ is a positive Boolean formula, � ⊆

FSL[1g] is a finite set of FSL[1g] principal sentences, and � : � → AP is an injective function mapping each sentence φ ∈�

to an atomic proposition �(φ) ∈ AP such that the following conditions hold true:

a) every atomic proposition p ∈ img(�) occurs in exactly one sentence φ ∈� ∪ {ζ } and at most once in it;
b) there exists a strict partial order ≺ ⊆� ×� such that if �(φ) ∈ ap

(
φ′) then �(φ) ∈ ap+(

φ′) and φ ≺ φ′ , for all φ′ ∈�.

For a skeleton ð, we denote with ϕð the sentence derived from ζ by iteratively replacing each atomic proposition p ∈
img(�) with the corresponding FSL[1g] sentence �−1(p) until no atomic proposition in img(�) occurs in the sentence. This 
effectively reverts the stratification process described above. Note that the strict partial order ≺ on � ensures termination 
of the rewriting procedure. In addition, thanks to Item a), the resulting sentence is simple. 

Proposition 1. For each SL[1g] simple sentence ϕ , there exists a SL[1g] skeleton ð with ϕ = ϕð .

Proof. Since ϕ is simple, any two principal subsentence of ϕ are different. Let � be the set of all such subsentences, each 
of which is simple as well. We first show that for any principal sentence φ in � there exists a pair (�φ, �φ) with the 
properties of Definition 3. This is done by induction on the principal sentence nesting depth of the sentences of �, where 
dep(φ), the principal sentences nesting depth of φ, is defined as follows:

dep(φ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if φ ∈ LTL;
1 + dep(ψ), if φ = ℘�ψ;
dep(ψ), if φ = Xψ;
max{dep(ψ1) ,dep(ψ2)}, if φ =ψ1 ◦ψ2 with ◦ ∈ {∧,∨, U , R }.

For the base case, we consider φ = ℘�ψ a smallest principal sentence with ψ ∈ LTL. Therefore, dep(φ) = 1 and φ ∈
FSL[1g]. In this case, we set �φ = {φ} and �φ(φ) = p, for some p ∈ AP \ ap(φ). The two properties of Definition 3 hold 
trivially for (�φ, �φ).

For the inductive case, let φ = ℘�ψ with dep(φ) > 1. Let � contain the maximal principal subsentences of ψ , namely
those which are not strict subsentence of other principal subsentences of ψ . By induction hypothesis, for each sentence 
φ′ ∈� there exists a pair (�φ′ , �φ′) with the desired properties. We can also assume, w.l.o.g., that the images of the naming 
functions �φ′ be all disjunct. Indeed, one can easily enforce this by renaming the atomic propositions in the image of each 
�φ′ and replacing their occurrences within �φ′ with the fresh atomic propositions. This can clearly be done while still 
preserving all the properties of Definition 3.

Let φ̂ ∈ FSL[1g] be the result of substituting in φ each principal subsentence φ′ ∈� with its name �φ′ (φ′). At this point,
we set �φ = {φ̂} ∪⋃

φ′∈��φ′ and �φ = {(φ̂, p)} ∪⋃
φ′∈� �φ′ , with p an atomic proposition not contained in the image of any

1 Recall that a Boolean formula is positive if no negations occur.
5
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�φ′ . Since the sets �φ′ , for different φ′ , are all disjoint, the partial order of Item b can be taken as the union of the partial 
orders associated with each (�φ′ , �φ′), plus all the pairs 

{
(φ′, φ̂)

∣∣φ′ ∈�
}

, granting that φ̂ is greater than each φ′. It is now
a trivial exercise to show that the properties of Definition 3 are all satisfied for (�φ, �φ) as well.

To complete the proof, let � be now the set of maximal principal sentences occurring in ϕ and, for each φ ∈ �, let 
(�φ, �φ) be the pair satisfying the properties of Definition 3. Once again, we can assume that the images of the �φ are 
all disjoint. Let ζ be the Boolean formula obtained from ϕ by replacing each principal sentence in � with its name, � �⋃

φ∈��φ , and � �
⋃

φ∈� �φ . The resulting triple (ζ, �, �) trivially satisfies all the required properties. �
Satisfaction of a skeleton ð by a CGS G over the atomic propositions of ð is defined quite naturally. Specifically, the initial 

position of G must locally satisfy the Boolean formula ζ , and any sentence in �, whose “name” labels a given position v of 
G, must be satisfied at v.

Definition 4 (Skeleton satisfaction). A CGS G = 〈Ac,Ps, τ , vI , λ〉 satisfies an SL[1g] skeleton ð = 〈ζ,�,�〉, in symbols G |= ð,
if

1) λ(vI ) |= ζ and
2) G, v |= φ, for all φ ∈� and v ∈ Ps with �(φ) ∈ λ(v).

The following result establishes the equisatisfiability of SL[1g] skeletons and their corresponding SL[1g] sentences. This 
generalises the corresponding result used in the model-checking procedure for CTL* [51]. In order to prove the result, we 
shall first provide, in the same vein as in [28], a Skolem-like semantics for principal sentences, which will greatly simplify
the proof.

A Skolem map θ for a quantifier prefix ℘ is a function mapping any assignment for the universally quantified variables of ℘
to an assignment for all the variables in ℘ in such a way that:

• θ(χ)(x) = χ(x), for x a universal quantified variable in ℘;
• θ(χ1)(x) = θ(χ2)(x), for any two assignments χ1 and χ2 for the universal variables of ℘ such that χ1(y) = χ2(y), for

each universal y preceding x in the quantifier prefix ℘ .

Essentially, a Skolem map θ for ℘ establishes the response existential strategies to the universal ones in such a way that 
each existential strategy is chosen only depending on the universal strategies quantified before it in ℘ . For a binding prefix
℘� and a Skolem map θ for ℘ , let θ� be the extension of θ that, for every assignment χ and binding (a, x) in �, assigns to 
a the strategy θ(χ)(x), i.e., θ�(χ)(a) = θ(χ)(x). It was proven in [28, Theorem 4.5] that G, v |= ℘�ψ iff G, (v, θ�(χ)) |= ψ ,
for some Skolem map θ for ℘ and every assignment χ ∈ Asg(v, V), with V the set of universal variables of ℘ .

Theorem 1. ϕð is satisfiable iff ð is satisfied by a tree CGS, for every SL[1g] skeleton ð.

Proof. For the if direction, we first prove that G, v |= φð , for all φ ∈ � and v ∈ Ps with �(φ) ∈ λ(v), by induction on the 
depth of φ with respect to the order of ð. For the base case, assume the depth of φ w.r.t. ≺ be 0, namely φ is a pure LTL

formula. Then, φ = φð and the thesis follows directly by Condition 2 of Definition 4. For the inductive case, let the depth of 
φ = ℘�ψ w.r.t. ≺ be k. For every LTL (flat) formula η, within which only names of principal sentences of order strictly less 
than k occur, and every assignment χ ∈ Asg(v, Ag), it holds that if G, (v, χ) |= η then G, (v, χ) |= ηð . This implication can be 
proven by a standard structural induction, recalling that names of principal sentences can only appear with positive polarity
in η. Consider now a position v with �(φ) ∈ λ(v). By Condition 2 of Definition 4, we know that G, v |= φ. Hence, there 
exists a Skolem map θ for ℘ such that G, (v, θ�(χ)) |= ψ , for all assignments χ ∈ Asg(v, V), with V the set of universally
quantified variables of ℘ . Observe that ψ is a pure LTL formula where only names of principal subsentences of order less 
than k can occur. Hence, by the property shown above for LTL formulae, we can conclude G, (v, θ�(χ)) |= ψð , which gives 
us G, v |= ℘�ψð as desired.

To conclude the proof of the if direction, take the Boolean formula ζ of the skeleton ð. By assumption, it holds G, vI |= ζ .
Let � = {φ ∈� |�(φ) ∈ λ(vI )} be the set of principal sentences of � occurring in ζ . By the result just proven, we have that 
G, vI |= φð , for each φ ∈ �. By definition, ϕð is obtained from ζ by replacing each name �(φ), for φ ∈ �, with φð . The 
conclusion G, vI |= ϕð , then, immediately follows.

In order to prove the only-if direction, we first prove the following auxiliary property. Let G = 〈Ac,Ps, τ , vI , λ〉 be a 
CGS satisfying G, v |= φ iff G, v |= �(φ), for all v ∈ Ps and φ ∈ �. Then G, v |= φ iff G, v |= φð , for all v ∈ Ps and φ ∈ �.
We proceed by induction the depth of the strict partial order ≺ underlying ð. The base case where φ has depth 0, hence 
does not contain names of other principal sentences in �, is trivial, since we have φ = φð in this case. For the inductive 
case, let φ have depth k > 1 and � = {

φ′ ∣∣�(φ′) occurs in φ
}

. Clearly, each element φ′ ∈� has depth strictly smaller than φ
and, as a consequence, by inductive hypothesis we conclude that G, v |= φ′ iff G, v |= φ′

ð
, for all v ∈ Ps. In addition, by the 

assumption on G, we know that G, v |= φ′ iff G, v |= �(φ′), for all v ∈ Ps. It, then, follows that G, v |= φ′
ð

iff G, v |= �(φ′),
for all v ∈ Ps. Now, observe that φð = φ [δ], where δ�

{
�(φ′) �→ φ′ ∣∣φ′ ∈�

}
is the substitution replacing each name �(φ′) of 
ð

6
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a sentence φ′ in � with the equivalent (relative to G) fully expanded version φ′
ð

. By substitution of equivalents we obtain 
that G, v |= φ iff G, v |= φð , for all positions v ∈ Ps.

To conclude the proof of the only-if direction, assume now that G = 〈Ac,Ps, τ , vI , λ〉 is a satisfying CGS for ϕð . Let 
G′ = 〈

Ac,Ps, τ , vI , λ′〉 be the CGS obtained from G by setting λ′(v) = λ(v) ∪ {�(φ) |φ ∈� and G, v |= φ}. Clearly, G′ still 
satisfies ϕð and, by construction, also satisfies G, v |= φ iff G, v |= �(φ), for all v ∈ Ps and φ ∈ �. Observe that this last 
property implies Condition 2 of Definition 4. Now, by applying the above result, we obtain that G′, v |= φ iff G′, v |= φð , for
all φ ∈�. Let � = {

φ′ ∣∣�(φ′) occurs in ζ
}

and δ = {
φ′ �→ φ′

ð

∣∣φ′ ∈�
}

be a substitution mapping every sentence in � to an 
equivalent (relative to G′) maximal strict subsentence of ϕð . Since ϕð = ζ [δ], we immediately obtain that G′, vI |= ζ , hence 
also Condition 1 of Definition 4 holds and we get the thesis. �
3.2. Non-recurrent one-goal strategy logics

The main source of complexity for SL[1g], or CTL* and ATL* for that matter, resides in the ability to express properties 
that request satisfaction of a given sentence an unbounded number of times along a computation, as, e.g., in the CTL formula 
EG (¬p ∧ EXp) that states the existence of a path all of whose states falsify p but must have an adjacent state satisfying 
p that does not belong to that path. Clearly, any model that satisfies the formula must satisfy EXp an infinite number of 
times along the witness path. Given the branching nature of quantifications in SL, this may lead, very much like in the 
case of CTL*, to models with an unbounded number of branching points. In general, such models can be recognised by tree 
automata with a doubly exponential number of states [53,36]. Emptiness for tree automata is known to be PTime-hard [54],
which leads to the 2ExpTime-hardness for deciding SL[1g].

To avoid this issue, we restrict the number of times a given sentence can be requested, by preventing sentences in the 
left-hand (resp., right-hand) argument of the until (resp., release) operator. We call the resulting fragment non-recurrent, in 
that it forbids an unbounded number of requests of the same sentence along a computation.

Definition 5 (SL[1g] fragments). Formulas of non-recurrent fragments of SL[1g] are generated from the sets of literals Lit,
quantifier prefixes Qn, and binding prefixes Bn via the following grammar, with l ∈ Lit, ψ ∈ LTL(AP), β ∈ BF(AP), ℘ ∈ Qn,
and � ∈ Bn such that vr(℘)= vr(�):

SL

��
[1g]: ϕ := ⊥ | � | l | ϕ ∧ ϕ | ϕ ∨ ϕ | ℘�η | ℘�ψ;

η := ϕ | η ∧ η | η ∨ η |ψ Uϕ | ϕ Rψ | Xη | Xψ;
WSL

��
[1g]: ϕ := ⊥ | � | l | ϕ ∧ ϕ | ϕ ∨ ϕ | ℘�η;

η := ϕ | η ∧ η | η ∨ η | β Uϕ | ϕ Rβ | Xη.

FSL
��

[1g] ⊂ SL
��

[1g] and FWSL
��

[1g] ⊂ WSL
��

[1g] identify the corresponding flat fragments, i.e., the subsets generated by the 
variants of the grammars where l replaces ϕ within Rule η.

For each fragment, the rule ϕ takes care of the first-order (branching) structure of the language, while the rule η handles 
the temporal portion. The non-recurrence constraint is embedded in the cases for the until and release operators within the 
rule η, restricting the left-hand (resp., right-hand) argument of the until (resp., release) operators to be a pure LTL formula 
with no nesting of sentences. The weak fragment further restricts those arguments so that no temporal operators can occur
altogether, i.e., they can only accommodate Boolean formulae. No restriction is imposed on the next operator, while negation 
can only be applied to atomic propositions in AP.

In the rest of this work, we call Weak LTL (WLTL for short), the following extension of the fragment of LTL that agrees 
with Rule η of FWSL

��
[1g]:

Restrictions similar to those of WLTL have been provided in [40] and shown to be useful in the definition of temporal 
logics over data [41,42], analysis of pushdown systems [43], and in synthesis of hybrid systems [44].

The following example illustrates a possible application of the non-recurrent fragment in the context of exchange protocol 
design.

Example 2. Consider a fairness exchange protocol, where two agents seek to exchange a piece of information m∗ in a fair
fashion, i.e., in such a way that either both agents have the entire requested information or none of them has it at the end 
of the exchange. In the presence of unreliable or insecure channels, this can be achieved by means of a trusted third party
(TTP) that can be interrogated by one of the agents in case of unfair behaviour by the other party. Such a protocol can be 
modelled as a game played by the two agents, an implicit reactive agent TTP and an intruder agent modelling the unreliable 
channel. We require that in the resulting multi-agent system the TTP can ensure the fairness property, regardless of how
the insecure channel among the agents behaves.
7
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We want to synthesise an actual protocol that achieves the fairness requirement and comprises a bounded number of 
steps, let us say k, which is a standard assumption in communication protocols. The situation can be modelled as the con-
junction of the following WSL

��
[1g] formulae, where A, B, I, and T correspond to the two parties, the intruder, controlling 

the communication channel between them, and the TTP, respectively.
Let the atomic proposition kmα (resp., rmα ) stand for “α knows (resp., receives) message m” in the current step, and propo-

sition smαβ stand for “α sends message m to β”. Moreover, let � � (A, xA)(B, xB)(I, y), A = B and B = A. Then the following 
formulae encode the constraints on the agents’ behaviour, as well as the fairness requirement, in a single step of the proto-
col. Here, we abstract from possible encryption mechanisms. We also assume monotonicity of agents’ knowledge and of the 
sent/received messages, which can easily be encoded in LTL.

1. φα,magn �
∧

β∈{α,T}
(
kmα → ∃xα∀xα∀y �X smαβ

)
: if agent α currently knows message m, it can send it to β ∈ {α, T}, regardless 

of what the other agents do;
2. φα,mint+ �

(
kmI → ∃y∀xA∀xB �X rmα

)
: if the intruder knows message m, it has a way to forward it to agent α, regardless of 

the other agents;
3. φα,mint− �

(¬smTα → ∃y∀xA∀xB �X ¬rmα
)
: the intruder has a way to prevent agent α from receiving the message m, unless 

the TTP intervenes to send it to α;
4. φα,m

∗
f rn �(rm

∗
α → ∃xα∀xα∀y � Frm∗

α ): if agent α has already received the message m∗ , then agent α has a way to eventually
obtain the message, regardless of the other agents.

Let us set G 0(ϕ) �ϕ and G k+1(ϕ) �ϕ∧XG k(ϕ). The formula G k(ϕ) requires ϕ to hold in the next k steps of a computation 
at least. Moreover, let

AG k(ϕ)� ∀xA∀xB∀y �G k(ϕ)

be the formula requiring G k(ϕ) along all the paths induced by the possible choices of the agents starting from the current 
state onward. Then, by iterating the above constraints, the following WSL

��
[1g] formula encodes a k-step protocol with 

fairness constraint on m∗:

ϕk
prt � AG k

(∧
α∈{A,B}

(∧
m∈Msg(φ

α,m
agn ∧ φ

α,m
int+ ∧ φ

α,m
int−)∧ φ

α,m∗
f rn

))
. �

Obviously, we can obtain skeletons for the new fragments, by suitably restricting their components to the corresponding 
flat fragments. An SL

��
[1g] (resp., WSL

��
[1g]) skeleton ð = 〈ζ,�,�〉 is a principal SL[1g] skeleton such that � ⊆ FSL

��
[1g]

(resp., � ⊆ FWSL
��

[1g]). The analogous of Proposition 1 holds for the two new fragments SL
��

[1g] and WSL
��

[1g] as well.

Proposition 2. Each SL
��

[1g] (resp., WSL
��

[1g]) sentence ϕ enjoys an SL
��

[1g] (resp., WSL
��

[1g]) skeleton ð with ϕ = ϕð .

The constraint on the non-recurrence of sentences allows us to strengthen Theorem 1 and show that a sentence is 
satisfiable iff its skeleton can be satisfied by a model where each subsentence is requested at most once. This property is 
formalised by the definition of single-time satisfaction and the following theorem. The result is instrumental to the definition 
of normal models (see next section) and, ultimately, to the main complexity results.

Definition 6 (Single-time skeleton satisfaction). A CGS G = 〈Ac,Ps, τ , vI , λ〉 single-time satisfies a skeleton ð = 〈ζ,�,�〉 if

1. G |= ð and
2. �(φ) ∈ λ(v) implies �(φ) /∈ λ(w), for all φ ∈�, v ∈ Ps, and w ∈ τ+(v).

Theorem 2. ϕð is satisfiable iff ð is single-time satisfied by a tree CGS, for every SL
��

[1g] skeleton ð.

Proof. Assume ϕð is satisfiable. By Theorem 1, ð is satisfiable as well. Thus, let G be one of the tree CGSs satisfying ð.
The proof proceeds by induction on the depth k of the strict partial order ≺ underlying the skeleton ð. The idea is the 
following: starting from G, we perform a sequence Gk+1, Gk , Gk−1, . . ., G0 of structure-preserving model transformations,
where Gk+1 � G. The labelling of the models is modified in such a way that all sentences in � at level i in the ordering 
≺ are single-time satisfied in G j , for every j ≤ i. More specifically, sentences at level k only need to be verified at the root,
while those at level i < k need only be checked at the first occurrence of a witness of the until/release operator containing it.
Hence, the labelling of Gi is obtained from Gi+1, by removing, along each path, every occurrence of the name of a sentence 
at level i except for the one that serves as witness of the corresponding until/release operator. By construction, the name 
�(φ) of every sentence φ in � occurs only once along any path of G0. Hence, G0 single-time satisfies ð. �
8



M. Benerecetti, F. Mogavero and A. Peron Information and Computation 294 (2023) 105081
4. Normal models for SL
��

[1g]

The efficient solution of the satisfiability problem for the non-recurrent fragments relies on the fact that any of their
sentences is satisfiable by models of a specific structure, namely, by bounded-fork tree CGS. This can be proven by first 
extending SL with function symbols, which allows for bindings containing strategy terms. This will enable us to state a 
Skolem normal-form theorem for SL[1g]. We will leverage this result to show that any model for a sentence ϕ of SL

��
[1g] in 

Skolem form can be transformed into a bounded-fork tree satisfying ϕ , where forks only occur as a result of non-unifying 
strategy terms within the bindings of ϕ .

4.1. Functions in SL

Given a function signature F , with SL[1g,F ] we denote the extension of SL[1g] where we allow to bind agents with 
complex terms instead of just simple variables. This means that the set of bindings Bn in the syntax gets replaced by its 
extension Bn(F ) ⊆ (Ag×Tr)|Ag| . A binding prefix is, thus, a finite sequence � ∈ Bn(F ) of bindings (a, t), with t ∈ Tr, in which 
each agent a ∈ Ag occurs exactly once. ∀SL[1g,F ] represents the universal fragment of SL[1g,F ], where existential quantifiers 
are forbidden. For convenience, in the following we may use the notation ∀� ϕ as a shorthand for the ∀SL[1g,F ] sentence 
∀x1∀x2 . . .∀xk � ϕ , where {x1, x2, . . . , xk} is the set of variables occurring in the binding prefix �.

In order to define the semantics of an SL[1g,F ] sentence, we need to provide a strategy interpretation for all function 
symbols in Fn. This can be done by means of a map �: v ∈ Ps �→ Fv that assigns to each position v an F -structure 
Fv = 〈

Str(v), ·Fv
〉
, whose domain Str(v) is the set of strategies rooted at v. Given a pair (G, �) of a CGS G and a strat-

egy interpretation �, called interpreted CGS, we can define the satisfaction relation (G, �), (v, χ) |= ϕ as in Definition 2,
where, however, Item 6 is replaced by the following clause.

• For all a ∈ Ag and t ∈ Tr: (G, �), (v, χ) |= (a, t)φ, if (G, �), (v, χ ′) |= φ, where χ ′ � χ [a �→ t�(v),χ ].

Observe that in the new condition agent a ∈ Ag is bound to the strategy t�(v),χ , namely, the interpretation of the term t
under the v-rooted assignment χ ∈ Asg(v) in the F -structure �(v) = 〈

Str(v), ·�(v)〉 associated with v. Intuitively, we assign 
to each agent a a strategy dependent on the strategies associated with the variables occurring in the term t .

An SL[1g,F ] sentence ϕ is satisfied by a CGS G, in symbols G |= ϕ , if there exists a strategy interpretation � such that 
(G, �) |= ϕ , where the latter stands for (G, �), (vI , ∅) |= ϕ . In the rest of the work, with skm : SL[1g] → ∀SL[1g,F ] we 
denote the function mapping each SL[1g] sentence ϕ to the corresponding Skolem normal-form skm(ϕ), where each variable 
x existentially quantified in a subsentence φ of ϕ is replaced by a fresh function symbol applied to the variables universally
quantified in φ before x .

Example 3. Let ϕ be the SL[1g] sentence used in Example 1 to exemplify the notion of SL[1g] skeleton. We have that

skm(ϕ)= p ∧ ∀x∀z(a, x)(b,f1(x))(c, z)(X (q ∧ (XFq)U (skm(φ1)∧ skm(φ2))),

where

skm(φ1) = ∀y(a,f2)(b, y)(c, y)(p Uq) and
skm(φ2) = ∀x(a,f3(x))(b, x)(c, f3(x))(G¬q).

In ϕ , the existential variable y of the outermost sentence is replaced by the term f1(x), since the strategy chosen by
agent b only depends on the strategy used by agent a. A similar reasoning applies to the subsentence φ2. In φ1, instead, the 
existential variable x is replaced by the constant f2, as the strategy for agent a does not depend on those of b and c. �

In [28] (see Theorem 4.5 and Corollary 4.6), it has been proved that SL enjoys a semantic version of the Skolem normal-
form theorem, where the interpretation of Skolem functions given by a Skolem map (called Skolem dependence function in [28])
is given at the meta-level. Thanks to the introduction of function symbols in the syntax of the logic, this result can now be 
stated at the object-level in the classic way. Indeed, from the Skolem maps of the quantifier prefixes in an SL[1g] sentence 
ϕ , one can extract the strategy interpretation of all the function symbols in the ∀SL[1g,F ] sentence skm(ϕ) and, vice versa,
from the strategy interpretation satisfying skm(ϕ), one can reconstruct the Skolem maps for ϕ .

Theorem 3. Let G be a CGS. An SL[1g] sentence ϕ is satisfied by G iff the ∀SL[1g,F ] sentence skm(ϕ) is satisfied by G.

A fundamental property of SL[1g], which allows both its model-checking and satisfiability problems to be elementarily
decidable, is that every satisfiable sentence of this logic is behaviourally satisfiable (see Theorem 4.20 and Corollary 4.21
in [28]). Essentially, this means that each action chosen by an agent, for some history of a play, only depends on the actions 
chosen by the other agents along that history. In other words, an agent does not need to forecast the future to play optimally.
At this point, we can formalise this intuition and restate the result proven in [28] as follows.
9
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We say that two strategies σ1, σ2 ∈ Str(v) are equal at a history ρ ∈ Hst(v) (ρ-equal, for short), if σ1(ρ) = σ2(ρ). This 
notion immediately lifts to vectors of strategies �σ1, �σ2 ∈ Str(v)k , for some k ∈N , as usual: �σ1 and �σ2 are ρ-equal if all their
k components (�σ1)i and (�σ2)i are ρ-equal, with i ∈ [0,k).

A function over strategies f : Str(v)k → Str(v), for some arity k ∈N , is behavioural if, for every history ρ ∈ Hst and pair
of ρ-equal k-vectors of strategies �σ1, �σ2 ∈ Str(v)k , it holds that f (�σ1)(ρ) = f (�σ2)(ρ). Basically, when given as input two ρ-
equal tuples of strategies, a behavioural function f produces a strategy that always chooses the same value on the history
ρ . A strategy interpretation � w.r.t. a given CGS G is behavioural if the function f �(v) is behavioural, for every position 
v ∈ Ps and symbol f ∈ Fn. An SL[1g,F ] sentence ϕ is behaviourally satisfied by a CGS G if there exists a behavioural strategy
interpretation � such that (G, �) |= ϕ . The following result can be proven by exploiting Corollary 4.21 in [28] and observing 
that the interpretation function � semantically corresponds to the behavioural Skolem map used in the statement of the 
corollary.

Theorem 4. For any CGS G and SL[1g] sentence ϕ , the sentence skm(ϕ) is satisfied by G iff it is behaviourally satisfied by G.

Proof. Corollary 4.21 of [28] (see also Definitions 4.7, 4.10, and Lemma 4.8) states that an SL[1g] sentence ℘�ψ is satisfied 
at position v of a CGS G, i.e., G, v |= ℘�ψ , iff it is behaviourally satisfied at v in G, in the sense that there exists a 
behavioural Skolem map θ for ℘ , such that G, (v, θ(χ)) |= �ψ , for all assignments χ ∈ Asg(v, V), with V the set of universal 
variables of ℘ . We recall that a Skolem map is behavioural if θ(χ1)(x)(ρ) = θ(χ2)(x)(ρ), for any history ρ ∈ Hst(v) and two 
assignments χ1 and χ2 for the universal variables of ℘ such that χ1(y)(ρ) = χ2(y)(ρ), for each universal y preceding x in 
the quantifier prefix ℘ . The notion of behaviouralness just described practically coincide with the one introduced above for
strategy interpretations. Hence, it is immediate to see that, for every behavioural Skolem map θ , there exists a behavioural 
strategy interpretation � and, vice versa, for every behavioural strategy interpretation �, there exists a behavioural Skolem 
map θ , such that G, (v, θ(χ)) |= �ψ iff (G, �), (v, χ ′) |= �′ψ , for all χ ∈ Asg(v, V), where �′ is the binding of skm(℘�ψ).
Intuitively, for every existential variable x in ℘�ψ and corresponding function f in skm(℘�ψ), one can use θ evaluated 
at x to define the interpretation of f in � and, vice versa, one can use the interpretation of f in � to define the value of 
θ for x . Now, by Theorem 3, G, v |= ℘�ψ iff (G, �), v |= skm(℘�ψ), for some strategy interpretation �. At this point, by
combining this with the result of [28] and the observations above, we obtain that (G, �), v |= skm(℘�ψ), for some strategy
interpretation �, iff (G, �′), v |= skm(℘�ψ), for some behavioural strategy interpretation �′ , which concludes the proof. �

4.2. Unifying bindings & paths

In [37] it has been observed that the decidability of the satisfiability problem for SL[1g] can be attributed to the fact that 
bindings in that fragment indivisibly associate variables with agents. Here we further exploit that observation to define a 
normal form for SL

��
[1g] models, by applying the notions of Herbrand property and quasi-Herbrand structures devised in [39],

so that unifying bindings identify the same paths.
The notion of SL[1g] (resp., SL

��
[1g]) skeleton, as well as the corresponding concept of (resp., single-time) skeleton satis-

faction, immediately lifts to SL[1g,F ] (resp., SL
��

[1g,F ]) in the obvious way. A skeleton is universal if all formulas in � are 
universal, i.e., � ⊆ ∀SL[1g,F ]. Given an SL[1g] (resp., SL

��
[1g], WSL

��
[1g]) skeleton ð, we denote with skm(ð) the (universal)

∀SL[1g,F ] (resp., ∀SL
��

[1g,F ], ∀WSL
��

[1g,F ]) skeleton obtained by Skolemisation of all the sentences in �, where different 
sets of Skolem symbols are used for different sentences.

The following result is an easy corollary of what we have derived above.

Corollary 1. For every SL
��

[1g] skeleton ð, it holds that ϕð is satisfiable iff skm(ð) is single-time behaviourally satisfiable by a tree 
CGS.

Indeed, Theorem 2 ensures that, for every SL
��

[1g] skeleton ð, the sentence ϕð is satisfiable iff ð is single-time satisfiable 
by some tree CGS G. Now, by Theorem 3, G, v |= φ iff G, v |= skm(φ), for all φ ∈ � and v ∈ Ps with �(φ) ∈ λ(v). Finally,
Theorem 4 grants the behavioural satisfaction stated in the corollary.

Any binding prefix � = (a1, t1) · · · (ak, tk) ∈ Bn(F ) is a sequence of agent-term pairs, one for each agent. Hence, the 
standard notions of term replacement, interpretation, unification, and equalisation can be lifted to them in the obvious way.
Specifically, �μ � (a1, t

μ
1 ) · · · (ak, t

μ
k ) denotes the replacement of all the variables in every ti with the terms prescribed by

the substitution μ, while �F,χ denotes the interpretation of � in F under the assignment χ , i.e., the profile �F,χ ∈ Prf(v)
assigning to each agent ai the strategy tF,χi .

A set of binding prefixes B ⊆ Bn(F ) unifies if there is a substitution μ such that �μ1 = �
μ
2 , for all �1, �2 ∈ B, while B

equalises in F if there is an assignment χ such that �F,χ1 = �
F,χ
2 , for all �1, �2 ∈ B.

Example 4. Consider the three binding prefixes �1 � (a, x)(b, f1(x))(c, z), �2 � (a, f2)(b, y)(c, y), and �3 � (a, f3(x))(b,

x)(c, f3(x)), obtained by Skolemisation in Example 3. One can see that the two binding prefixes �1 and �2 unify to 
10
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(a, f2)(b, f1(f2))(c, f1(f2)), while neither �1 and �3 nor �2 and �3 unify. By a result in [39] (see Theorem 1) �1 and �2
also equalise in every structure F, while there exists a structure F� (quasi-Herbrand w.r.t. {�1, �2, �3}, see Theorem 2 of the 
same article) in which �3 does not equalise with either �1 or �2. �

Every finite set of binding prefixes B ⊂ Bn(F ) is associated with its maximally unifiable coverage muc(B) ⊆ 2B, i.e., the 
unique set of subsets of B such that

1)
⋃

muc(B) = B and
2) every C ∈muc(B) is maximally unifiable, i.e., C is unifiable, but C ∪ {�} is not unifiable, for all � ∈ B \ C.

Example 5. Consider the set of three binding prefixes B � {�4, �5, �6}, where �4 = (α, u)(β, v)(γ , u), �5 = (α, w)(β, f (w))(γ ,
x), and �6 = (α, y)(β, z)(γ , g(z)). Then, muc(B) contains all the subsets of B of size 2. Indeed, the first two binding prefixes 
unify in �45 � (α, u)(β, f (u))(γ , u), the first and the last unify in �46 � (α, g(v))(β, v)(γ , g(v)), and the last two binding 
prefixes unify in �56 � (α, w)(β, f (w))(γ , g(f (w))). In addition, the full set B is not unifiable, as w cannot unify with 
g(f (w)) and, therefore, �4 does not unify with �56 either. As another example, for the set of binding prefixes {�1, �2, �3} of 
Example 4, we have that muc({�1, �2, �3}) = {{�1, �2}, {�3}}. �
4.3. Normal models

A normal model of a universal skeleton ð is an interpreted tree CGS (G, �), where the number |τ (v)| of successors 
of each position v ∈ Ps is dictated solely by the set of binding prefixes � of some sentence φ∈�, whose induced play
π=play(��(w),χ , w), with χ ∈ Asg(w) and w an ancestor of v satisfying φ, passes through v. In other words, each position 
in a normal model has just enough successors to separate the sets of non-unifying binding prefixes, which may require 
different paths to satisfy the associated sentences.

The underlying idea is the following. Consider a model of a universal skeleton and a position v in the model labelled with 
propositions s1 and s2, which name the subsentences ∀�1ψ1 and ∀�2ψ2, respectively. This witnesses that both sentences 
must be satisfied at v. If binding prefixes �1 and �2 unify, hence equalise, then the corresponding LTL matrices2 ψ1 and ψ2
must necessarily be satisfied along a same path from v, as the two binding prefixes induce at least one common path. If,
however, �1 and �2 do not unify, then ψ1 and ψ2 can be satisfied independently along different paths, since the binding 
prefixes are allowed to have different interpretations.

Normal models capture this intuition by keeping track, for each position, of which binding prefix is paired with which 
path from that position. To keep track of this information, normal models are equipped with three functions:

(i) a global binding function g that associates with each position v the set of binding prefixes paired with all the paths 
through v;

(ii) a local binding function l, associating with each position v the set of binding prefixes of the sentences that label v, i.e.
the sentences that must be satisfied starting from v;

(iii) a routing map r that, based on (non)unification of the binding prefixes at v, dispatches them along possibly different 
paths from v. The notion is formally captured by the following definition.

Definition 7 (Normal model). An interpreted CGS (G, �) satisfying a ∀SL
��

[1g] skeleton ð is normal if

1. G is a tree and
2. there exist three maps l, g : Ps → 2Bn and r : v ∈ Ps �→ (τ (v) → 2Bn) enjoying the following properties, for all positions 

v ∈ Ps:

a) l(v) = {� ∈ Bn | ∀�ψ ∈� and �(∀�ψ) ∈ λ(v)};
b) r(v) is a bijective map from τ (v) to muc(g(v));
c) if v = ε then g(v) = l(v) else g(v) = l(v) ∪ r(τ−1(v))(v);
d) � ∈ r((π)i)((π)i+1), for all � ∈ l(v), χ ∈ Asg(v, vr(�)), and i ∈N , where π � play(��(v),χ , v).

We say that the CGS (G, �) normally satisfies ð. Moreover, we say that ð is normally satisfiable if there exists a CGS (G, �)
that normally satisfies it.

Let us consider the conditions 2a–2d one by one. For each position v, Item 2a ensures that the local binding function l
associates with v the set of binding prefixes of every universal sentence φ ∈� whose name �(φ) labels v (note that φ holds 
at v due to Item 2 of Definition 4). Items 2b and 2c are mutually connected. Item 2b asks that each successor position of 

2 Recall that the matrix of a quantified formula ϕ in prenex form is the maximal quantifier-free subformula of ϕ .
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Fig. 1. A normal model with Dc � {0,1,2}{a,b,c} and D � {(1,0,1), (2,1,2), (1,2,1)}.

v be uniquely associated with a maximally unifiable set of binding prefixes attached to v. This ensures that all maximally
unifiable binding prefixes are routed towards the same successor and different unifying sets are routed towards different 
successors. Item 2c, instead, requires that the global binding function g extends l with the binding prefixes of the sentences 
satisfied at some ancestor of v. Finally, Item 2d captures the requirement that normal models keep track at each position 
of the coupling between binding prefixes and paths from that position. Indeed, it requires that a path induced by a binding 
prefix � necessarily passes through one of the successors chosen for � by r and that, vice versa, a successor chosen for � is 
traversed by at least one path induced by �.

Example 6. Consider the CGS G depicted in Fig. 1 over the set of actions Ac = {0, 1, 2}, where the descendants of v3 (resp.,
v4) form a single path of positions with the same labelling of v3 (resp., v4) and the set Dc denotes all the possible triples of 
decisions.

The sentence ϕ of Example 1 admits the following Skolem skeleton:

ð = 〈p ∧ s1, {φ1, φ2, φ3}, {φ1 �→ s1, φ2 �→ s2, φ3 �→ s3}〉, where

Let us take a strategy interpretation � defined as follows:

(i) f
�(v0)
1 : Str(v0) → Str(v0) is the identity function, i.e., f �(v0)

1 (σ ) = σ ;

(ii) f
�(v2)
2 ∈ Str(v2) is the constant strategy such that f �(v2)

2 (ρ) = 0, for all histories ρ ∈ Hst(v2);

(iii) f
�(v2)
3 : Str(v2) → Str(v2) is the function mapping any strategy σ ∈ Str(v2) to some strategy f �(v2)

3 (σ ) that, when 
applied to the one-length history v2, satisfies the equality f �(v2)

3 (σ )(v2) = 1 + (σ (v2) mod 2).

It can be shown that the interpreted CGS (G, �) is a normal model for ð. Consider the following three maps l, g, and r:

(a) l(v0) = {�1}, l(v2) = {�2, �3}, and l(v) = ∅ for all the other positions v in the CGS G;
(b) g(v0) = g(v1) = {�1}, g(v2) = {�1, �2, �3}, g(v) = {�1, �2}, for all v ∈ τ ∗(v3), and g(v) = {�3}, for all v ∈ τ ∗(v4);
(c) r(v0)(v1) = r(v1)(v2) = {�1}, r(v2)(v3) = {�1, �2} = r(v)(v′), with v′ ∈ τ (v) and v ∈ τ ∗(v3), and r(v2)(v4) = {�3} = r(v)(v′),

with v′ ∈ τ (v) and v ∈ τ ∗(v4).

The function l clearly satisfies Item 2a. Indeed, only v0 and v2 are labelled with names of subsentences and the corre-
sponding binding prefixes are associated with them by the function l. Specifically, s1 = �(φ1) ∈ λ(v0) and l(v0) = {�1}, while 
{s2, s3} = {�(φ2), �(φ3)} ⊆ λ(v3) and l(v3) = {�2, �3}. Bijectivity of r on each position v is immediate, since r(v) assigns to 
each outgoing move exactly one of the sets of binding prefixes in muc(g(v)) as given in Example 4, hence Item 2b holds.
For each position v except v0, g(v) collects the binding prefixes in l(v) and those assigned by r to its incoming moves,
hence we have Item 2c. Finally, to check Item 2d, we only need to consider the plays out of v0 and v2, as these are the 
only positions to which l assigns some binding prefixes. First observe that, given the strategy interpretation �, the only play
from v0 induced by �1 is v0v1v2v3 · · · . Indeed, �1 = (a, x)(b, f1(x))(c, z) and f �(v0)

1 is the identity, hence the binding prefix
only allows for choices of the form (k, k, j) (with k, j ∈ {0, 1, 2}), where agents a and b always choose the same action. This 
forces the plays to turn left at position v2 towards v3. Since �1 is associated with all the moves in those plays, Item 2d holds 
at v0. Let us consider position v2 next, whose associated binding prefixes �2 and �3 do not unify as observed in Example 4.
Since f �(v2)

2 is the constant strategy that chooses 0 everywhere, the only admissible decisions compatible with �2 at v2 are 
of the form (0, k, k) (with k ∈ {0, 1, 2}). Therefore, the only compatible play from v2 takes (v2, v3) as the first move and �2
is routed along that move by r. As to �3, it is not hard to check that the compatible decisions at v2 are precisely the ones 
in the set D. Indeed, whatever value is assigned to x by an assignment χ , the response of f �(v2)(χ(x)) to the one-length 
3
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history v2 would be either 1 or 2. Hence, the play compatible with �3 takes (v2, v4) as first move and �3 is routed along 
that move by r. This shows that Item 2d holds at v2 as well.

Now it is immediate to verify that the model satisfies the skeleton according to Definition 4. The sentence φ1 is satisfied 
at v0 since the only play compatible with �1, namely v0v1v2v3 · · · , satisfies the matrix (X (q ∧ (XFq)U (s2 ∧ s3))). The 
sentence φ2 is satisfied at v2, as the play compatible with �2, namely v2v3 · · · , satisfies pUq . Finally, the sentence φ3
is satisfied at v2, since the play compatible with �3, namely v2v4 · · · , satisfies G¬q . Single-time satisfaction is ensured by
construction, since each name for a subsentence in the skeleton is present in the labelling of a single position, in accordance 
with Definition 6. �

The main result of the section is that the Skolem skeleton skm(ð) of any satisfiable SL
��

[1g] skeleton ð is satisfied by
a normal model. By Corollary 1, skm(ð) is single-time behaviourally satisfied by an interpreted tree CGS (G, �). The idea 
is to build the normal model starting from (G, �). First, it is easy to convince oneself that there exist three functions 
l, g : Ps → 2Bn and r : v ∈ Ps �→ (τ (v) → 2Bn) satisfying Items 2a, 2c, and 2d of Definition 7, since these items can actually
be interpreted as definitions. However, Item 2b may not hold, as r(v)(w) may not belong to muc(g(v)) or r(v) may not be 
a bijection from τ (v) to muc(g(v)). On the one hand, the move relation of G may force r(v) to route non-unifying binding 
prefixes along the same move. On the other hand, two unifying binding prefixes may be routed along two different moves.
In both cases the bijection requirement would fail to hold.

The idea is, then, to build a new tree model by suitably changing the move relation of G in such a way that r has exactly
the right number of moves to route unifying binding prefixes in a bijective manner. Thanks to the behaviouralness property
of �, this can be done position-wise, e.g., by following a breadth-first ordering of the nodes of the tree. Indeed, one can 
decompose stepwise the strategy interpretation �(v) = 〈

Str(v), ·�(v)〉 at each position v ∈ Ps into infinitely-many function 
interpretations Fvρ =

〈
Ac, ·Fv

ρ

〉
, called action interpretations, one for each possible history ρ ∈ Hst(v) starting at v. Each such 

action interpretation provides a first-order snapshot of the strategies in �(v) at a given history and its domain is the set of 
actions in their range. Specifically, for each function symbol f ∈ Fn of arity k ∈N , we can set

for all k-tuples of strategies �σ ∈ Str(v)k , where the i-th element (�c)i of �c ∈ Ack is equal to the action (�σ )i(ρ) chosen by
the i-th strategy (�σ )i of �σ at ρ . Basically, each action interpretation Fvρ encodes the responses that the strategies in �(v)
give against the history ρ . Then, the strategy interpretation �(v) can be viewed as a tree of action interpretations Fvρw ,
one for each descendant w of v, where ρw is the history starting in v and leading to w. Observe that for this stepwise 
decomposition to be faithful, behaviouralness of �(v) is crucial, since the action interpretation Fvρ only contains information 
on what the strategies dictate on ρ . A non-behavioural �(v), by contrast, may choose responses at history ρ that look at 
the choices that the strategies make in the future of ρ and this cannot be accounted for in the action interpretation Fvρ .

Thanks to the results in [39] reported below, given the set of binding prefixes of the skeleton, we can build a first-order
interpretation H = 〈

H, ·H〉
on which all sets of binding prefixes unify iff they equalise in H. Recall that a set Z of binding 

prefixes equalises in H if there exist two first-order assignments ξVr : Vr → H and ξAg : Ag → H such that, when each 
variable is assigned to the value prescribed by the assignment ξVr, the interpretations of all binding prefixes in Z coincide 
with ξAg, in symbols �H,ξVr = ξAg, for all � ∈ Z. The correspondence between unification and equalisation w.r.t. a set T of 
terms in a first-order structure is called quasi-Herbrand w.r.t. T in [39]. Observe that, when the domain H is interpreted 
as the set of actions of a CGS, the assignment ξAg is indeed a decision of that CGS, i.e., the binding prefixes in Z equalise 
on a decision. The first-order interpretation H allows us to obtain, for each position v, the maximally unifiable coverage 
muc(g(v)) of the set of binding prefixes at v. The new model is, then, defined so that it has precisely one move out of v for
each element of muc(g(v)) and along each such move only one maximal set of unifying binding prefixes in muc(g(v)) will 
be routed by r. Once this operation is performed iteratively on all the positions of the original tree, the required bijectivity
property will be enforced.

The objective of the above transformation is twofold. On the one hand, (i) it removes redundant branches in the model 
that satisfy goals whose binding prefixes equalise and, thus, can be satisfied by the unique branch that is preserved in the 
normal model. On the other hand, (ii) it separates binding prefixes that do not equalise and whose goals can be satisfied 
independently. Here, satisfaction is preserved by adding in the normal model a distinct copy of the original satisfying branch,
one for each separated (and non-equalising) binding prefix. As mentioned above, the result relies on an earlier result that,
for convenience, we reformulate here in the context of the present work.

Theorem 5 (Theorem 1 in [39]). For every set T ⊆ Tr of F -terms and every F -structure F, if T unifies then T equalises in F.

In our context, this ensures that for every unifiable set B ⊆ Bn of binding prefixes there exists a decision d ∈ Dc on which 
B equalises.

Theorem 6 (Theorem 2 in [39]). For every finite set T ⊆ Tr of terms over F , there exists a finite F -structure which is quasi-Herbrand 
w.r.t. T.
13
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The quasi-Herbrand property stated in the theorem, when applied to the set of terms occurring in a set B ⊆ Bn(F ) of 
binding prefixes, corresponds to the existence of an F -structure H such that every X ⊆ B equalises in H iff X unifies, which 
is precisely what we are looking for.

Theorem 7. For every SL
��

[1g] skeleton ð, it holds that ϕð is satisfiable iff skm(ð) is single-time normally satisfiable.

Proof. The ‘if’ direction of the theorem is trivial, so let us focus on the ‘only if’ one. Assume ϕð is satisfiable. By Corollary 1,
there is an interpreted tree CGS (G, �) that single-time behaviourally satisfies the universal skeleton skm(ð). As observed 
above, for every position v ∈ Ps and history ρ ∈ Hst(v), there is an action interpretation Fvρ corresponding to the first-order
snapshot of the strategy interpretation �(v) at ρ . Actually, thanks to the following claim, we can choose the interpreted 
tree CGS (G, �) in such a way that, for every position v ∈ Ps, there exists a unique action interpretation Fv equal to Fuρv ,
for all positions u ∈ Ps and histories ρv ∈ Hst(u).

Claim 1. For every SL
��

[1g] skeleton ð, it holds that ϕð is satisfiable iff there exist a tree CGS G and a function interpretation � enjoying 
the following:

1. the interpreted CGS (G, �) single-time behaviourally satisfies skm(ð);
2. for all function symbols f ∈ Fn of some arity k ∈ N , positions v, u ∈ Ps, histories ρv ∈ Hst(u), and k-vectors of strategies �σ ∈

Str(v)k and �σ ′ ∈ Str(u)k with (�σ)i(v) = (�σ ′)i(ρv), for all 0 ≤ i < k, it holds that f �(v)(�σ )(v) = f �(u)(�σ ′)(ρv).

The truth of this statement immediately follows from the fact that, due to the single-time satisfaction, once a universal 
sentence ∀�ψ ∈ � is satisfied at a position u, it will never be required to hold at any descendant v along a history ρv
rooted in u. Thus, we can replace the strategy interpretation at v of any function f used in the binding prefix � with the 
one given at u on the history ρv. Obviously, such a change does not interfere with the satisfaction of the universal sentence 
∀�ψ at u.

To prove the theorem, let v be the first position of G in a breadth-first order that does not satisfy Item 2b of Definition 7.
We now show how to modify G to correct this problem.

Let B � g(v) be the set of binding prefixes routed through v. By Theorem 6, there exists a first-order structure H over
some finite set H such that, for any subset Z ⊆ B, it holds that Z equalises in H iff it unifies.

Before proceeding, observe that, for every set X with |X|≥ |Ac|, where Ac is the set of actions of (G, �), there exists 
an interpreted tree CGS with X as the set of actions that still satisfies the two items of the above claim. Indeed, one can 
exploit an arbitrary surjective map f : X → Ac to construct such a model in the obvious way: every action c in X behaves as 
the action f (c) in Ac. Similarly, for every set X with |X| ≥ |H|, where H is the domain of H, there exists a quasi-Herbrand 
model for B with X as the domain. Therefore, w.l.o.g., we assume that the set of actions of (G, �) and the domain H of H
coincide.

Now, for each decision d ∈ Dc, let Ud ⊆ g(v) be the set of binding prefixes at position v that equalise on d in the 
quasi-Herbrand model H, i.e.,

Ud �
{
� ∈ g(v)

∣∣∃ξ : AcVr → Ac. �H,ξ = d
}
.

In addition, let U � {Ud |d ∈ Dc} and Γ : U →muc(g(v)) be a choice function associating each set Ud with a maximal 
unifying set Γ(Ud ) containing it, i.e., such that Ud ⊆ Γ(Ud).

At this point, we construct a new interpreted tree CGS (Ĝ, ̂�) over the same set of actions Ac of (G, �) that still single-
time behaviourally satisfies the universal skeleton skm(ð). We define the tree CGS Ĝ and the action interpretations F̂v , one 
for each position v in Ĝ.

• For all positions u ∈ Ps which is not a descendant of v, we have (a) u ∈ P̂s, (b) τ̂ (u, d) � τ (u, d), for all decisions d ∈ Dc,
(c) ̂λ(u) � λ(u), and (d) F̂u � Fu .

• Let {vU |U ∈muc(g(v))} be a fresh set of |muc(g(v))| positions that contains the successors of v in Ĝ, one for each 
maximally unifiable subset of binding prefixes in g(v). We then set (a) τ̂ (v, d) � vΓ(Ud ) , for all decisions d ∈ Dc, (b)
λ̂(v) � λ(v), and (c) F̂v �H.

• Every successor vU of v in Ĝ (recall that U ∈ muc(g(v))) is the root of a subtree which is an isomorphic copy, in both 
the structure and the labelling, of the subtree in the original CGS G rooted in any position vd = τ (v, d) such that Ud = U.
Observe that such a decision d must exist thanks to Theorem 5. Let ι be a tree isomorphism mapping the subtree of Ĝ
rooted in vU to the subtree of G rooted in vd . For all u descendants of vU in Ĝ, we then set (a) τ̂ (u, d) � τ (ι(u), d), for
all decisions d ∈ Dc, (b) ̂λ(u) � λ(ι(u)), and (c) F̂u � Fι(u) .

The new behavioural strategy interpretation �̂ can immediately be obtained by recomposing the first-order snapshots given 
by the action interpretations {̂Fv}v∈P̂s, via the correspondence between the two functional structures, already outlined before 
Theorem 5. Formally, for each position u ∈ P̂s and function symbol f ∈ Fn of arity k ∈N , we can set
14
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f �̂(u)(�σ)(ρv)� f F̂v (�c),
for all k-tuples of strategies , histories ρv ∈ Hst(u), and tuples of actions whose i-th element is 
equal to the action chosen by the i-th strategy at ρv. 

Now, let ̂l, ̂g : P̂s → 2Bn and ̂r : v ∈ P̂s �→ (τ (v) → 2Bn) be the three functions for (Ĝ, ̂�) satisfying Items 2a, 2c, and 2d of 
Definition 7. By construction, we have that ̂r(ε)(vU) = U ∈ muc(g(ε)), which means that ̂r(ε) is bijective. Thus, Item 2b is 
satisfied at position v, as a result of the patching applied to it.

By applying the above transformation to all other positions in a breadth-first manner, we obtain the required model 
for the skeleton skm(ð). Indeed, assume by contradiction that the interpreted tree CGS (G∗, �∗) obtained at the limit does 
satisfy the invariant (which is preserved by every individual correction step), i.e., that it does not single-time behaviourally
satisfies the universal skeleton skm(ð). Obviously, the function interpretation �∗ is behavioural by construction, since it is 
built by recomposing the local first-order snapshots. Thus, the only possibility for violating the invariant is the existence of 
a position v in G∗ labelled with some atomic proposition �(℘�ψ), with ℘�ψ ∈�, such that (G∗, �∗), v �|= skm(℘�ψ). This 
means that there exists an assignment χ ∈ Asg(v, vr

(
�′

)
), such that (G∗, �∗), (v, �′ �(v),χ ) �|= ψ , where �′ is the binding of 

skm(℘�ψ). Since ψ is an LTL formula, its satisfaction only depends on the labelling of the play play(��(v),χ , v) induced by
χ . However, by the correction procedure described above, such a labelling coincides with the one of some play π starting 
from v in the original model G and that is induced by some assignment of the universal variables in �′ . As a consequence,
π would not satisfy ψ either, contradicting the fact that (G, �) was a model of the universal skeleton to begin with.�

The main result of this section states that every satisfiable SL
��

[1g] sentence has a bounded-fork model. This can be 
easily derived from the previous theorem by observing the following:

(1) due to the single-time satisfaction property, along any path of the model, there are at most |�| sentences of the form 
skm(℘�ψ) that need to be satisfied, since every atomic proposition �(℘�ψ) occurs at most once;

(2) thanks to the normality property, a fork at any given position v of a path is only caused by non-unifying binding 
prefixes, which occur if new sentences in � need to be satisfied at v, as the binding prefixes routed toward v from the 
ancestors necessarily unify.

Corollary 2. For every SL
��

[1g] skeleton ð, it holds that ϕð is satisfiable iff skm(ð) is single-time normally satisfied by a k-fork CGS,
for k �max{0, |�| − 1}.

Proof. Let us consider the case where |�|> 0, so, k = |�|−1, the other case being trivial. Suppose that ϕð is satisfiable and 
let G be the CGS single-time normally satisfying the universal skeleton skm(ð), whose existence is ensured by Theorem 7.
We necessarily have that G is a k-bounded-fork tree. Indeed, suppose by contradiction that this does not hold. Then, there 
exists a path π ∈ Pth(vI ) and k +1 indices i1 < . . . < ik+1 such that 

∣∣τ ((π)i j )
∣∣> 1, for all j ∈ [1,k + 1]. Since G is normal, by

Item 2b of Definition 7, it holds that 
∣∣muc(g((π)i j ))

∣∣> 1. Therefore, by Item 2c, for all j ∈ [2,k + 1], there exists a binding 
prefix � j ∈ l((π)i j ) not belonging to r((π)i j−1)((π)i j ), since all binding prefixes in this last set unify. This implies that there 
exists a sentence φ j ∈ � such that �(φ j) ∈ λ((π)i j ), for every index j ∈ [2,k + 1], due to Item 2a. For the same reasons,
there must exist a sentence φ1 ∈� such that �(φ1) ∈ λ((π)i1 ) and a different sentence φ0 ∈� whose binding prefix belongs 
to g((π)i1 ). This means that �(φ0) ∈ λ((π)i0 ), for some i0 ≤ i1. Since |�| = k + 1, there exist two indices 0 ≤ j1 < j2 ≤ k + 1
such that φ j1 = φ j2 , but this contradicts the fact that G single-time satisfies skm(ð), since no labelling of a sentence in �
can appear twice along a path of G. �
5. New classes of automata

We have shown in the previous section that every satisfiable sentence ϕ of the non-recurrent fragments of SL[1g] is 
satisfiable by a normal model, which, in turn, only contains along each path a number of forks bounded by the number
of subsentences of ϕ , hence, also by its size. We shall exploit this strong property in Section 6 to efficiently solve the 
satisfiability problem for such fragments, by reducing it to the emptiness problem of a new class of tree automata, called 
bounded-fork tree automata, that accept k-fork tree CGSs. For the reduction, we shall also leverage a novel kind of good-for-
games word automata, called prefix-deterministic word automata, that can easily be embedded into tree automata to allow
for checking linear properties along all the branches of the input tree.

5.1. Bounded-fork tree automata

Bounded-fork automata are a restriction of the standard tree automata tailored to accept only trees having a bounded 
number of forks along each path starting from the root, which enjoys a computationally simpler emptiness problem. If at 
most k forks in a path are allowed, we can endow the automaton with the ability to count the number of occurring forks 
along the paths by partitioning the set of states Q into k + 1 subsets Q0, . . . , Qk . Intuitively, a state q ∈ Qi can observe at 
15
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Algorithm 1: k-NBT non-emptiness check.

function nonemp(A)

let 〈_, _, _, _, qI , _〉 = A in
1 return nonemp(A, qI , 0)

function nonemp(A, q, c)
let

〈
�,
,

⋃k
j=0 Q j , δ, _,QF

〉
= A in

1 if q ∈ Q0 then
2 return irch(GA, QF , q)

else

3 if c <
∣∣∣⋃k

j=1 Q j

∣∣∣ then

4 foreach σ ∈�, d ∈
 do
5 foreach �q ∈ δ(q, σ , d) do
6 α ← �
7 foreach i ∈ [1, d] do
8 if ¬nonemp(A, (�q)i , c + 1) then
9 α ← ⊥

10 break

11 if α then
12 return �

13 return ⊥

Algorithm 2: Infinite reachability check.

function irch(G, W, v)
1 foreach w ∈ W do
2 if rch(G, v, w) then
3 foreach u ∈ EG(w) do
4 if rch(G, u, w) then
5 return �

6 return ⊥

most i additional forks along each path of the input subtree. Naturally, the initial states belong to Qk and only states in Q0,
from where no more forks are admitted, may be involved in the Büchi acceptance condition.

Definition 8 (Bounded-fork automaton). An NTA A � 〈�,
,Q, δ, qI ,QF〉 is k-forking (k-NTA , for short), for some given k ∈N ,
if the following holds true:

1) 1 ∈
, i.e., 1 is an admissible node degree;
2) there exists an ordered (k + 1)-partition (Q0, . . . , Qk) of Q for which it holds that:

a) δ(q, σ , 1) ⊆ ⋃i
j=0 Q j and δ(q, σ , d) ⊆ (

⋃i−1
j=0 Q j)

d , for all indices i ∈ [0,k], states q ∈ Qi , input symbols σ ∈ �, and 
node degrees d ∈
 \ {1};

b) qI ∈ Qk;
c) QF ⊆ Q0.

The motivation for using k-NTAs, instead of standard NTAs, is clearly expressed by Theorem 8, which establishes a 
logarithmic space complexity of the emptiness problem w.r.t. the size of the k-NTA . This contrasts with the PTime hardness 
bound on the same problem for classic NTA shown in [54]. To prove the result, we devise a (deterministic) recursive 
reachability algorithm, whose pseudo-code is reported in Algorithm 1, that looks for a reachable cycle which includes an 
accepting state and is completely contained within the partition Q0 of the k-NTA . The gain in complexity is due to the fact 
that the algorithm only needs the space required for backtracking along a path to previous fork states, whose number is 
bounded by k. The emptiness problem can also be solved by reduction to alternating Turing machines [16,17], as well as to 
Büchi games [55], where the number of turns assigned to the universal player is limited by the value k [56].

Theorem 8. The emptiness problem for a k-NTA with n states and a transition function of size m can be solved in DSpace(�
(
k · logn +

(log n)2 + logm
)
) and ATime[k-alt](� (log n + log m)), in both case in an on-the-fly fashion. 
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Proof. We first show that the emptiness problem of a k-NTA A � 〈�,
,Q, δ, qI , QF〉 can be solved in ATime[k-
alt](� (log n + log m)), i.e., by means of an alternating Turing machine M with at most k universal steps and tape space 
only logarithmic in the size of the automaton. Beside a binary counter maintained on the tape, which is used to identify
the existence of an accepting cycle, the state space of the machine coincides with the set of states S∃ � Q of the automaton 
plus the subset S∀ �

⋃
q∈Q

⋃
σ∈�

⋃
d∈
\{1} δ(q, σ , d) of the tuples contained in its transition function: the single states in 

S∃ are controlled by the existential player underlying the alternating semantics of the machine, while the tuples of states 
in S∀ ⊆ ⋃

d∈
\{1} Qd are controlled by the universal one. When in an existential state q ∈ S∃ , the machine M nondeter-
ministically chooses an element from 

⋃
σ∈�

⋃
d∈
 δ(q, σ , d). Conversely, when in a universal state �q ∈ S∀ , M universally

chooses a direction i ∈ [0, |�q|) of the tree and, so, the corresponding i-th coordinate element (�q)i ∈ Q in �q . Obviously, M
cannot make more than k universal choices in a single execution run, thanks to the k-partitioning of the state space of the 
original automaton A. Observe that the Turing Machine need not have access to the entire automaton A at once, since the 
definition of transition function for a given (machine) state only requires knowledge of the transitions for the corresponding 
state of the automaton. Thus, the emptiness check can be solved in an on-the-fly fashion.

Let us now focus on a deterministic algorithm to solve the emptiness problem, which provides us with a procedure with 
the claimed DSpace(�(k · logn + (log n)2 + log m)) complexity. The pseudo-code of the algorithm is given in Algorithm 1 and 
relies on the subroutine irch(G, W, v), reported in Algorithm 2, that solves the infinite-reachability problem of the vertices 
in W starting from a given initial vertex v in the graph G . This is done by means of repeated applications of the classic 
deterministic reachability test implemented by the function rch(G, v, w). Intuitively, the main function nonemp(A) calls 
the recursive function nonemp(A, q, c) to look for a finite run, i.e., a sequence of states ϑ = q0, q1, . . . , qh , that, starting 
from the initial one q0 = qI , leads to a state qh ∈ Q0 in the last partition of the state space of A and contains the set 
of Büchi accepting states QF . From that state, then, irch(GA, QF , q) looks for some accepting infinite extension ϑ ′ of ϑ ,
where GA is the graph underlying the automaton. Since this acceptance condition is memoryless, we do not need to search 
for non-simple accepting runs. This means that it suffices to look for runs whose prefix contained in Q \ Q0 does not 
exceed the number of states in that set. It is well-known that the reachability problem can be deterministically solved 
in DSpace(� 

(
(log n)2

)
) [57]. As a consequence, the deterministic irch algorithm also requires � 

(
(log n)2

)
space. The rest 

of the procedure only needs � (k · log n + log m) additional space in order to maintain the global counter c, the tuple of 
states �q , and the k states for which a tuple longer than 1 has been selected from the transition function. Finally, observe 
that Algorithm 1 can decide the emptiness of the input automaton A on-the-fly, since it only needs to have access to the 
portion of the transition function for the current state. �
5.2. Good-for-games automata

One way to solve the satisfiability problem for branching-time logics is to embed a word automaton W , taking care of 
the linear constraints on the paths, within a tree automaton that, at each step, dispatches copies of W , updated according to 
the symbol just read, along all the possible branching directions [58,59]. This approach works pretty nicely for deterministic 
word automata, but not for general nondeterministic ones. The reason is that in order to determine the correct nondeter-
ministic choice at a given time instant one may need to know what choices will be made at future time instants. However,
the correctness of the approach can still be recovered if the requirement on determinism is relaxed slightly, allowing for a 
“controlled” form of nondeterminism. This leads to the notion of nondeterministic good-for-games automata [60].

To formally define this concept, we first need to introduce some notation. For an a priori fixed set of node degrees 

 ⊆ N+ , the word-on-tree function wot
 : NWA → NTA maps an NWA W = 〈�,Q, δ, qI ,QF〉 to the NTA wot
(W) �〈
�,
,Q, δ̂, qI ,QF

〉
, whose tree transition function δ̂ is derived from the word transition function δ as follows: δ̂(q, σ , d) �∏d

i=1 δ(q, σ), for all states q ∈ Q, input symbols σ ∈�, and node degree d ∈
. We recall that a �-labelled 
-tree is a tree,
with node degrees (i.e., number of directions/successors of each node) in 
, equipped with a labelling function from nodes 
to �. Moreover, Trc(T ) denotes the set of all �-traces of T , namely the sequences of labels of paths in the tree.

Definition 9 (Good-for-games automaton). Let T be a class of �-labelled 
-trees. An NWA W = 〈�,Q, δ, qI ,QF〉 is a good-
for-games automaton w.r.t. T (T-GFG, for short) if Trc(T ) ⊆ L(W) implies T ∈ L(wot
(W)), for all trees T ∈ T.

Intuitively, good-for-games automata only use knowledge of the (non-strict) past to determine the next steps among the 
available nondeterministic choices and no information on the future. This relates to the notion of strategy in the context of 
games, where the choice of the actions is purely based on histories (i.e., finite traces). In particular, note that the converse 
direction, T ∈ L(wot
(W)) implies Trc(T ) ⊆ L(W) always holds true.

In the following we introduce a class of word automata that are GFG for k-bounded trees and will allow us to define a 
satisfiability algorithm for SL

��
[1g].

5.3. Prefix-deterministic word automata

Prefix-deterministic word automata are NWAs which behave deterministically on arbitrary prefixes of their runs and then 
act freely, i.e., nondeterministically, afterwards. The aim is to use such automata to encode the checks for compliance of all 
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the paths of a tree w.r.t. an LTL property in a very controlled way. Indeed, we shall take advantage of the prefix-determinism 
to constrain the nondeterministic choices within the tree automaton to occur only after an initial prefix of a path when all 
the forks allowed by the input k-fork tree have already occurred. Recall from the definition in Section 2 that an NWA

exploits two implicit distinguished rejecting and accepting states ⊥ and �, respectively. 

Definition 10 (Prefix-deterministic automaton). An NWA W = 〈�,Q, δ, qI ,QF〉 is prefix-deterministic (PD-NWA, for short) if 
there is a deterministic transition function δ̃ : Q ×� → Q ∪ {⊥, �} with δ̃(q, σ) ∈ δ(q, σ) ∪ {⊥, �}, for all states q ∈ Q and 
input symbols σ ∈ �, such that the following two properties are equivalent, for all finite words v ∈�∗ and infinite words 
w ∈�ω:

1) v ·w ∈ L(W);
2) one of the following holds:

(i) qv = �;
(ii) qv �= ⊥ and w ∈ L(Wv), with Wv � 〈�,Q, δ, qv,QF〉,

where qv � δ̃∗(qI , v) is the unique state reached following ̃δ from qI by reading the finite word v.

For every NWA W , we can easily construct a language-equivalent PD-NWA, by using a standard subset construction 
for the determinisation of the initial behaviours of W and, then, suitably concatenating it to the original automaton W to 
complete the behaviours on the infinite runs.

Theorem 9. For every NWA W with n states, there exists a PD-NWA D with n + 2n states such that L(D) = L(W).

Proof. Given an NWA W � 〈�,Q, δ, qI ,QF〉, let us consider the NWA D �
〈
�,Q ∪ 2Q, δ̂, {qI },QF

〉
obtained from W by ex-

tending it with its subset construction as follows:

δ̂(q,σ )� δ(q,σ ), for all q ∈ Q;
δ̂(S,σ )� S′ ∪ {S′}, where S′ �

⋃
q∈S δ(q,σ ), for all S ⊆ Q.

Obviously, D accepts exactly the same infinite words accepted by W . Indeed, every accepting run qI , q1, . . . of W can 
be turned immediately into the accepting run {qI }, q1, . . . of D. Vice versa, notice first that every accepting run of D has 
necessarily the form {qI }, S1, . . . , Sk, qk+1, qk+2, . . ., with Si ⊆ Q and qi ∈ Q, for some k ∈ N , since only the states in QF are 
accepting. Now, due to the definition of the transition function ̂δ, there must exist a sequence of states qI , q1 ∈ S1, . . . , qk ∈
Sk such that qI , q1, . . . , qk, qk+1, qk+2, . . . is a run of W , which is necessarily accepting, since it shares with the original run 
the same set of states occurring infinitely often.

It only remains to show that D is a PD-NWA. We take the following function ̃δ : (Q ∪ 2Q) ×� → (Q ∪ 2Q) ∪ {⊥, �}:

δ̃(q,σ )� ⊥, for all q ∈ Q;
δ̃(S,σ )� S′, where S′ �

⋃
q∈S δ(q,σ ), for all S ⊆ Q,

as the required deterministic transition function. Consider an arbitrary infinite word v ·w ∈ L(D) and let {qI }, S1, . . . , Sk, qk+1,

qk+2, . . . be one of its accepting runs. Thanks to the way the transition function δ̂ is defined, we can always choose w.l.o.g.
the run in such a way that k = |v|. It is easy to see that the sequence {qI }, S1, . . . , Sk complies with the deterministic 
transition function δ̃, i.e., Sk � δ̃∗({qI }, v) �= ⊥. Moreover, Sk, qk+1, qk+2, . . . is an accepting run of Dv �

〈
�,Q ∪ 2Q, δ̂,Sk,QF

〉
on w. Hence, w ∈ L(Dv), as required by definition of PD-NWA.

Vice versa, let v ∈ �∗ and w ∈ �ω be two words such that qv � δ̃∗({qI }, v) �= ⊥ and w ∈ L(Dv) with Dv �〈
�,Q ∪ 2Q, δ̂, qv,QF

〉
. Obviously, there exist a finite run {qI }, S1, . . . , Sk of D on v, with Sk = qv and k = |v|, and an infi-

nite accepting run qv, qk+1, qk+2, . . . of Dv on w. Hence, {qI }, S1, . . . , Sk, qk+1, qk+2, . . . is an infinite accepting run of D on 
v ·w, which implies v ·w ∈ L(D), again as required by definition of PD-NWA. �

The standard automata construction for LTL in [61] can easily be lifted to PD-NWA, as stated by Theorem 10. Note that,
when the WLTL fragment of LTL is considered, the automaton construction needs to deal with a number of states that is 
only singly-exponential w.r.t. the size of the input formula.

Theorem 10. For every LTL (resp., WLTL) formula ψ , there is a PD-NWA Dψ with 2O
(
2|ψ |)

(resp., O 
(

2|ψ |3
)

) states such that L(Dψ) =
L(ψ).
18
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Proof. The proof for LTL formulae immediately follows by applying Theorem 9 to the NWA obtained by means of the 
Vardi-Wolper construction in [61]. As far as WLTL is concerned, we construct, instead, an ad hoc PD-NWA that extends the 
Vardi-Wolper automaton with a deterministic transition function unravelling the one-step unfolding of the input formula.

Before proceeding, we need to introduce some notation. With ∧̊ and ∨̊ we denote the binary Boolean functions that 
simplify the arguments of the corresponding Boolean connectives whenever possible. Formally:

ψ1∨̊ψ2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�, if ψ1=� or ψ2=�;
ψ1, if ψ2=⊥;
ψ2, if ψ1=⊥;
ψ1∨ψ2, otherwise;

ψ1∧̊ψ2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⊥, if ψ1 =⊥ or ψ2 =⊥;
ψ1, if ψ2 =�;
ψ2, if ψ1 =�;
ψ1∧ψ2, otherwise.

By denoting with LTL
+ the set of LTL formulae in positive normal form, the function γ : LTL

+ × 2AP → LTL
+ defined 

below computes, by means of the standard one-step unfolding of the temporal operators U and R , the one-step evaluation
of the LTL

+ formula given in input w.r.t. some set σ ∈ 2AP of atomic propositions. The idea here is that σ encodes a 
possible assignment for the atomic propositions and γ partially evaluates the temporal formula with respect to that local 
assignment.

• γ (�, σ) � � and γ (⊥, σ) � ⊥;
• γ (p, σ) � �, γ (¬p, σ) � ⊥, if p ∈ σ ;
• γ (ψ1 ∧ψ2, σ) � γ (ψ1, σ) ∧̊γ (ψ2, σ);
• γ (Xψ, σ) �ψ ;

• γ (p, σ) � ⊥, γ (¬p, σ) � �, if p /∈ σ ;
• γ (ψ1 ∨ψ2, σ) � γ (ψ1, σ) ∨̊γ (ψ2, σ);
• γ (ψ1 Uψ2, σ) � γ (ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2)), σ);
• γ (ψ1 Rψ2, σ) � γ (ψ2 ∧ (ψ1 ∨ X (ψ1 Rψ2)), σ).

The one-step evaluation can be lifted to arbitrary finite sequences of sets of atomic propositions (i.e., finite-length tempo-
ral assignments) in the obvious way to obtain the partial evaluation function γ ∗ : LTL

+ × (2AP)∗ → LTL
+ defined as follows:

• γ ∗(ψ, ε) �ψ ; • γ ∗(ψ, ς · �σ) � γ ∗(γ (ψ, ς), �σ ).

The X -depth of an LTL formula is given by the function depX : LTL
+ →N:

• depX (⊥)= depX (�)= depX (p)= depX (¬p)� 0;
• depX (ψ1�ψ2)�max{depX (ψ1) , depX (ψ2)}, where � ∈ {∧, ∨, U , R };
• depX (Xψ)� 1 + depX (ψ).

We shall denote with �≤k (resp., �>k), for an integer k ∈N , the set of finite words over � of length less than or equal 
to (resp., greater than) k.

The function isub : LTL
+ → 2LTL

+
allows us to determine for a LTL formula ψ given in input the induced subformulae of 

ψ that can be obtained by partial evaluation w.r.t. all the possible temporal assignments of length bounded by the X -depth 
of the formula ψ :

• isub(⊥) � {⊥} and isub(�) � {�};
• isub(p) � {⊥, �, p} and isub(¬p) � {⊥, �, ¬p};
• isub(ψ1�ψ2) � {ψ1�ψ2} ∪

{
θ1�̊ θ2

∣∣ θ1 ∈ isub(ψ1)∧ θ2 ∈ isub(ψ2)
}

, with � ∈ {∧, ∨};
• isub(Xψ) � {Xψ} ∪ isub(ψ);
• isub(ψ1�ψ2) �

{
γ ∗(ψ1�ψ2, �σ) ∣∣ �σ ∈ (2ap(ψ1�ψ2))≤1+depX(ψ1�ψ2)

}
, with �∈{U, R }.

At this point, given a WLTL formula ψ , let "ψ �
{
γ ∗(ψ, �σ ) ∣∣ �σ ∈ (2ap(ψ))∗

}
be the set of all its possible partial evaluations 

of ψ . Then, the following claim can be shown by analysing the definition of the partial evaluation function and the set of 
induced subformulae. 

Claim 2. For all WLTL formulae ψ1 , ψ2 , and ψ , it holds that:

(a) γ ∗(ψ, �σ ) ∈ {⊥, �}, for all �σ ∈ (2ap(ψ))+ , whenever ψ ∈ {⊥, �} ∪ Lit;
(b) γ ∗(ψ, �σ) = γ ∗(ψ1, �σ) �̊γ ∗(ψ2, �σ), for all �σ ∈ (2ap(ψ))+ , whenever ψ =ψ1�ψ2 with � ∈ {∧, ∨};
(c) γ ∗(ψ1 Uψ2, �σ) = γ ∗(ψ2, �σ)∨̊(γ ∗(ψ1, �σ)∧̊γ ∗(X (ψ1 Uψ2), �σ )), for all �σ ∈ (2ap(ψ))+;
(d) γ ∗(ψ1 Rψ2, �σ) = γ ∗(ψ2, �σ)∧̊(γ ∗(ψ1, �σ)∨̊γ ∗(X (ψ1 Rψ2), �σ)), for all �σ ∈ (2ap(ψ))+;
(e) γ ∗(ψ, �σ) ∈ {⊥, �}, for all �σ ∈ (2ap(ψ))>depX(ψ) , whenever ψ is U/R -free;
(f) γ ∗(ψ, �σ · �σ ′) ∈ {⊥, �, γ ∗(ψ, �σ ′)}, for all �σ ∈ (2ap(ψ))+ and �σ ′ ∈ (2ap(ψ))depX(ψ) , whenever ψ = ψ1�ψ2 with �∈{U, R },

where both ψ1 and ψ2 are U/R -free;
(g) γ ∗(ψ, �σ) ∈ isub(ψ), for all �σ ∈ (2ap(ψ))∗ , i.e., "ψ ⊆ isub(ψ);

(h) |isub(ψ)| = O 
(

2|ψ |3
)

.
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Proof. Each property in the statement can be proved by means of an inductive proof on the length of the finite word 
�σ ∈ (2ap(ψ))+ , on the structure of the WLTL formula ψ , or on a suitable combination thereof.

• [Property (a)] The statement can be derived by a trivial induction on �σ .
• [Property (b)] The base case σ ∈ 2ap(ψ) is an immediate consequence of the definition of the one-step evaluation and 

partial evaluation functions, since γ ∗(ψ, σ) = γ ∗(γ (ψ, σ), ε) = γ (ψ, σ). The inductive case is derived from the following 
equalities, where the inductive hypothesis is applied in the third derivation step, with �σ = ς · �σ ′:

• [Properties (c) and (d)] The statements can be derived by a trivial induction on the length of �σ , where the inductive case 
exploits Property (b).

• [Property (e)] The base cases ψ ∈ {⊥, �} ∪ Lit and the inductive cases ψ = ψ1�ψ2 with � ∈ {∧, ∨} follow from Prop-
erties (a) and (b), respectively. Thus, in the following equalities we only consider the case ψ = Xψ ′ with �σ = ς · �σ ′ ∈
(2ap(ψ))>depX(ψ) = (2ap(ψ))>1+depX

(
ψ ′)

, where the inductive hypothesis is used in the third derivation step:

• [Property (f)] We show the property only for the until operator, the case of the release operator being virtually
identical. By Property (c), we have that γ ∗(ψ1 Uψ2, �σ · �σ ′) = γ ∗(ψ2, �σ · �σ ′)∨̊(γ ∗(ψ1, �σ · �σ ′)∧̊γ ∗(X (ψ1 Uψ2), �σ · �σ ′)).
Moreover, by Property (e), it holds that γ ∗(ψ1, �σ · �σ ′), γ ∗(ψ2, �σ · �σ ′) ∈ {⊥, �}, since ψ1 and ψ2 are U/R -free and 
�σ · �σ ′ ∈ (2ap(ψ))>max{depX(ψ1),depX(ψ2)} = (2ap(ψ))>depX(ψ1 Uψ2) . Hence, γ ∗(ψ1 Uψ2, �σ · �σ ′) ∈ {⊥, �}, if γ ∗(ψ2, �σ · �σ ′) = �
or γ ∗(ψ1, �σ · �σ ′) = ⊥, and γ ∗(ψ1 Uψ2, �σ · �σ ′) = γ ∗(X (ψ1 Uψ2), �σ · �σ ′), otherwise. In the first case we have reached the 
desired conclusion. As to the second case, the thesis can be proved by induction on the length of �σ , where the inductive 
case �σ = ς · �σ ′′ proceeds as follows, where the inductive hypothesis is used in the last derivation step:

• [Property (g)] The property can be derived by structural induction on ψ , exploiting Properties (a)-(f).
• [Property (h)] The last property can also be proved by structural induction on ψ , where we consider the U /R -formulae 

as base cases. Since the base cases ψ ∈ {⊥, �} ∪ Lit and the inductive case ψ = Xψ ′ are simple, we only prove the base 
cases ψ =ψ1�ψ2, with � ∈ {U, R }, and the inductive cases ψ =ψ1�ψ2, with � ∈ {∧, ∨}:

- [� ∈ {U, R }]
20



M. Benerecetti, F. Mogavero and A. Peron Information and Computation 294 (2023) 105081
- [� ∈ {∧, ∨}]

To conclude, let Wψ �
〈
2AP,Q, δ, qI ,QF

〉
be the Vardi-Wolper automaton of the WLTL formula ψ and consider the NWA

Dψ�
〈
2AP,Q ∪ "ψ, δ̂,ψ,QF

〉
whose transition function δ̂ is defined as follows, where by q � γ (θ, σ) we mean that the 

set of subformulae q of the Vardi-Wolper construction satisfies the LTL formula γ (θ, σ), once the temporal operators are 
interpreted as fresh atomic propositions:

δ̂(q,σ )� δ(q,σ ), for all q ∈ Q;
δ̂(θ,σ )�

{
q ∈ Q

∣∣q � γ (θ,σ )
} ∪ {γ (θ,σ )}, for all θ ∈ "ψ.

Intuitively, the partial evaluation replaces the subset construction of Theorem 9 and ensures that the automaton can behave 
deterministically, by choosing at each such step the unique successor γ (θ, σ), from state θ on reading the symbol σ .
Essentially, γ encodes the deterministic transition function of the PD-NWA. Clearly, in order to accept the infinite input the 
automaton will need to move to its non-deterministic component at some point, since γ moves from "ψ to "ψ and this 
set has empty intersection with QF. Note that, thanks to Items g and h of the previous claim, Dψ has the required size.
To formally prove that Dψ is a PD-NWA with L(Dψ) = L(Dψ) = L(ψ) one can apply, mutatis mutandis, the same approach 
used in the proof of Theorem 9. �

Observe that the approach we used to construct a PD-NWA for WLTL could, in principle, be used for full LTL. However,
there is no advantage in doing that compared to the simpler application of Theorem 9 to the Vardi-Wolper construction,
since the asymptotic bound would remain unvaried. The following theorem shows, indeed, that for LTL one cannot hope for
smaller PD-NWA, since there are LTL formulae whose smallest PD-NWA are doubly-exponential in their size.

Theorem 11. For every n ∈ N , there is an LTL formula ψn, with |ψn| = � 
(
n2

)
, whose smallest PD-NWA Dn with L(Dn) = L(ψn)

(resp., L(Dn) = L(¬ψn)) has at least 22n
states.

Proof. We prove the result by first identifying a class {Ln}n∈N of ω-languages that can be recognised by PD-NWA with at 
least a double-exponential number of states and then showing that the class can be characterised by an LTL formula of size 
quadratic in n.

The family we consider here is similar to the one used to show that deterministic (Müller) automata are doubly-
exponentially less succinct than alternating (weak) automata [62]. Let � � {0, 1, ‖, #} be the alphabet. For every index
n ∈ N , consider the ω-language Ln ⊆ �ω containing all and only the infinite words w ∈ �ω satisfying the following prop-
erty: there exist two words x ∈�∗ and y ∈�ω such that w = x ‖ z v# z y , for some pair of additional finite words z ∈ {0, 1}n

and v ∈ {0, 1, ‖}∗ . Obviously, there are 22n
sets of words Z ⊆ {0, 1}n . For each such set Z of cardinality k � |Z|, there exists 

a finite word wZ of the form ‖ z1 ‖ · · · ‖ zk , where z1 · · · zk is an arbitrary permutation of its words. Note that w∅ is the 
one-symbol word ‖. The following claim is proven to hold for the class {Ln}n∈N .

Claim 3. For every n ∈N , the smallest PD-NWA Dn such that L(Dn) = Ln (resp., L(Dn) = Ln) has at least 22n
states.

Proof. Suppose, by contradiction, that Ln (resp., Ln) is recognised by a PD-NWA D with strictly less than 22n
states and 

let δ̃ : Q × � → Q ∪ {⊥, �} be any one of deterministic transition functions witnessing the fact that D is PD-NWA. By
the pigeonhole principle, there exist two different sets Z1, Z2 ⊆ {0, 1}n such that δ̃∗(qI , wZ1 ) = δ̃∗(qI , wZ2 ). W.l.o.g., assume 
Z1 \ Z2 �= ∅ and let z ∈ Z1 \ Z2. Obviously, wZ1 = x ‖ zv, for some x ∈�ω and v ∈ {0, 1, ‖}∗ . Hence, w1 �wZ1 # z#ω ∈ Ln , since 
wZ1 # z#ω = x ‖ z v# z y , with y = #ω . On the contrary, w2 �wZ2 # z#ω /∈ Ln , since wZ2 does not contain z. However, since 
the automaton ends up in the same state after reading wZ1 and wZ2 , and w1 and w2 do not differ after those two prefixes,
D either accepts both words or none of them, which contradicts the assumption L(Dn) = Ln (resp., L(Dn) = Ln). �

To complete the proof of the theorem it suffices to observe that each language of the family {Ln}n∈N precisely corre-
sponds to the language L(ψn) recognised by the LTL formula
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ψn � F
(
‖ ∧ ∧n

i=1 X
i
(∨

j∈{0,1}
(

j ∧ (¬#)U
(
# ∧ X i j

))))
built taking � as the set of atomic propositions. The formula essentially checks that the infinite word contains at some 
point two identical copies of the same n-bit sequence separated by a #-less sequence of symbols followed by a single #.
This is precisely the form of the words in L(ψn).

It is easy to see that the formula has size |ψn| = �(n2), due to having n conjuncts with increasing number of nested 
next operators. Hence, the stated results follow as an immediate consequence of the claim. �

The following result ensures that every PD-NWA can be embedded within a bounded-fork tree automaton, a result that 
will be leveraged in the next section.

Theorem 12. Every PD-NWA is GFG w.r.t. the class of bounded-fork trees.

Proof. Let W be a PD-NWA and T a bounded-fork 
-tree such that Trc(T ) ⊆ L(W). We want to show that T ∈
L(wot
(W)). Since T is bounded-fork, there necessarily exists a finite subtree T ′ containing all forks of T . Now, let 
ϑ ′ be the finite run of wot
(W) over T ′ obtained by using any one of the possible deterministic transition functions 
δ̃ : Q × � → Q ∪ {⊥, �} of W . Since Trc(T ) ⊆ L(W), this finite run can be extended to an infinite accepting run ϑ of 
wot
(W) over T by using the full nondeterministic transition function δ of W . Obviously, this can always be done since 
W is a PD-NWA. �
6. The satisfiability problem

We can finally address the solution of the satisfiability problem for SL
��

[1g] by reducing it to the non-emptiness problem 
of a suitable bounded-fork automaton. To proceed, let ϕ be an arbitrary SL

��
[1g] sentence and, thanks to Proposition 2,

ð � 〈ζ,�,�〉 its corresponding Skolem skeleton. Corollary 2 tells us that ϕ is satisfiable iff ð is single-time normally satisfied 
by a k-fork CGS, with k � max{0, |�| − 1}. We thus construct a k-NTA Nϕ recognising all normal models of ð, which are,
therefore, also models of ϕ . The automaton is the product Nϕ �Dζ ×Dð ×N� of the following three components:

(1) Dζ is a trivial single-state safety automaton checking whether the labelling of the root satisfies the Boolean formula ζ ;
(2) Dð is a bounded-fork deterministic safety automaton ensuring the compliance of the structure of the tree in input with 

Definition 7 of normal model;
(3) the nondeterministic Büchi automaton N� verifies that all paths identified by the binding � of some sentence ∀�ψ in 

� satisfy the LTL formula ψ .

We focus on the definitions of Dð and N� only, Dζ being obvious.
Before proceeding, we need to fix some notation. Let A ⊆ AP and B ⊆ Bn(F ) be the sets of all the atomic propositions 

and binding prefixes occurring in some sentence of the universal skeleton ð, respectively. The automaton alphabet � ⊆ 2A∪B

is then the set of all those symbols σ ⊆ A ∪ B satisfying the following local coherence condition: if �(φ) ∈ σ then � ∈ σ , for
all universal sentences φ � ∀�ψ ∈�.

The idea is to recognise all normal models whose labelling is enriched with the bindings of the sentences that are 
satisfied along some path through each node, as prescribed by Items 2c and 2d of Definition 7. In particular, the local 
coherence condition precisely corresponds to the property required on the local binding function l by Item 2a of the same 
definition. Obviously, the branching degree of the tree underlying the normal model is bounded by |muc(B)|, thus, the set of 
node degrees is 
 � [1, |muc(B)|]. Finally, let us consider an arbitrary function ̂r : X ∈ 2B �→ ([1, |muc(X)|] → muc(X)) such 
that, for each set of bindings X ⊆ B, the associated map ̂f � r̂(X) : [1, |muc(X)|] →muc(X) is a bijection between indices and 
set of maximally unifying bindings. This function is used in the following construction to specifically ensure the condition 
stated in Item 2b of Definition 7.

Construction 1 (Structure automaton). The structure automaton Dð is the safety DTA

〈
�,
,2B × [0,k], δ, (B,k)

〉
, whose transition 

function δ is defined as follows:

δ((X,h),σ , d)�

⎧⎪⎨
⎪⎩

∏d
i=1(̂f(i),h − 1), if X = σ ∩ B,h > 0,and d = ∣∣img

(̂
f
)∣∣> 1;

(X,h), if X = σ ∩ B and d = ∣∣img
(̂
f
)∣∣ = 1;

⊥, otherwise;
where ̂f � r̂(σ ∩ B), for any set of bindings X ⊆ B, index h ∈ [0,k], input symbol σ ∈�, and node degree d ∈
.

By construction, thanks to the second component of the states, it is immediate to see that Dð enjoys the bounded-
fork property. Let SL

��
k

[1g] (resp., WSL
��
k

[1g]), for k ∈ N , denote the fragment of SL
��

[1g] (resp., WSL
��

[1g]) containing only
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sentences with at most k + 1 distinct occurrences of principal subsentences. Recall that, thanks to Corollary 2, the number
k coincides with the bound on the number of forks of the underlying model. Hence, we immediately obtain the following 
result. 

Proposition 3. The DTA Dð is k-forking, for every SL
��
k [1g] skeleton ð.

It can be shown that, if we extend any normal model of ð with the binding labelling dictated by its global binding 
function, we obtain a tree structure that is accepted by Dð . Vice versa, every tree accepted by Dð is the backbone of a tree 
CGS, whose functions l, g, and r (see Definition 7) can easily be extracted from the labelling. To ensure that this CGS is 
actually a normal model, we need to verify that the paths labelled by some binding � satisfy the corresponding sentences 
in �. This is precisely the goal of N� .

By Theorem 10, for any SL
��

[1g] (resp., WSL
��

[1g]) sentence φ � ℘�ψ ∈�, we can always construct a PD-NWA Dψ with 
2O

(
2|ψ |)

(resp., O 
(

2|ψ |3
)

) states such that L(Dψ) = L(ψ). By adding few more states, we can turn Dψ into a PD-NWA Dφ̃

recognising all models of the LTL (resp., WLTL) formula φ̃ � G (�(φ) → ((XG ¬�(φ)) ∧ (ψ ∨ F ¬�))). This formula ensures 
that ψ is verified starting from the unique point where the corresponding atomic proposition �(φ) occurs, provided that 
binding � is still active. By turning each PD-NWA Dφ̃ into a tree automaton, we obtain the last component of Nϕ .

Construction 2 (Sentence automaton). The sentence automaton N� is obtained as the product 
∏

φ∈�Nφ of the NTAs wot
(Dφ̃ )

derived from the PD-NWA Dφ̃ , for each φ ∈�.

At this point, it is clear that every tree accepted by Nϕ is a normal model for the Skolem skeleton ð of ϕ , once the 
additional binding labelling is dropped. Vice versa, the underlying tree structure of a normal model is accepted by Nϕ thanks 
to the fact that every Dφ̃ is GFG for the class of bounded-fork trees, as shown in Theorem 12. This leads to the following 
result.

Theorem 13. For every SL
��
k [1g] (resp., WSL

��
k

[1g]) sentence ϕ , there is a k-NTA Nϕ of size 2O
(
2|ϕ|)

(resp., 2|ϕ|�(1) ) recognising all and 
only the normal models of ϕ .

By Theorem 8, we obtain that deciding WSL
��

[1g] is provably easier than deciding full SL[1g], known to be 
2ExpTime-complete, while the complexity for SL

��
[1g] is lower if we assume the widely-shared conjecture that ExpSpace ⊂

2ExpTime. In more detail the ExpSpace bound for the SL
��
k [1g] satisfiability problem is established by showing that the 

problems belongs to the class AExpTime([k-alt]) which is the class of problems solvable in exponential time by Alternating 
Turing Machines with at most k alternations between existential and universal quantifiers. We recall that the more general 
class of exponential-time bounded alternating Turing Machines with a polynomially bounded number of alternations is a 
relevant class included in ExpSpace which captures the precise complexity of some relevant problems, e.g., the first-order
theory of real addition with order [63]. While PSpace-hardness of WSL

��
[1g] trivially follows from an obvious encoding of 

standard modal-logic satisfiability, it is not known whether SL
��

[1g] is actually ExpTime-hard.

Theorem 14. SL
��
k [1g] (resp., WSL

��
[1g]) satisfiability problem is decidable in AExpTime([k-alt]) (resp., PSpace-complete).

Proof. Thanks to Theorem 8, the stated result immediately follows by solving on-the-fly the emptiness problem of the 
k-NTA Nϕ .

To see why all the steps involved in the satisfiability procedures, as well as their composition, can be carried out on-the-
fly, we can make the following observations.

• Once the input automaton Nϕ is provided on-the-fly, its emptiness can be checked on-the-fly as well.
• It is well-known that, given an LTL formula ψ , the corresponding equivalent NWA Wψ can be constructed on-the-fly.

The subset-like construction underlying the proof of Theorem 9 can also be computed on-the-fly. Hence, the PD-NWA

Dψ for ψ can be built on-the-fly. If we focus just on WLTL, it is immediate to observe that the PD-NWA Dψ provided 
in the proof of Theorem 10 can also be built on-the-fly.

• Every NTA Nφ , for φ ∈ �, can be built on-the-fly, being a standard application of the wot function. Hence, the same 
holds for the product automaton N� as well.

• Finally, Nϕ�Dζ ×Dð×N� is constructable on-the-fly, since the bounded-fork deterministic safety automaton Dð , check-
ing for the structural properties of the normal model, can obviously be provided on-the-fly to the product operation. �
Applying the same syntactic restrictions of Definition 5 to the syntax of ATL*, ATL, CTL*, and CTL, thus obtaining the non-

recurrent fragments ATL*
��

, ATL
��

, CTL*
��

, and CTL
��

, one can leverage the result proved above to obtain improved complexity
bounds for the satisfiability problem of these fragments. 
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Corollary 3. ATL*
��
k and CTL*

��
k (resp., ATL

��
and CTL

��
) satisfiability problems are decidable in AExpTime([k-alt]) (resp.,

PSpace-complete).

7. Discussion

We have considered efficiently decidable fragments of One-Goal SL (SL[1g]), called non-recurrent fragments, where satis-
faction requests for a sentence can only be iterated a bounded number of times along a computation. This is achieved by
restricting the first (resp., second) argument of the until (resp., release) linear temporal operator. Specifically, when these 
arguments are limited to pure LTL formulae, we obtain that satisfiability is decidable in AExpTime([k-alt]) (which is known 
to be included in ExpSpace), where k + 1 is the number of occurrences of principal subsentences within the formulae. If,
however, those arguments are further restricted to Boolean formulae, completeness for PSpace is proven. Both non-recurrent 
fragments, which are strictly included in SL[1g], are still able to express non-trivial game-theoretic problems, such as the 
automatic synthesis of multi-agent systems, e.g., communication protocols where active participants perform a bounded 
number of decisions during each communication session.

On the technical side, we obtain the complexity bounds by means of two main techniques. First, by exploiting a quasi-
Herbrand property of a first-order characterisation of the sentences of those fragments, we identify a normal-form for the 
models of satisfiable sentences, which only admits a bounded number of branching point along any computation. Second,
we leverage a novel class of automata, called bounded-fork tree automata, that can recognise normal models and whose 
emptiness problem can be decided in LogSpace.

Since SL[1g] strictly includes both ATL* and CTL*, the results immediately apply also to the corresponding non-recurrent 
fragments of those logics, where only LTL (resp., Boolean) formulae can occur in the first (resp., second) argument of an 
until (resp., release) operator. In particular, this observation identifies novel fragments for both logics, namely the weak
non-recurrent ones, with a satisfiability problem whose PSpace-complete complexity is strictly lower than the one for the 
full languages, known to be 2ExpTime-complete.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgments

Partially supported by the GNCS 2020 project “Ragionamento Strategico e Sintesi Automatica di Sistemi Multi-Agente”,
GNCS 2022 project “Elaborazione del Linguaggio Naturale e Logica Temporale per la Formalizzazione di Testi”, and GNCS 
2023 project “Analisi Simbolica e Numerica di Sistemi Ciberfisici”.

References

[1] A. Pnueli, The temporal logic of programs, in: Foundation of Computer Science’77, IEEE Computer Society, 1977, pp. 46–57.
[2] A. Pnueli, The temporal semantics of concurrent programs, Theor. Comput. Sci. 13 (1981) 45–60.
[3] A. Sistla, Theoretical Issues in the Design and Verification of Distributed Systems, Ph.D. thesis, Harvard University, Cambridge, MA, USA, 1983.
[4] A. Sistla, E. Clarke, The complexity of propositional linear temporal logics, in: Symposium on Theory of Computing’82, Association for Computing 

Machinery, 1982, pp. 159–168.
[5] A. Sistla, E. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (3) (1985) 733–749.
[6] M. Vardi, An automata-theoretic approach to linear temporal logic, in: Banff Higher Order Workshop’95, in: LNCS, vol. 1043, Springer, 1995,

pp. 238–266.
[7] E. Emerson, E. Clarke, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Logic of Programs’81, in: LNCS,

vol. 131, Springer, 1981, pp. 52–71.
[8] E. Emerson, E. Clarke, Design and synthesis of synchronization skeletons using branching-time temporal logic, Sci. Comput. Program. 2 (3) (1982)

241–266.
[9] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications: a practical approach, in:

Principles of Programming Languages’83, Association for Computing Machinery, 1983, pp. 117–126.
[10] E. Emerson, J. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time, in: Principles of Programming Languages’83, Association 

for Computing Machinery, 1983, pp. 127–140.
[11] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications, Trans. Program. Lang. Syst.

8 (2) (1986) 244–263.
[12] E. Emerson, J. Halpern, Decision procedures and expressiveness in the temporal logic of branching time, J. Comput. Syst. Sci. 30 (1) (1985) 1–24.
[13] E. Emerson, J. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time, J. ACM 33 (1) (1986) 151–178.
[14] E. Emerson, C. Lei, Efficient model checking in fragments of the propositional muCalculus, in: Logic in Computer Science’86, IEEE Computer Society,

1986, pp. 267–278.
[15] E. Emerson, C. Jutla, A. Sistla, On model-checking for fragments of muCalculus, in: Computer Aided Verification’93, in: LNCS, vol. 697, Springer, 1993,

pp. 385–396.
[16] A. Chandra, L. Stockmeyer, Alternation, in: Foundation of Computer Science’76, IEEE Computer Society, 1976, pp. 98–108.
[17] A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28 (1) (1981) 114–133.
[18] S. Ghosh, R. Ramanujam, Strategies in games: a logic-automata study, in: European Summer School in Logic, Language, and Information’11, in: LNCS,

vol. 7388, Springer, 2011, pp. 110–159.
24

http://refhub.elsevier.com/S0890-5401(23)00084-6/bibA6C67D0BF145612745D6EDEBFFC69911s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib882CACB986EDE25BC15C3DE6E49BAAE0s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib89A82355970BAF887ED1967AD51B648As1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib4FB80F1C66228BD0A334C8A464AFE95Cs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib4FB80F1C66228BD0A334C8A464AFE95Cs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib2D8BBBDC04D7157F0F41294A87FF6D54s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib747BBD7B1C2A93194F10E727AEDF1442s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib747BBD7B1C2A93194F10E727AEDF1442s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibF2CEA8165515AF226CA32D979A08B5ACs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibF2CEA8165515AF226CA32D979A08B5ACs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib0710E629D2350D31AE54930E6E3937C9s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib0710E629D2350D31AE54930E6E3937C9s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibAA001D8AABC414BA4BE63568F3D44332s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibAA001D8AABC414BA4BE63568F3D44332s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib98876110025EF3E159B54601FC126905s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib98876110025EF3E159B54601FC126905s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib481B489F57D668B223CBD133A6717C31s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib481B489F57D668B223CBD133A6717C31s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib655835B2BFEBCBEEE2082A01A016F8ACs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibABD2F1A4F4EC23FF7CE56EA20D9FEC71s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibDC86837C0CF1A2D30C5A15BE42681E72s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibDC86837C0CF1A2D30C5A15BE42681E72s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib04D460D358BF2082968A90BDCF545DC1s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib04D460D358BF2082968A90BDCF545DC1s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib1987BEFAF522231E7987ED91CBB1D84Ds1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibCCC17D53B8DD01FA94566178B9715B0Cs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib6489A5DA9BE7EBB6D237B602313D1E74s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib6489A5DA9BE7EBB6D237B602313D1E74s1


M. Benerecetti, F. Mogavero and A. Peron Information and Computation 294 (2023) 105081
[19] M. Benerecetti, F. Mogavero, A. Murano, Substructure temporal logic, in: Logic in Computer Science’13, IEEE Computer Society, 2013, pp. 368–377.
[20] J. Gutierrez, P. Harrenstein, M. Wooldridge, Iterated Boolean games, in: International Joint Conference on Artificial Intelligence’13, International Joint 

Conference on Artificial Intelligence’ & AAAI Press, 2013, pp. 932–938.
[21] J. Gutierrez, P. Harrenstein, M. Wooldridge, Reasoning about equilibria in game-like concurrent systems, in: Knowledge Representation and Reason-

ing’14, AAAI Press, 2014, pp. 408–417.
[22] M. Benerecetti, F. Mogavero, A. Murano, Reasoning about substructures and games, Trans. Comput. Log. 16 (3) (2015), 25, pp. 1–46.
[23] J. Gutierrez, P. Harrenstein, M. Wooldridge, Iterated Boolean games, Inf. Comput. 242 (2015) 53–79.
[24] R. Alur, T. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672–713.
[25] K. Chatterjee, T. Henzinger, N. Piterman, Strategy logic, in: Concurrency Theory’07, in: LNCS, vol. 4703, Springer, 2007, pp. 59–73.
[26] F. Mogavero, A. Murano, M. Vardi, Reasoning about strategies, in: Foundations of Software Technology and Theoretical Computer Science’10, in: LIPIcs,

vol. 8, Leibniz-Zentrum fuer Informatik, 2010, pp. 133–144.
[27] K. Chatterjee, T. Henzinger, N. Piterman, Strategy logic, Inf. Comput. 208 (6) (2010) 677–693.
[28] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning about strategies: on the model-checking problem, Trans. Comput. Log. 15 (4) (2014), 34,

pp. 1–42.
[29] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning about strategies: on the satisfiability problem, Log. Methods Comput. Sci. 13 (1:9) (2017) 1–37.
[30] P. Bouyer, P. Gardy, N. Markey, Weighted strategy logic with Boolean goals over one-counter games, in: Foundations of Software Technology and 

Theoretical Computer Science’15, in: LIPIcs, vol. 45, Leibniz-Zentrum fuer Informatik, 2015, pp. 69–83.
[31] P. Bouyer, P. Gardy, N. Markey, On the semantics of strategy logic, Inf. Process. Lett. 116 (2) (2016) 75–79.
[32] P. Gardy, P. Bouyer, N. Markey, Dependences in strategy logic, in: Symposium on Theoretical Aspects of Computer Science’18, in: LIPIcs, vol. 96, Leibniz-

Zentrum fuer Informatik, 2018, pp. 34:1–15.
[33] P. Gardy, P. Bouyer, N. Markey, Dependences in strategy logic, Theor. Comput. Sci. 64 (3) (2020) 467–507.
[34] F. Laroussinie, N. Markey, Satisfiability of ATL with strategy contexts, in: Games, Automata, Logics, and Formal Verification’13, in: EPTCS, vol. 119, 2013,

pp. 208–223.
[35] F. Laroussinie, N. Markey, Augmenting ATL with strategy contexts, Inf. Comput. 245 (2015) 98–123.
[36] F. Mogavero, A. Murano, G. Perelli, M. Vardi, What makes ATL* decidable? A decidable fragment of strategy logic, in: Concurrency Theory’12, in: LNCS,

vol. 7454, Springer, 2012, pp. 193–208.
[37] E. Acar, M. Benerecetti, F. Mogavero, Satisfiability in strategy logic can be easier than model checking, in: AAAI Press19, AAAI Press, 2019,

pp. 2638–2645.
[38] F. Mogavero, G. Perelli, Binding forms in first-order logic, in: Computer Science Logic’15, in: LIPIcs, vol. 41, Leibniz-Zentrum fuer Informatik, 2015,

pp. 648–665.
[39] S. Bova, F. Mogavero, Herbrand property, finite quasi-herbrand models, and a Chandra-Merlin theorem for quantified conjunctive queries, in: Logic in 

Computer Science’17, Association for Computing Machinery, 2017, pp. 1–12.
[40] D. Dams, Flat fragments of CTL and CTL*: separating the expressive and distinguishing powers, Log. J. IGPL 7 (1) (1999) 55–78.
[41] H. Comon, V. Cortier, Flatness is not a weakness, in: Computer Science Logic’00, in: LNCS, vol. 1862, Springer, 2000, pp. 262–276.
[42] S. Demri, R. Lazic, D. Nowak, On the freeze quantifier in constraint LTL: decidability and complexity, Inf. Comput. 205 (1) (2007) 2–24.
[43] O. Ibarra, Z. Dang, On removing the pushdown stack in reachability constructions, in: International Symposium on Algorithms and Computation’01, in:

LNCS, vol. 2223, Springer, 2001, pp. 244–256.
[44] G. Fainekos, S. Loizou, G. Pappas, Translating temporal logic to controller specifications, in: Decision and Control’06, IEEE Computer Society, 2006,

pp. 899–904.
[45] S. Demri, P. Schnoebelen, The complexity of propositional linear temporal logics in simple cases, Inf. Comput. 174 (1) (2002) 84–103.
[46] P. Schnoebelen, The complexity of temporal logic model checking, in: Advances in Modal Logic’02, College Publications, 2002, pp. 393–436.
[47] B. Khoussainov, A. Nerode, Automata Theory and Its Applications, Birkhauser, 2001.
[48] E. Grädel, W. Thomas, T. Wilke, Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS, vol. 2500, Springer, 2002.
[49] F. Baader, W. Snyder, Unification theory, in: Handbook of Automated Reasoning, vol. 1, Elsevier & MIT Press, 2001, pp. 445–532.
[50] F. Mogavero, A. Murano, M. Vardi, Relentful strategic reasoning in alternating-time temporal logic, in: Logic for Programming Artificial Intelligence and 

Reasoning’10, in: LNAI, vol. 6355, Springer, 2010, pp. 371–387.
[51] O. Kupferman, M. Vardi, P. Wolper, An automata theoretic approach to branching-time model checking, J. ACM 47 (2) (2000) 312–360.
[52] E. Amparore, S. Donatelli, F. Gallà, A CTL* model checker for Petri nets, in: Application and Theory of Petri Nets and Concurrency’20, in: LNCS,

vol. 12152, Springer, 2020, pp. 403–413.
[53] S. Schewe, ATL* satisfiability is 2ExpTime-complete, in: International Colloquium on Automata, Languages, and Programming’08, in: LNCS, vol. 5126,

Springer, 2008, pp. 373–385.
[54] M. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of programs, J. Comput. Syst. Sci. 32 (2) (1986) 183–221.
[55] R. McNaughton, Infinite games played on finite graphs, Ann. Pure Appl. Log. 65 (1993) 149–184.
[56] L. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1) (1976) 1–22.
[57] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[58] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Principles of Programming Languages’89, Association for Computing Machinery, 1989,

pp. 179–190.
[59] M. Vardi, Reasoning about the past with two-way automata, in: International Colloquium on Automata, Languages, and Programming’98, in: LNCS,

vol. 1443, Springer, 1998, pp. 628–641.
[60] T. Henzinger, N. Piterman, Solving games without determinization, in: Computer Science Logic’06, in: LNCS, vol. 4207, Springer, 2006, pp. 395–410.
[61] M. Vardi, P. Wolper, An automata-theoretic approach to automatic program verification, in: Logic in Computer Science’86, IEEE Computer Society, 1986,

pp. 332–344.
[62] C. Löding, Methods for the Transformation of ω-Automata: Complexity and Connection to Second Order Logic, Master’s thesis, Kiel University, Kiel,

Germany, 1998.
[63] J. Ferrante, C. Rackoff, A decision procedure for the first order theory of real addition with order, SIAM J. Comput. 4 (1) (1975) 69–76.
25

http://refhub.elsevier.com/S0890-5401(23)00084-6/bib60640C42D62CFF418C24A93C921C90D4s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib4A266D3B64603E1B9127A54A1A4C3FC7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib4A266D3B64603E1B9127A54A1A4C3FC7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibF5483137514B3D7F3D992C36CEDE311Ds1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibF5483137514B3D7F3D992C36CEDE311Ds1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib0197192E68266E35B7116F28B4474B08s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib7CAFA4758DE271B6DAD117A1671F6838s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib5C5C923C7E1B621ED816FB3AA0EB0085s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibBE870AF7D03E43E7EE0385071CDA2D69s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibADCE137B294F733142A3E7863E5819C7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibADCE137B294F733142A3E7863E5819C7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibAC440E93A1E0AB07024278CA2902BAE4s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib1E0A1BA0BC55856C313518AB6A23DF1Es1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib1E0A1BA0BC55856C313518AB6A23DF1Es1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE52FED50184FB3446DD35673F3C322B6s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib409703CC71A028BF1DBF0A055C1A3090s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib409703CC71A028BF1DBF0A055C1A3090s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibAE658F737AE1B39A7A72E20068437879s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib15F3E4477E45A6DD11A58644D300A65Bs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib15F3E4477E45A6DD11A58644D300A65Bs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib3196DD2B709AD9127D3AE10E147AE315s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibBD22C03DC59F106EBF3F64FB7B0198E0s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibBD22C03DC59F106EBF3F64FB7B0198E0s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibECB3A6B80ADD2F21BB33152DA313ECE2s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib8C6CEA63172473AD62537C9E34237FA2s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib8C6CEA63172473AD62537C9E34237FA2s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib9EE51AD02DF187AE4E739DAA81A3D30Es1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib9EE51AD02DF187AE4E739DAA81A3D30Es1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib2B50E9F4E4A84001DA1DF997884CC990s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib2B50E9F4E4A84001DA1DF997884CC990s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibCCC9A4DD4A95AF8F41F22C4F88908622s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibCCC9A4DD4A95AF8F41F22C4F88908622s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE9A7384427E63EBC8E4A8A67CBAE5232s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibADAC6265E9FE6641ECC7EAC0D00BAA91s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibC7EE4F05577F3458F5DC84CDE76018F6s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE29894B7D868E311F118790E71FFCED4s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE29894B7D868E311F118790E71FFCED4s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib5A7F3B883C10EA63DFDB4604414E3A72s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib5A7F3B883C10EA63DFDB4604414E3A72s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibBFB08540238B6F94E32C9CDB703B208Fs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibC962EBB832A1B769AB83C315FBF9529Ds1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib675D6662D9C792FCB76A8A0AE7A39D68s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib550E9BD659AE5CD0D3D15120D74C21E0s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib857B2D7B62A7E98109C230ADB24F6027s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE6B1FF62DCE644EE48C25FC5644FC0A5s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibE6B1FF62DCE644EE48C25FC5644FC0A5s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib64FCF57D2AD51665642CF89215C2BA02s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibB1FA685F1FDB3D6D834E02AE5554CC2Bs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibB1FA685F1FDB3D6D834E02AE5554CC2Bs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib3541CFF542E20B2D59773CDCD9D99109s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib3541CFF542E20B2D59773CDCD9D99109s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib8C833DBACEDF71D85557510BD4256C0Fs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib7AD297BBEBBBAA4F5942F38115E6F4FAs1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib7F03315869A33159D300655619EF74C7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib544DFE53AD73179D90A727A579597C47s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibC0E672553F2E3A1F60FE0CD7FF73D408s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibC0E672553F2E3A1F60FE0CD7FF73D408s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib7AF703BE41B06FB80720D59264DF42C7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib7AF703BE41B06FB80720D59264DF42C7s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib0A74EEA92B74463701103CA161E36B27s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib3DE8AF94B520FB4AD843FCC00E2C8E03s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib3DE8AF94B520FB4AD843FCC00E2C8E03s1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib5713307A2365AD2538EB2BEC2616988As1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bib5713307A2365AD2538EB2BEC2616988As1
http://refhub.elsevier.com/S0890-5401(23)00084-6/bibF6FC1086D39D2B2CDE7DA46A9F2FCC73s1

	Taming Strategy Logic: Non-Recurrent Fragments
	1 Introduction
	2 Preliminaries
	3 Decidable fragments of strategy logic
	3.1 One-goal strategy logic
	3.2 Non-recurrent one-goal strategy logics

	4 Normal models for SL∕↻[1g]
	4.1 Functions in SL
	4.2 Unifying bindings & paths
	4.3 Normal models

	5 New classes of automata
	5.1 Bounded-fork tree automata
	5.2 Good-for-games automata
	5.3 Prefix-deterministic word automata

	6 The satisfiability problem
	7 Discussion
	Declaration of competing interest
	Acknowledgments
	References


