
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 382 (2024) 115–140
www.elsevier.com/locate/jde

Determining an anisotropic conductivity by boundary 

measurements: Stability at the boundary

Giovanni Alessandrini a, Romina Gaburro b,∗, Eva Sincich a

a Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy
b Department of Mathematics and Statistics, University of Limerick, Limerick, V94 T9PX, Ireland

Received 4 April 2023; revised 19 August 2023; accepted 2 November 2023

Abstract

We consider the inverse problem of determining, the possibly anisotropic, conductivity of a body � ⊂ Rn, 
n ≥ 3, by means of the so-called local Neumann-to-Dirichlet map on a curved portion � of its boundary 
∂�. Motivated by the uniqueness result for piecewise constant anisotropic conductivities proved in Inverse 
Problems 33 (2018), 125013, we provide a Hölder stability estimate on � when the conductivity is a-priori
known to be a constant matrix near �.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Given ψ : ∂� −→R, with zero average, consider the Neumann problem

{
div(σ∇u) = 0, in �,

σ∇u · ν = ψ, on ∂�,
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where σ = {σij (x)
}n
i,j=1, with x ∈ �, satisfies the uniform ellipticity condition

λ−1|ξ |2 ≤ σ(x)ξ · ξ ≤ λ|ξ |2, for a.e. x ∈ � , for every ξ ∈ Rn (1)

for some positive constant λ. Here, a standard, variational, functional framework is understood. 
Details will be presented in what follows. Electrical Impedance Tomography (EIT) is the inverse 
problem of determining the conductivity σ when the Neumann-to-Dirichlet (N-D) map

Nσ : ψ −→ u
∣∣
∂�

is given, [8]. It is well-known that if σ is allowed to be anisotropic, i.e. a full matrix, although 
symmetric, then it is not uniquely determined by Nσ . In fact, if 
 : � −→ � is a diffeomorphism 
such that 


∣∣
∂�

= I , then σ and its push-forward under 
,


∗σ = (D
)σ(D
)T

det(D
)
◦ 
−1

give rise to the same N-D map. This construction is due to Tartar, as reported by Kohn and 
Vogelius [11]. A prominent line of research investigates the determination of σ modulo diffeo-
morphisms which fix the boundary, in this respect we refer to the seminal paper of Lee and 
Uhlmann [13]. From another point of view, anisotropy cannot be neglected in applications, such 
as medical imaging or geophysics. It is therefore important to investigate possible kinds of struc-
tural assumptions (physically motivated) under which unique determination of σ from Nσ is 
restored.

In [3] the case of a piecewise constant conductivity σ was treated, and assuming that the 
interfaces of discontinuity contain portions of curved (non flat) hypersurfaces, uniqueness was 
proven. Subsequently [4], uniqueness was proven also in cases of a layered structure with un-
known interfaces. We refer to these two papers for a bibliography on the relevance of anisotropy 
in applications.

It is still an open problem, to prove, in such settings, estimates of stability. Indeed, a line 
of research initiated by Alessandrini and Vessella [5] in the isotropic case (i.e.: σ = γ I , with γ
scalar), suggests that also in the setting of Alessandrini-de Hoop-Gaburro [3] a Lipschitz stability 
estimate might hold. Such a generalization, however, does not appear to be an easy task, because 
isotropy intervenes in many steps of the proof in [5].

In this note we treat the first step in a program to prove stability for piecewise constant 
anisotropic conductivity with curved interfaces. More precisely, assuming σ constant in a neigh-
borhood U of a curved portion � of the boundary ∂�, we show that σ

∣∣
U depends in a Hölder 

fashion on the local N-D map N�
σ , namely

∣∣∣∣∣∣σ (1)(y) − σ (2)(y)

∣∣∣∣∣∣
L(Rn,Rn)

≤ CE1−β ||N�
σ(1) −N�

σ(2) ||β
L
(

0H
− 1

2 (�),(0H
− 1

2 (�))∗
), (2)

(see Theorem 2.1 for details). Let us emphasize the presence in explicit form of the term E in 
(2), the L∞-norm of the difference σ (1) − σ (2) in �. It is obvious that it could be majorized by 
the ellipticity constant λ in (1). However, in view of the technique introduced in [5], we leave it 
in such a form, because it would be instrumental for the goal of global Lipschitz stability under 
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the assumption that σ is piecewise constant on a given finite partition of �. See the Example in 
Section 2 below, for a simple case where this approach succeeds.

Since Kohn and Vogelius [10], [12] and Alessandrini [1], [2], it is customary to treat the 
uniqueness and stability at the boundary, as a first step towards determination in the interior. And 
also in the anisotropic case we wish to mention the results of Kang and Yun [9] who proved 
reconstruction and stability at the boundary up to diffeomorphisms which keep the boundary 
fixed.

Here, assuming a quantitative formulation of non-flatness of �, we are able to stably de-
termine the full conductivity matrix σ (near �). More precisely, we shall assume that there 
exists three points P1, P2, P3 ∈ � such that the corresponding unit normal vectors to �, 
ν(P1), ν(P2), ν(P3) are quantitatively pairwise distinct.

As is well-known, in the isotropic case, the boundary determination of the conductivity has 
a character of stability of Lipschitz type, whereas here only Hölder stability is obtained. The 
presence of anisotropy has required a new approach, no claim of optimality is made. Let us stress 
however that, since the original result of boundary Lipschitz stability by Sylvester and Uhlmann 
[15], this is apparently the first boundary stability estimate in the anisotropic case, which is valid 
in a fixed coordinates system that is not modulo a suitable diffeomorphism.

The stability result obtained here is given in terms of a local map (the local N-D map). The 
problem of (stably) determining the conductivity from local measurements has been studied more 
recently. Results in this direction, limited to piecewise constant coefficients, include [5] and [6]
for the isotropic case. The general inverse problem of stably determining anisotropic conductiv-
ities in terms of local measurements, however, has remained open.

Our argument here is based on various new features. As noticed in [3], the local N-D map 
N�

σ is an integral operator whose kernel K differs from the well-known Neumann kernel N by 
a bounded correction term.

The common feature of the two kernels is the character of their singularity which in turn 
encapsulates information on the tangential part of the metric 

{
gij

}n
i,j=1 associated to the conduc-

tivity σ

gij = (detσ)
1

n−2 (σ−1
ij ) (3)

in dimension n ≥ 3. By testing N�
σ on suitable combination of mollified δ functions, we achieve 

a quantitative evaluation of the tangential component of 
{
gij

}
. Next, by exploiting the quantita-

tive notion of ‘non-flatness’ of �, we show that the full metric 
{
gij

}
can be recovered from three 

tangential samples at three different points with sufficiently distinct tangent spaces, or, equiva-
lently, pairwise distinct normal vectors.
The paper is organized as follows. Section 2 contains the main definitions, including the quan-
tified notion of non-flatness of � where we localize the measurements N�

σ (Section 2.1). This 
section also contains the statement of our main result of stability at the boundary of anisotropic 
conductivities σ that are constant near � in terms of N�

σ (Section 2.2, Theorem 2.1). We further 
illustrate in an example how the Hölder stability result at the boundary of Theorem 2.1 can lead 
to Lispchitz stability in the interior. Section 3 is devoted to the construction of mollified delta 
functions on �. The proof of the main result is a two-step procedure. In the first step, contained 
in Section 4, we stably recover the tangential component of g in terms of N�

σ . The argument 
of this proof is based on estimating the asymptotic behavior of the Neumann kernel N(·, y) of 
L = div(σ∇·) and its derivative, near the pole y ∈ �, and the sampling N�

σ on suitable combina-
tions of the mollifiers given in Section 3. In the second step, discussed in Section 5, exploiting the 
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non-flatness condition on � as well as the structure of the metric g, we derive the stability on the 
boundary for the full metric g which in turn leads to the stable determination of the conductivity 
σ on �.

2. Main result

2.1. Notation and assumptions

In several places in this paper it will be useful to single out one coordinate direction. To this 
purpose, the following notations for points x ∈ Rn will be adopted. For n ≥ 3, a point x ∈ Rn

will be denoted by x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R. Moreover, given a point x ∈ Rn

and given a, b ∈ R, we shall denote with Br(x), Br(x
′) the open balls in Rn, Rn−1 centered at 

x, x′, respectively, with radius r and by Qa,b(x) the cylinder {y = (y′, yn) ∈ Rn : |x′ − y′| <
a ; |xn − yn| < b}. It will also be understood that Br = Br(0), B ′

r = Br(0′) and Qa,b = Qa,b(0).

We shall assume throughout that � ⊂ Rn, with n ≥ 3, is a bounded domain with Lipschitz 
boundary, as per Definition 2.1 below.

Definition 2.1. We will say that ∂� is of Lipschitz class with constants r0, L > 0, if for every 
P ∈ ∂�, there exists a rigid transformation of coordinates under which we have P = 0 and

� ∩ Qr0,r0L = {(x′, xn) ∈ Qr0,r0L | xn > ϕ(x′)
}
,

where ϕ is a Lipschitz continuous function on B ′
r0

satisfying

ϕ(0) = 0

and

|ϕ(x′) − ϕ(y′)| ≤ L|x′ − y′|, for every x′, y′ ∈ B ′
r0

.

We fix an open non-empty subset � of ∂� (where the measurements in terms of the local N-D 
map are taken). A precise definition of the N-D map and its local version with respect to � are 
given below.

2.1.1. The Neumann-to-Dirichlet map
Denoting by Symn the class of n × n symmetric real valued matrices, we assume that σ ∈

L∞(� , Symn) satisfies the ellipticity condition (1). We consider the function spaces

0H
1
2 (∂�) =

⎧⎨
⎩f ∈ H

1
2 (∂�)|

∫
∂�

f = 0

⎫⎬
⎭ ,

0H
− 1

2 (∂�) =
{
ψ ∈ H− 1

2 (∂�)| 〈ψ, 1〉 = 0
}

.

The global Neumann-to-Dirichlet map is then defined as follows.
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Definition 2.2. The Neumann-to-Dirichlet (N-D) map associated with σ ,

Nσ : 0H
− 1

2 (∂�) −→ 0H
1
2 (∂�)

is characterized as the selfadjoint operator satisfying

〈ψ, Nσ ψ〉 =
∫
�

σ(x)∇u(x) · ∇u(x) dx,

for every ψ ∈ 0H
− 1

2 (∂�), where u ∈ H 1(�) is the weak solution to the Neumann problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(σ∇u) = 0, in �,

σ∇u · ν|∂� = ψ, on ∂�,∫
∂�

u = 0

and 〈·, ·〉 denotes the L2(∂�)-pairing between H
1
2 (∂�) and its dual H− 1

2 (∂�).

For the local version of the N-D map, given the open portion � introduced above, and, denot-

ing by � = ∂� \ � we introduce the closed subspace of H
1
2 (∂�)

H
1
2

00(�) =
{
f ∈ H

1
2 (∂�) | supp(f ) ⊂ �

}
,

where the closure is meant in H
1
2 (∂�)-norm. Let us observe that the space H

1
2

00(�) might be 
also characterized as the interpolation space [H 1

0 (�), L2(�)] 1
2

(see [14], Chapter 1).
We also introduce

0H
− 1

2 (�) =
{
ψ ∈ 0H

− 1
2 (∂�)| 〈ψ, f 〉 = 0, for any f ∈ H

1
2

00(�)

}
,

that is the space of distributions ψ ∈ H− 1
2 (∂�) which are supported in � and have zero average 

on ∂�. The local N-D map is then defined as follows.

Definition 2.3. The local Neumann-to-Dirichlet map associated with σ , � is the operator N�
σ :

0H
− 1

2 (�) −→ (
0H

− 1
2 (�)

)∗ ⊂ 0H
1
2 (∂�) given by

〈N�
σ φ, ψ〉 = 〈Nσ φ, ψ〉,

for every φ, ψ ∈ 0H
− 1

2 (�).

Given σ (i) ∈ L∞(� , Symn), satisfying (1), for i = 1, 2, the following equality holds true.

〈
ψ1,

(
N�

σ(2) −N�
σ(1)

)
ψ2
〉= ∫ (σ (1)(x) − σ (2)(x)

)
∇u1(x) · ∇u2(x),
�
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for any ψi ∈ 0H
− 1

2 (�), for i = 1, 2 and ui ∈ H 1(�) being the unique weak solution to the 
Neumann problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(σ (i)∇ui) = 0, in �,

σ (i)∇ui · ν|∂� = ψi, on ∂�,∫
∂�

ui = 0.

2.1.2. Non-flatness of �

Definition 2.4. Let � ⊂ Rn be as above. Given α, α ∈ (0, 1), we say that a portion � of ∂� is 
of class C2,α with constants ρ, M > 0 if, up to a rigid transformation of coordinates, � is an 
(n − 1) dimensional C2,α manifold with chart (B ′

ρ, ϕ), where ϕ : B ′
ρ ⊂ Rn−1 → R is such that

ϕ(0) = |∇ϕ(0)| = 0 ‖D2ϕ(x′) − D2ϕ(y′)‖ ≤ M|x′ − y′|α for all x′, y′ ∈ B ′
ρ.

We will also write

� = {(x′, ϕ(x′)) | |x′| ≤ ρ
}
.

For any P ∈ ∂�, we will denote by ν(P ) the outer unit normal to ∂� at P .

Definition 2.5. Given � as above, we shall say that such a portion of a surface is non-flat (and 
equivalently the function ϕ) if, there exist three points P1, P2, P3 ∈ � and a constant C0, 0 <
C0 < 1, such that

ν(P1) · ν(P2) ≤ 1 − C0, (4)

ν(P1) · ν(P3) ≤ 1 − C0, (5)

ν(P2) · ν(P3) ≤ 1 − C0 . (6)

2.2. Local stability at the boundary

It will be convenient to define throughout this paper the following quantity

E := ||σ (1) − σ (2)||L∞(�).

We will assume that there is a point y ∈ ∂� such that, up to a rigid transformation, y = 0, and

� = ∂� ∩ Bρ (7)

is a non-flat portion of ∂� of class C2,α with constants ρ > 0, M > 0 and C0 > 0 as per Defini-
tions 2.4, 2.5.

Definition 2.6. The set of parameters {λ, r0, L, ρ, M, C0, n} is called the a-priori data.
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The following notation will also be adopted throughout the manuscript.

i) A constant C is said to be uniform if it depends on the a-priori data only.
ii) We denote by O(t) a function g such that

|g(t)| ≤ Ct, for all t, 0 < t < t0, (8)

where C, t0 > 0 are uniform constants.
iii) We set, for x′ ∈Rn−1,

δ(x′) =
{

Ce
1

(|x′|2−1) if |x′| < 1,

0 if |x′| ≥ 1,

where C > 0 is the constant such that 
∫
Rn−1 δ(x′)dx′ = 1.

In what follows, ‖ · ‖L(B1,B2) will denote the operator norm for linear operators between Ba-
nach spaces B1, B2. In particular L(Rn,Rn) denotes the operator norm induced by the Euclidean 
vector norm.

Our main result is stated below.

Theorem 2.1. Let y, ρ and � be defined by (7). Let σ (i) = {σ (i)
l m(x)}l,m=1,...n, x ∈ � satisfy 

(1), and assume that σ (i) is constant on � ∩ Bρ(y), for i = 1, 2. If N�
σ(i) is the local N-D map 

corresponding to σ (i), for i = 1, 2, then∣∣∣∣∣∣σ (1)(y) − σ (2)(y)

∣∣∣∣∣∣
L(Rn,Rn)

≤ CE1−β ||N�
σ(1) −N�

σ(2) ||β
L
(

0H
− 1

2 (�),(0H
− 1

2 (�))∗
), (9)

where C is a positive uniform constant and β = 1
n−1 .

Remark 2.2. We emphasize that no regularity assumptions are made for σ away from y.

Remark 2.3. As already observed in the Introduction, the presence of the term E in (9) is in-
tended for future global stability studies. In order to clarify this aspect, we present a toy model 
which exemplifies the approach towards global Lipschitz stability, starting from the above stated 
Hölder stability at the boundary.

Example. Suppose that � is partitioned into finitely many subdomains D1, . . . , DL. Assume 
also that each Dl, l = 1, . . . , L is such that

∂Dl ∩ ∂� ⊃ �l

where each

�l = ∂� ∩ Bρ(yl) , yl ∈ ∂�

satisfies the non-flatness assumption introduced in Definition 2.5.
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Let � ⊂ ∂� be such that

∪L
l=1�l ⊂ � .

Assume

σ (i) =
L∑

l=1

σ
(i)
l χDl

, i = 1,2,

where each σ (i)
l is constant. By the Theorem 2.1

E =
∣∣∣∣∣∣σ (1) − σ (2)

∣∣∣∣∣∣
L∞(�)

≤ CE1−β ||N�
σ(1) −N�

σ(2) ||β
L
(

0H
− 1

2 (�),(0H
− 1

2 (�))∗
),

which trivially implies that

∣∣∣∣∣∣σ (1) − σ (2)
∣∣∣∣∣∣

L∞(�)
≤ C

1
β ||N�

σ(1) −N�
σ(2) ||L

(
0H

− 1
2 (�),(0H

− 1
2 (�))∗

) .

3. Construction of mollifiers on a graph and their H− 1
2 -norm

For any two points ξ, x ∈ �, with

ξ = (ξ ′, ϕ(ξ ′)) ; x = (x′, ϕ(x′))

and τ > 0, we denote

δτ (ξ, x) = Cτ (ξ
′, x′)δ

(
ξ ′ − x′

τ

)

and we choose Cτ in such a way that

∫
�

δτ (ξ, x)dS(ξ) = 1, whenever B ′
τ (x

′) ⊂ B ′
ρ.

To compute Cτ we form

1 =
∫
�

δτ (ξ, x)dS(ξ) =
∫
B ′

ρ

Cτ (ξ
′, x′)δ

(
ξ ′ − x′

τ

)√
1 + |∇ϕ(ξ ′)|2dξ ′.

Denoting q(ξ ′) =√1 + |∇ϕ(ξ ′)|2, we set

Cτ (ξ
′, x′) = τ 1−n

′ ,

q(ξ )
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so that

∫
�

δτ (ξ, x)dS(ξ) =
∫

Rn−1

τ 1−nδ

(
ξ ′ − x′

τ

)
dξ ′ = 1.

Remark 3.1. Notice that q(ξ ′) = q(x′) + O(τα) on Bτ (x
′), hence q(ξ ′) = O(1) and therefore 

Cτ (ξ
′, x′) = O(τ 1−n).

We define the H− 1
2 -norm of an element f ∈ H− 1

2 (∂�) as follows

||f ||2
H

− 1
2 (∂�)

=
∫
∂�

h(x)(f (x) − f̄ ) dS(x) =
∫
�

|∇h(x)|2 dx,

where

f̄ = 1

|∂�|
∫
∂�

f (x) dS(x)

and h solves

{
�h = 0, in �,
∂h
∂ν

= f − f̄ , on ∂�.

Recall that, for y ∈ �, the Neumann kernel N�
0 (·, y) for the Laplacian � in � is defined, to 

be the distributional solution to{
� N�

0 (·, y) = −δ(· − y), in �
∂N�

0 (·,y)

∂ν
= − 1

|∂�| , on ∂�,

where δ is the n−dimensional Dirac delta and we impose the normalization

∫
∂�

N�
0 (·, y) dS(·) = 0,

and that for y ∈ ∂�, it solves

{
� N�

0 (·, y) = 0, in �
∂N�

0 (·,y)

∂ν
= δ(· − y) − 1

|∂�| , on ∂�,

where here δ is the (n − 1)−dimensional Dirac delta. We use such convention also in subsequent 
formulas. Hence we can write

h(x) =
∫

N�
0 (x, ξ)(f (ξ) − f̄ ) dS(ξ) =

∫
N�

0 (x, ξ)f (ξ) dS(ξ),
∂� ∂�
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since N�
0 (x, ·) and h have zero average on ∂�. Hence

||f ||2
H

− 1
2 (∂�)

=
∫

∂�×∂�

N�
0 (x, ξ)f (ξ)f (x) dS(x) dS(ξ). (10)

We are now in the position to estimate the behavior of the H− 1
2 (∂�) norm of the mollified delta 

function δτ (·, x), with x ∈ �, in terms of τ .

Lemma 3.2. Given x ∈ � such that B ′
τ (x

′) ⊂ B ′
ρ , we have

||δτ (·, x)||2
H

− 1
2 (∂�)

≤ Cτ 2−n,

where C > 0 is a uniform constant.

Proof. By (10) and the fact that δτ is compactly supported on �, we have

||δτ (·, x)||2
H

− 1
2 (∂�)

=
∫

�×�

N�
0 (ξ, η)δτ (ξ, x)δτ (η, x) dS(ξ) dS(η)

≤ C

∫
B ′

ρ×B ′
ρ

|ξ ′ − η′|2−nτ 2(1−n)δ

(
ξ ′ − x′

τ

)
δ

(
η′ − x′

τ

)
dξ ′ dη′.

The change of variables

ζ ′ = ξ ′ − x′

τ
; θ ′ = η′ − x′

τ
,

together with the fact that |ξ ′ − η′| = τ |ζ ′ − θ ′|, leads to

||δτ (·, x)||2
H

− 1
2 (∂�)

≤ C

∫
B ′

1×B ′
1

τ 2−n|ζ ′ − θ ′|2−nτ 2(1−n)δ
(
ζ ′) δ (θ ′) τ 2(n−1) dζ ′ dθ ′

= C

∫
B ′

1×B ′
1

τ 2−n|ζ ′ − θ ′|2−nδ
(
ζ ′) δ (θ ′) dζ ′ dθ ′ ≤ Cτ 2−n. �

We recall that for σ(x) = {σij (x)
}
i,j=1,...,n

, x ∈ �, symmetric, positive definite matrix-valued 
function satisfying (1), we denote by L the operator

L = div (σ∇·) (11)

and that if in dimension n > 2 we define the matrix

g = (detσ)
1

n−2 σ−1, (12)
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then

1√
detg

L = �g,

on the open set � endowed with the Riemannian metric g, see for instance [7], [16]. We empha-
size that, being n > 2, the knowledge of σ is equivalent to the knowledge of g.

4. Stability of the tangential part of g

We start by observing that (12), together with the uniform ellipticity assumption (1) on σ , 
implies the following uniform ellipticity of g

λ− 2n−2
n−2 |ξ |2 ≤ g(x)ξ · ξ ≤ λ

2n−2
n−2 |ξ |2, f or almost every x ∈ �,

f or every ξ ∈ Rn, (13)

where λ > 0 has been introduced in (1).
We also recall below few facts from [3] about the Neumann kernel to make this paper self-

contained. The Neumann kernel N�
σ for the boundary value problem associated with the operator 

(11) and �, for any y ∈ �, N�
σ (·, y), is defined to be the distributional solution to

{
L N�

σ (·, y) = −δ(· − y), in �

σ∇N�
σ (·, y) · ν = − 1

|∂�| , on ∂�.

Note that N�
σ is uniquely determined up to an additive constant. For simplicity we impose the 

normalization ∫
∂�

N�
σ (·, y) dS(·) = 0.

With this convention we obtain by Green’s identities that

N�
σ (x, y) = N�

σ (y, x), for all x, y ∈ �, x �= y.

N�
σ (x, y) extends continuously up to the boundary ∂� (provided that x �= y) and in particular, 

when y ∈ ∂�, it solves

{
L N�

σ (·, y) = 0, in �

σ∇N�
σ (·, y) · ν = δ(· − y) − 1

|∂�| , on ∂�.

Theorem 4.1. Let y, ρ and � be defined by (7). If L is the operator (11), with coefficients matrix 
σ ∈ Cα(Bρ(y) ∩ �), with 0 < α < 1, then the Neumann kernel N�

σ (·, y) satisfies

N�
σ (x, y) = 2�σ (x, y) +O(|x − y|2−n+α), (14)

as x → y, x ∈ � \ {y}. Here
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�σ (x, y) := Cn

(
g(y)(x − y) · (x − y)

) 2−n
2

and Cn = 1
n(n−2)ωn

with ωn denoting the volume of the unit ball in Rn.

Proof. See [3] for a proof. �
Therefore, we have

Lemma 4.2. Let y, ρ and � be defined by (7). If L is the operator (11), with coefficients matrix 
σ ∈ Cα(Bρ(y) ∩�), with 0 < α < 1, then the knowledge of N�

σ (x, y), for every x ∈ ∂� ∩Bρ(y)

uniquely determines

g(n−1)(y) = {g(y)vi · vj

}
i,j=1,...,(n−1)

,

where v1, . . . , vn−1 is a basis for Ty(∂�), the tangent space to ∂� at y.

Such a uniqueness result obtained in [3], will guide us towards a stability estimate.
In what follows, for y ∈ �, we set for i = 1, 2:

�i(x, y) := �σ(i)(y)(x, y) = Cn

(
g(i)(y)(x − y) · (x − y)

) 2−n
2

,

Ni(x, y) := N�
σi

(x, y)

Li = div
(
σ (i)∇·

)
and

Li;y = div
(
σ (i)(y)∇·

)
. (15)

Lemma 4.3. Under the same hypotheses of Theorem 2.1, for any y ∈ � and any x ∈ � \ {y} we 
have

|(N1 − N2) (x, y)| ≤ CE|x − y|2−n, (16)

|∇x(N1 − N2)(x, y)| ≤ CE |x − y|1−n , (17)

where C > 0 is a uniform constant.

Proof. From Theorem 4.1 for any y ∈ �, for any x ∈ �, for i = 1, 2, we have

Ni(x, y) = 2�i(x, y) + Ri(x, y), (18)

with

|Ri(x, y)| ≤ C|x − y|2−n+α,

|∇xRi(x, y)| ≤ C|x − y|1−n+α.
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Recalling that for y ∈ �, Ni(·, y) is the distributional solution to

{
Li Ni(·, y) = 0, in �

σ∇Ni(·, y) · ν = δ(· − y) − 1
|∂�| , on ∂�,

for any η ∈ H 1(�) ∩ C1(� ∩ Bρ(y)), we have

∫
�

σ (i)(x)∇xNi(x, y) · ∇xη(x)dx =
∫
∂�

η(x)

(
δ(x − y) − 1

|∂�|
)

dS(x)

= η(y) − η̄,

where η̄ = 1
|∂�|

∫
∂�

η(x)dS(x). Recalling the decomposition (18) we obtain

∫
�

σ (i)(x)∇x2�i(x, y) · ∇xη(x)dx +
∫
�

σ (i)(x)∇xRi(x, y) · ∇xη(x)dx = η(y) − η̄,

which leads to ∫
�

σ (i)(y)∇x2�i(x, y) · ∇xη(x)dx

+
∫
�

(
σ (i)(x) − σ (i)(y)

)
∇x2�i(x, y) · ∇xη(x)dx

+
∫
�

σ (i)(x)∇xRi(x, y) · ∇xη(x)dx = η(y) − η̄. (19)

Noticing that 2�i(·, y) solves the boundary value problem

{
Li;y 2�i(·, y) = 0, in �

σ(i)(y)∇ (2�i(·, y)) · ν = δ(· − y) + fi(·, y), on ∂�,

with

|fi(x, y)| ≤ C|x − y|1−n+α,

where C > 0 is a uniform constant and Li;y has been defined in (15), therefore

∫
�

σ (i)(y)∇x2�i(x, y) · ∇xη(x)dx = η(y) +
∫
∂�

fi(x, y)η(x)dS(x), (20)

and defining

Fi(x, y) :=
(
σ (i)(x) − σ (i)(y)

)
∇x2�i(x, y),
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we can rewrite (19) as∫
�

σ (i)(x)∇xRi(x, y) · ∇xη(x)dx = −
∫
�

Fi(x, y) · ∇xη(x)dx

−
∫
∂�

fi(x, y)η(x)dS(x) − η̄, (21)

where Fi(x, y) is zero for x ∈ Bρ(y), therefore bounded for x ∈ �. Therefore by combining (20)
and (21), we have that for any η ∈ H 1(�) ∩ C1(Bρ(y))

∫
�

σ (1)(x)∇x (R1 − R2) (x, y) · ∇xη(x)dx

=
∫
�

(
σ (2) − σ (1)

)
(x)∇xR2(x, y) · ∇xη(x)dx

−
∫
�

(F1 − F2) (x, y) · ∇xη(x)dx −
∫
∂�

(f1 − f2) (x, y)η(x)dS(x). (22)

By denoting for any x ∈ �, for any y ∈ �,

F(x, y) := (F1 − F2) (x, y),

we have

|F(x, y)| ≤ CE.

Moreover, by denoting for any x ∈ ∂�, for any y ∈ �, x �= y

f (x, y) := (f1 − f2) (x, y) = 2[σ (1)(y)∇�1(x, y) − σ (2)(y)∇�2(x, y)] · ν(x)

and by the explicit expression of �1 and �2, the ellipticity condition (1) and the regularity of the 
portion � we have

f (x, y) = O(E|x − y|−n)O(|x − y|1+α),

which leads to

|f (x, y)| ≤ CE|x − y|1−n+α.

Next, by denoting

G(x,y) :=
(
σ (2) − σ (1)

)
(x)∇xR2(x, y) − F(x, y),

we have
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|G(x,y)| ≤ CE|x − y|1−n+α,

where C > 0 denotes a uniform constant.
For any z ∈ �\ {y} and any k ∈ N , we define ηk(x) = min{N1(x, z), k} with x ∈ �. By choosing 
η(x) = ηk(x) in (22) and by the dominated convergence theorem we obtain

∫
�

σ (1)(x)∇x (R1 − R2) (x, y) · ∇xN1(x, z)dx

=
∫
�

G(x, y) · ∇xN1(x, z)dx −
∫
∂�

f (x, y)N1(x, z)dS(x).

By performing integration by parts on the integral appearing on the left hand side of (22) we 
have

1

|∂�|
∫
∂�

(R1 − R2) (x, y)dS(x) + (R1 − R2) (z, y)

=
∫
�

G(x, y) · ∇xN1(x, z)dx −
∫
∂�

f (x, y)N1(x, z)dS(x), (23)

where the right hand side of equality (23) can be estimated as follows

∣∣∣∣∣∣
∫
�

G(x, y) · ∇xN1(x, z)dx −
∫
∂�

f (x, y)N1(x, z)dS(x)

∣∣∣∣∣∣
C||σ (1) − σ (2)||L∞(�)

{∫
�

|x − y|1−n+α |x − z|1−ndx

+
∫
∂�

|x − y|1−n+α |x − z|2−ndS(x)

}

≤ CE|z − y|2−n+α,

where C > 0 is a uniform constant. To estimate 
∫
∂� (R1 − R2) (x, y)dS(x) in (23) recall that 

Ni(·, y) is uniquely determined by imposing the condition

∫
∂�

Ni(x, y)dS(x) = 0,

which leads to ∫
Ri(x, y)dS(x) = −

∫
2�i(x, y)dS(x).
∂� ∂�
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Therefore

∣∣∣∣∣∣
∫
∂�

(R1 − R2) (x, y)dS(x)

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
∂�

2 (�1 − �2) (x, y)dS(x)

∣∣∣∣∣∣≤ CE,

where C > 0 is a uniform constant, which leads to

|(R1 − R2) (z, y)| ≤ CE
{

1 + |z − y|2−n+α
}

≤ CE|z − y|2−n+α, (24)

where C > 0 is a uniform constant. (16) follows from (24). To prove (17) we observe that σ (i) is 
constant on � ∩ Bρ(y), for i = 1, 2, therefore

div
(
σ (i)∇Ni(·, y)

)
= tr

(
σ (i)D2Ni(·, y)

)
= 0, for i = 1,2,

therefore

tr
(
σ (1)D2 (N1 − N2) (·, y)

)
= tr

(
(σ (2) − σ (1))D2N2(·, y)

)
.

By fixing r > 0, with r <
ρ
4 and defining

C+
r :=

(
B2r (y) \ Br(y)

)
∩ �,

C+
2r :=

(
B4r (y) \ Br

2
(y)
)

∩ �,

we have for i = 1, 2

||D2Ni ||Cα(C+
r ) ≤ C

r2 ||Ni ||Cα(C+
2r )

≤ Cr−n−α

and

||D2(N1 − N2)||Cα(C+
r ) ≤ CEr−n−α. (25)

(17) follows by (16), (25) and an interpolation argument. �
Proposition 4.4 (Stability of the tangential part of g). For any y ∈ �,

∣∣∣∣∣∣g(1;n−1)(y) − g(2;n−1)(y)

∣∣∣∣∣∣
L(Rn−1, Rn−1)

≤ CE1−β ||N�
σ1

−N�
σ2

||β
L
(

0H
− 1

2 (∂�),0H
1
2 (∂�)

), (26)

where C is a positive uniform constant, β = 1
n−1 , g(i;n−1)(y) is the (n − 1) × (n − 1) upper left 

sub-matrix of g(i)(y), for i = 1, 2.
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Proof. Let d > 0 be such that d < (1 +M)ρ. Given distinct points x, y, w, z ∈ �, we recall from 
[3] the following definition

Kσ (x, y,w, z) = Nσ (x, y) − Nσ (x,w) − Nσ (z, y) + Nσ (z,w).

We also recall that knowing N�
σ is equivalent to knowing Kσ , for any x, y, w, z ∈ � [3, Lemma 

3.8].
We also note that, fixing w, z ∈ �, Kσ , as a function of x, y, has the same asymptotic behavior

of Nσ (x, y) as x → y.
Given y ∈ �, we choose x, w, z ∈ � such that

|x − y| ≤ d

4
,

|x − w| ≥ d

4
,

|x − z| ≥ d

4
,

|w − z| ≥ d

4
.

Let

τ := h|x − y|, with 0 < h <
1

16
(27)

and let δτ (·, ·) be the approximate Dirac’s delta functions on � introduced in Section 3, centered 
on the second argument. Then we have

〈δτ (· , x) − δτ (· , z),
(
N�

σ1
−N�

σ2

)
(δτ (· , y) − δτ (· ,w))〉 (28)

=
∫

�×�

(N1 − N2) (ξ, η) (δτ (ξ , x) − δτ (ξ , z)) (δτ (η , y) − δτ (η ,w)) dS(ξ)dS(η).

The integral appearing on the right hand side of (28) depends on x, y, w, z and to estimate how 
close this quantity is to (K1 − K2)(x, y, w, z) we form

(K1 − K2) (x, y,w, z) (29)

−
∫

�×�

(N1 − N2) (ξ, η) (δτ (ξ, x) − δτ (ξ, z)) (δτ (η, y) − δτ (η,w)) dS(ξ)dS(η)

= (N1 − N2) (x, y) −
∫

�×�

(N1 − N2) (ξ, η)δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

− (N1 − N2) (x,w)+
∫

(N1 − N2) (ξ, η)δτ (ξ, x)δτ (η,w)dS(ξ)dS(η)
�×�
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+ (N1 − N2) (z,w) −
∫

�×�

(N1 − N2) (ξ, η)δτ (ξ, z)δτ (η,w)dS(ξ)dS(η)

− (N1 − N2) (z, y)+
∫

�×�

(N1 − N2) (ξ, η)δτ (ξ, z)δτ (η, y)dS(ξ)dS(η).

We estimate each term on the right hand side of (29) as follows

∣∣∣∣∣∣(N1 − N2) (x, y) −
∫

�×�

(N1 − N2) (ξ, η)δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫

�×�

(
(N1 − N2) (x, y) − (N1 − N2) (ξ, η)

)
δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

∣∣∣∣∣∣
≤
∫

�×�

∣∣∣ (N1 − N2) (x, y) − (N1 − N2) (ξ, y)

∣∣∣δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

+
∫

�×�

∣∣∣ (N1 − N2) (ξ, y) − (N1 − N2) (ξ, η)

∣∣∣δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

≤
∫

�×�

∣∣∣∇ξ (N1 − N2) (ξ̂ , y)

∣∣∣|x − ξ |δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

+
∫

�×�

∣∣∣∇η (N1 − N2) (ξ, η̂)

∣∣∣|η − y|δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

≤
∫

�×�

CE

|ξ̂ − y|n−1
|x − ξ |δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

+
∫

�×�

CE

|ξ − η̂|n−1 |η − y|δτ (ξ, x)δτ (η, y)dS(ξ)dS(η),

where ξ̂ = (1 − t)x + tξ and η̂ = (1 − s)y + sη for some t, s ∈ (0, 1).
Notice that, given the choice of τ in (27), we have that

τ <
d

64
; |x − y| = O(|ξ̂ − y|); |x − y| = O(|ξ − η̂|),

therefore

∣∣∣∣∣∣(N1 − N2) (x, y) −
∫

(N1 − N2) (ξ, η)δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

∣∣∣∣∣∣

�×�
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≤
∫

�×�

2τCE

|x − y|n−1 δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

≤
∫

�×�

CEh

|x − y|n−2 δτ (ξ, x)δτ (η, y)dS(ξ)dS(η)

= CEh

|x − y|n−2 .

Each of the remaining three terms appearing on the right hand side of (29) involve at most one 
of the poles x, y ∈ � and are therefore bounded by CEh. Therefore we have

∣∣∣∣ (K1 − K2) (x, y,w, z)

−
∫

�×�

(N1 − N2) (ξ, η) (δτ (ξ, x) − δτ (ξ, z)) (δτ (η, y) − δτ (η,w)) dS(ξ)dS(η)

∣∣∣∣
≤ CEh

|x − y|n−2 + CEh

≤ CEh + CEhdn−2

|x − y|n−2 ≤ CEh

|x − y|n−2 .

Recalling that

∣∣〈δτ (· , x) − δτ (· , z),
(
N�

σ1
−N�

σ2

)
(δτ (· , y) − δτ (· ,w))〉∣∣≤ Cτ 2−nε,

where ε = ||N�
σ(1) − N�

σ(2) ||L
(

0H
− 1

2 (∂�),0H
1
2 (∂�)

). Hence, recalling the definition of τ in (27), 

we obtain the following pointwise estimate for K1 − K2

|(K1 − K2)(x, y,w, z)| ≤ Cετ 2−n + CEh

|x − y|n−2 (30)

= Cε
h2−n

|x − y|n−2 + CEh

|x − y|n−2

= Cεh2−n + CEh

|x − y|n−2 , 0 < h <
1

16
.

Minimization of (30) with respect to h leads to

|(K1 − K2)(x, y,w, z)| ≤ CεβE1−β

|x − y|n−2 ,

that is

|x − y|n−2|(K1 − K2)(x, y,w, z)| ≤ CεβE1−β, (31)
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with β = 1
n−1 . Inequality (31) is a uniform bound with respect to x, y ∈ �. Setting y = 0, ν(0) =

−en, where {e1, . . . , en} denotes the canonical basis of Rn, and writing x ∈ � as x = (x′, ϕ(x′)), 
with x′ = rξ ′, with ξ ′ ∈ Rn−1 and ||ξ ′|| = 1, (14) leads to

∣∣∣∣(g(1)(0)ξ ′ · ξ ′) 2−n
2 −

(
g(2)(0)ξ ′ · ξ ′) 2−n

2

∣∣∣∣≤ Cn

∣∣∣∣ lim
r→0

rn−2 (K1 − K2) (x,0, z,w)

∣∣∣∣ , (32)

where we identified ξ ′ with (ξ ′, 0). By Lagrange’s mean value theorem and (13), we have

∣∣∣(g(1)(0) − g(2)(0)
)

ξ ′ · ξ ′
∣∣∣≤ C

∣∣∣∣(g(1)(0)ξ ′ · ξ ′) 2−n
2 −

(
g(2)(0)ξ ′ · ξ ′) 2−n

2

∣∣∣∣ (33)

and by combining (33) with (31) together with (32), we obtain

∣∣∣(g(1)(0) − g(2)(0)
)

ξ ′ · ξ ′
∣∣∣≤ CE1−βεβ, for any ξ ′ ∈ Rn−1, ||ξ ′|| = 1,

which concludes the proof, since, as it is well known

∣∣∣∣∣∣g(1;n−1)(0) − g(2;n−1)(0)

∣∣∣∣∣∣
L(Rn−1, Rn−1)

= sup

{∣∣∣(g(1)(0) − g(2)(0)
)

ξ ′ · ξ ′
∣∣∣ : ξ ′ ∈Rn−1, ‖ξ ′‖ = 1

}
. �

5. Stability of the full metric g

In the following we shall prove that up to a suitable condition on the geometry of � and on the 
structure of the metric g, the knowledge of the Neumann kernel in a neighborhood of � allows 
us to recover the full metric g on �.
We assume that � is C2,α and non-flat as per Definition 2.5. This means that we can find 
P1, P2, P3 ∈ � and a constant C0, 0 < C0 < 1 satisfying (4) - (6). If we denote by {e1, . . . , en}
the canonical basis in Rn, we can assume, without loss of generality, that P1 = 0 ∈ �, that the 
tangent space to ∂� at 0 ∈ � is T0(∂�) = 〈e1, . . . , en−1〉 and the outer unit normal to ∂� at 0 is 
ν(P1) = −en. Hence we have

ν(0) · ν(P2) ≤ 1 − C0, (34)

ν(0) · ν(P3) ≤ 1 − C0, (35)

ν(P2) · ν(P3) ≤ 1 − C0 (36)

and without loss of generality, we can assume that there exists some 0 < γ1 < 1
2 such that

ν(P2) = 1√
1 + γ1

2
(−en + γ1en−1) ,

and some 0 ≤ γ2, γ3 ≤ 1 such that
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ν(P3) = 1√
1 + γ2

2 + γ3
2

(−en + γ2en−1 + γ3en−2) .

Let �1, �2, �3 be the tangent spaces to ∂� at 0, P2, P3, respectively, with orthonormal basis 
{v1

1, . . . , v1
n−1}, {v2

1, . . . , v2
n−1}, {v3

1, . . . , v3
n−1} and a linear application T ,

T : Symn →R3(n−1)2
,

defined by

T g =
{
gvk

i · vk
j | k = 1,2,3, i, j = 1, . . . , n − 1

}
, for any g ∈ Symn .

Proposition 5.1. In the above setting for �, if σ ∈ L∞(� , Symn) satisfies (1) and it is con-
stant on � ∩ Bρ , then the knowledge of N�

σ (x, y), for every x, y ∈ � uniquely determines g(0). 
Moreover T is a linear and injective application such that

‖g‖L(Rn,Rn) ≤ C‖T g‖, (37)

where C > 0 is a constant only depending on C0 and ‖T g‖ is the Euclidean norm of T g in 
R3(n−1)2

.

Proof. We reformulate conditions (34) - (36) in terms of γ1, γ2, γ3. From condition (34) we get

ν(0) · ν(P2) = 1√
1 + γ 2

1

≤ 1 − C0,

which leads to

γ1 ≥ k0,

where k0 =
√

1−(1−C0)
2

(1−C0)
2 . Furthermore, from (35) we obtain

ν(0) · ν(P3) = 1√
1 + γ 2

2 + γ 2
3

≤ 1 − C0,

which leads to

γ 2
2 + γ 2

3 ≥ k0
2 .

Hence we get that

γ2 ≥ k0√
2

or γ3 ≥ k0√
2

.

Finally, by condition (36), we have
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ν(P2) · ν(P3) = 1 + γ1γ2√
1 + γ 2

1

√
1 + γ 2

2

√
1 + γ2

2√
1 + γ2

2 + γ 2
3

≤ 1 − C0 . (38)

By (38) we have that

(1 + γ1γ2)
2

≤ (1 − C0)
2(1 + γ 2

1 )(1 + γ 2
2 + γ 2

3 )

≤ (1 − C0)
2(γ1 − γ2)

2 + (1 − C0)
2(1 + 2γ1γ2 + γ 2

1 γ 2
2 + γ 2

3 + γ 2
1 γ 2

3 ).

Hence

[1 − (1 − C0)
2](1 + γ1γ2)

2 − (1 − C0)
2γ 2

3 (1 + γ 2
1 ) ≤ (1 − C0)

2(γ1 − γ2)
2. (39)

If γ3 ≤ k0√
2

, from (39) and the fact that γ1 ≤ 1
2 we get that

[1 − (1 − C0)
2](1 + γ1γ2)

2 − 5

8
(1 − C0)

2k0
2 ≤ (1 − C0)

2(γ1 − γ2)
2,

which leads to

(γ1 − γ2)
2 ≥ 3

8

[1 − (1 − C0)
2]

2(1 − C0)2 .

In conclusion, we have the following two cases:

γ1 ≥ k0 , γ3 ≥ k0√
2

(40)

or

γ1 ≥ k0 , γ2 ≥ k0√
2

and |γ1 − γ2| ≥
√

3[1 − (1 − C0)2]
16(1 − C0)2 . (41)

We observe that the spaces �1, �2, �3 are generated by

{e1, . . . , en−1} ,⎧⎪⎨
⎪⎩e1, . . . , en−2,

en−1 + γ1en√
1 + γ 2

1

⎫⎪⎬
⎪⎭ ,

{e1, . . . , en−3, en−2 + γ3en, en−1 + γ2en} ,

respectively, although the latter is not an orthonormal basis. Let {v1, . . . , vn−1} be an orthonormal 
basis for �3 and let

w1 = en−2 + γ3en, w2 = en−1 + γ2en .
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By using the repeated index notation we have

wi = (wi · vj )vj , for i = 1,2

and

gwi · wj = (gvl · vk)(wi · vl)(wj · vk), (42)

for i, j = 1, 2 and k, l = 1, . . . , n − 1. Noticing that

n−1∑
j=1

(wi · vj )
2 = ‖wi‖2 ≤ max{1 + γ 2

2 ,1 + γ 2
3 } ≤ 2,

by (42) we have that

|gwi · wj | ≤ C‖T g‖,

where C is an absolute constant. Now, from the tangential component of g over �1, we recover 
the upper left submatrix of g, in particular

|gi,j | = |gei · ej | ≤ ‖T g‖, (43)

for any i, j = 1, . . . , n − 1. From the tangential component of g over �2 we know the following 
quantities

gei · en−1 + γ1en√
1 + γ 2

1

= 1√
1 + γ 2

1

(gn−1,i + γ1gn,i),

with i = 1, . . . , n − 2. Hence since by (43) we can control gn−1,i , we get that

|gi,n| ≤ C‖T g‖, (44)

for any i = 1, . . . , n − 2. To estimate the remaining entries gn−1,n, gnn of g ∈ Symn, we consider 
the following known quantity

g

⎛
⎜⎝en−1 + γ1en√

1 + γ 2
1

⎞
⎟⎠ ·
⎛
⎜⎝en−1 + γ1en√

1 + γ 2
1

⎞
⎟⎠= 1

1 + γ 2
1

(gn−1,n−1 + 2γ1gn−1,n + γ 2
1 gn,n).

Hence, since by (43) we can control gn−1,n−1, we get

|2gn−1,n + γ1gn,n| = |F1| ≤ C‖T g‖, for i = 1, . . . , n − 2,

where
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F1 = 1

γ1

(
(g(en−1 + γ1en) · en−1 + γ1en) − gn−1,n−1

)
.

From the tangential component of g over �3 we know the quantity

g

⎛
⎜⎝en−2 + γ3en√

1 + γ 2
3

⎞
⎟⎠ ·
⎛
⎜⎝en−2 + γ3en√

1 + γ 2
3

⎞
⎟⎠= 1

1 + γ 2
3

(gn−2,n−2 + 2γ3gn−2,n + γ 2
3 gn,n).

Hence by (43) and by (44) we have that

|γ 2
3 gn,n| = |F2| ≤ ‖T g‖,

where

F2 = g(en−2 + γ3en) · (en−2 + γ1en) − gn−2,n−2 − 2γ3gn−2,n.

Finally, we also know

g

⎛
⎜⎝en−2 + γ2en√

1 + γ 2
2

⎞
⎟⎠ ·
⎛
⎜⎝en−2 + γ2en√

1 + γ 2
2

⎞
⎟⎠= 1

(1 + γ 2
2 )

(
gn−1,n−1 + 2γ2gn−1,n + γ 2

2 gn,n

)
.

Hence by (43) we have that

|2γ2gn−1,n + γ 2
2 gn,n| = |F3| ≤ ‖T g‖,

where

F3 = g (en−2 + γ2en) · (en−2 + γ2en) − gn−1,n−1.

Collecting together the above calculations lead to the linear system

AG = F,

where

A =
⎛
⎝ 2 γ1

0 γ 2
3

2γ2 γ 2
2 ,

⎞
⎠ ,

G = (gn−1,n gn,n)
T and F = (F1 F2 F3)

T . If case (40) holds, then we recover G by inverting 
the square matrix

A1 =
(

2 γ1

0 γ 2

)
.

3
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Otherwise, if case (41) holds, then we recover G by inverting the square matrix

A2 =
(

2 γ1

2γ2 γ 2
2

)
,

which concludes the proof. �
Proof of Theorem 2.1. Let y, ρ and � be defined by (7). From (12) we have

σi(y) = (detgi(y))
1
2 g−1

i (y), for i = 1,2,

therefore

σ1(y) − σ2(y) =
[
(detg1(y))

1
2 − (detg2(y))

1
2

]
g−1

1 (y)

+ (detg2(y))
1
2

(
g−1

1 (y) − g−1
2 (y)

)
= detg1(y) − detg2(y)

(detg1(y))
1
2 + (detg2(y))

1
2

g−1
1 (y)

+ (detg2(y))
1
2 g−1

1 (y) (g2(y) − g1(y)) g−1
2 (y),

which leads to

||σ1(y) − σ2(y)||L(Rn,Rn) ≤ C||g1(y) − g2(y)||L(Rn,Rn).

In view of Proposition 4.4 and Proposition 5.1 the proof is complete. �
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